CN101727105B - 一种空调控制器自动化测试方法及测试装置 - Google Patents

一种空调控制器自动化测试方法及测试装置 Download PDF

Info

Publication number
CN101727105B
CN101727105B CN2008101991415A CN200810199141A CN101727105B CN 101727105 B CN101727105 B CN 101727105B CN 2008101991415 A CN2008101991415 A CN 2008101991415A CN 200810199141 A CN200810199141 A CN 200810199141A CN 101727105 B CN101727105 B CN 101727105B
Authority
CN
China
Prior art keywords
analog
data acquisition
acquisition module
terminal box
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101991415A
Other languages
English (en)
Other versions
CN101727105A (zh
Inventor
谭泽汉
赵红强
肖焕明
李绍斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gree Electric Appliances Inc of Zhuhai
Original Assignee
Gree Electric Appliances Inc of Zhuhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gree Electric Appliances Inc of Zhuhai filed Critical Gree Electric Appliances Inc of Zhuhai
Priority to CN2008101991415A priority Critical patent/CN101727105B/zh
Publication of CN101727105A publication Critical patent/CN101727105A/zh
Application granted granted Critical
Publication of CN101727105B publication Critical patent/CN101727105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种空调控制器自动化测试方法及测试装置,基于与主机连接的第一数据采集模块、第二数据采集模块,包括如下步骤:(1)采集被测控制器的模拟输出信号,并对其放大后通过第一接线盒输出到第一数据采集模块;采集被测控制器的模拟输入信号,并对其放大后通过第二接线盒输出到第二数据采集模块;第一数据采集模块通过第一接线盒采集被测控制器的数字输出信号、数字输入信号;(2)第一数据采集模块、第二数据采集模块将采集到的模拟输出信号、模拟输入信号、数字输出信号、数字输入信号传送给主机,主机并实时保存上述信号,由主机根据预先输入的测试用例对各信号进行分析对比处理,得出测试结果;(3)主机对预先输入的测试用例或输入条件以及测试结果进行保存。

Description

一种空调控制器自动化测试方法及测试装置
技术领域
本发明涉及到空调控制器的测试技术领域,尤其是一种空调控制器自动化测试装置及测试方法。
背景技术
目前的空调控制器测试及测试报告均是人工操作。通过可调电阻来模拟空调温度,压力,湿度这些物理量的变化,但人工操作速度过快且一个测试员同时最多只能按设置测试条件调整2个物理量。且测试周期长特别是等待时间较长的化霜(至少40分钟以上)回油(至少120分钟以上)。如果通过一个测试人员同时测试2套控制器,也会存在一定的问题:同时测试多套控制器,测试人员的注意力分散,会遗漏一些测试现象,导致不得不重复测试。
目前的测试人员发现的测试问题,需要和设计人员现场确认,特别是一些测试问题是偶尔发现的,而针对重复出现的问题再进行测试一般是很困难的。
目前还没有专门的空调控制器自动测试的设备。类似的测试仪器有Agilent的U2300A系列的数据采集设备。但这些设备正如名称所表示:是数据采集用,且使用该采集设备,其模拟输入和模拟输出的驱动能力不足,与空调控制器的IC工作电压不同;没有对输出的模拟量和数字量时间和物理量的连续和同步设定,也没有对输出的模拟量和数字的保存,甚至没有数字输入的保存;而且输出模拟量也是单点输出,不是多组连续输出,无法模拟空调系统工作时的连续变化。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种可以将模拟输出和模拟输入的信号进行放大,对输出的模拟量和数字的时间和物理量的连续和同步设定;输出模拟量是多组连续输出的空调控制器自动测试方法及装置。
为实现以上目的,本发明采取了以下的技术方案:一种空调控制器自动化测试方法,基于与主机连接的第一数据采集模块、第二数据采集模块,包括如下步骤:
(1)采集被测控制器的模拟输出信号,并对模拟输出信号进行放大后通过第一接线盒输出到第一数据采集模块;采集被测控制器的模拟输入信号,并对模拟输入信号进行放大后通过第二接线盒输出到第二数据采集模块;第一数据采集模块通过第一接线盒采集被测控制器的数字输出信号、数字输入信号;
(2)第一数据采集模块、第二数据采集模块将采集到的模拟输出信号、模拟输入信号、数字输出信号、数字输入信号传送给主机,主机实时保存模拟输入信号、数字输入信号、模拟输出信号、数字输出信号,由主机根据预先输入的测试用例对信号进行分析对比处理,得出测试结果;
(3)主机对预先输入的测试用例或输入条件和测试结果进行保存。
所述测试用例包括数字输入条件、模拟输入条件、用户设定条件。这些输入条件或测试用例根据控制器的不同具体被测功能而不同。
为实现输出的模拟量是多组连续输出,上述测试方法还包括如下步骤:
(1)设定偏置值和初始直线斜率,建立第一段函数;
(2)根据所述第一段函数,按预定时间采样率计算对应的函数值,并计算函数值等于所需的模拟输出电压时的第一维持时间;
(3)当所述第一维持时间达到预先设定的第一段函数维持时间时,将第一维持时间对应的函数值作为第二段函数的偏置值;
(4)重复执行步骤(1)到(3),得到各段分段函数的函数值,该函数值即为模拟输出电压值。
通过上述循环结构,计算不同维持时间内对应的分段函数值,从而实现模拟输出电压值的多组连续输出。
用于空调控制器自动化测试方法的测试装置,包括有主机及安装到该主机PCI插槽中的第一数据采集模块、第二数据采集模块,该第一数据采集模块通过第一接线盒与被测控制器的模拟输出接口电连接,第二数据采集模块通过第二接线盒与被测控制器的模拟输入接口电连接,在所述模拟输出接口与第一接线盒、模拟输入接口与第二接线盒之间分别连接有对信号进行放大的第一模拟采样转换板、第二模拟采样转换板。
直接使用数据采集模块时,其A/O输出能力不足,输出电流一般只有5mA。;且和空调控制器控制IC工作电压(5V、3.3V)不同,通过采用具有运算放大功能的第一模拟采样转换板、第二模拟采样转换板来进行信号放大,设计目标输入、输出电压10bit分辩率以上。
所述第一模拟采样转换板包含有第一运算放大电路,其通过第一电源切换电路供电,该第一运算放大电路的输入端与所述被测控制器的模拟输出端电连接,输出端与第一接线盒的模拟输入端电连接;
所述第二模拟采样转换板包含有第二运算放大电路,其通过第一电源切换电路供电,该第二运算放大电路输入端与所述被测控制器的模拟输入端电连接,输出端与第二接线盒的模拟输出端电连接。
所述第一运算放大电路和第二运算放大电路分别包括运算放大器。
所述第一运算放大电路包括两个瞬态抑制二极管,该两个瞬态抑制二极管的阳极分别接地,其中一个瞬态抑制二极管的阴极与第一运算放大电路的输入端电连接,另一个瞬态抑制二极管的阴极与第一运算放大电路的输出端电连接;
所述第二运算放大电路也包括两个瞬态抑制二极管,该两个瞬态抑制二极管的阳极分别接地,其中一个瞬态抑制二极管的阴极与第二运算放大电路的输入端电连接,另一个瞬态抑制二极管的阴极与第二运算放大电路的输出端电连接。
防静电、防拔插保护功能是通过瞬态抑制二极管实现的;特别是防拔插保护非常重要,实际使用中,测试人员会经常通过人手直接接触拔插A/O通道,如果在运算放大电路中没有瞬态抑制二极管的保护就很容易损坏运算放大器。
所述第一数据采集模块与第一接线盒之间、第二数据采集模块与第二接线盒之间通过屏蔽电缆线电连接。采用屏蔽电缆线连接有效防止外界对控制器的电磁干扰,保证测试效果。
还包括有与所述第一模拟采样转换板、第二模拟采样转换板电连接的电源变压器。该电源变压器内带保险管可有效的对第一模拟采样转换板、第二模拟采样转换板的电路进行短路保护。
本发明与现有技术相比,具有如下优点:本发明具备将被测控制器的模拟信号进行采集并放大,由主机分析处理,解决了现有技术直接使用数据采集模块,其A/O输出能力不足的问题,且能和空调控制器的IC工作电压进行匹配,具备短路保护、防静电、放插拔的保护功能;可根据需要预先设置不同的测试用例并生成报告,从而模拟空调系统工作时的连续变化;当执行完设定的输出条件后可以自动停机并保存采集的数据,因此可真实地模拟空调系统工作时多个变量的同步变化,特别是保护和极限工圹条件下的变量变化
附图说明
图1为本发明测试装置整体结构示意图;
图2为本发明模拟采样转接板电源电路示意图;
图3为本发明运算放大电路示意图;
图4为本发明电源切换电路示意图;
图5为本发明操作过程流程图;
图6为本发明实现输出模拟量多组连续输出的流程图。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
一种空调控制器自动化测试方法,基于与主机连接的第一数据采集模块、第二数据采集模块,包括如下步骤:
(1)采集被测控制器的模拟输出信号,并对模拟输出信号进行放大后通过第一接线盒输出到第一数据采集模块;采集被测控制器的模拟输入信号,并对模拟输入信号进行放大后通过第二接线盒输出到第二数据采集模块;第一数据采集模块通过第一接线盒采集被测控制器的数字输出信号、数字输入信号;
(2)第一数据采集模块、第二数据采集模块将采集到的模拟输出信号、模拟输入信号、数字输出信号、数字输入信号传送给主机,主机实时保存模拟输入信号、数字输入信号、模拟输出信号、数字输出信号,由主机根据预先输入的测试用例对信号进行分析对比处理,得出测试结果;
(3)主机对预先输入的测试用例或输入条件和测试结果进行保存。
请参阅图1所示,一种空调控制器自动化测试装置,包括有主机及安装到该主机PCI插槽中的第一数据采集模块、第二数据采集模块,该第一数据采集模块和第二数据采集模块分别通过屏蔽电缆线与第一接线盒和第二接线盒电连接,该接线盒是用来直接连接被测信号和数据采集模块的转换装置。在第一接线盒内设置有数字输入接口、模拟输入接口,第二接线盒内设置有模拟输出接口,第一接线盒数字输入接口与被测控制器的数字输出接口对应电连接,第一接线盒数字输出接口与被测控制器的数字输入接口对应电连接,第一接线盒模拟输入接口与被测控制器的模拟输出接口对应电连接,第二接线盒的模拟输出接口与被测控制器的模拟输入接口对应电连接;为保证被测控制器模拟输入和模拟输出的驱动能力,在被测控制器的模拟输出接口、模拟输入接口与第一接线盒、第二接线盒之间分别连接有包含有运算放大功能的第一模拟采样转换板、第二模拟采样转换板。
本实施例中第一数据采集模块采用M系列的PCI-6229,第二数据采集模块采用PCI-6723,PCI-6229和PCI—6723均是PCI板卡的安装方式,可直接安装到计算机的PCI插槽中,其在各模块中集成了模拟输入、模拟输出、计数器/定时器和数字I/O等功能。如PCI-6229集成了输入分辩率为16位的32路模拟输入、最大输出速率833K/S的4路模拟输出、48路5V TTL电平的数字I/O;如PCI-6723集成了分辩率为13位,更新率为800KS/S的32路模拟输出、8路5V TTL电平的数字I/O、2个24位的计数器/定时器。
被测控制器的测试点由四个部分组成,分别对应模拟输入接口、模拟输出接口、数字输入接口、数字输出接口,数字输入接口如压缩机的高压开关检测、压缩机的低压开关检测等,数字输出接口如内风机高,中低风挡、四通阀等,模拟输入接口如环境感温包、蒸发器感温包、冷凝器感温包等,模拟输出接口如0V~5V的PWM执行水阀的控制信号。
本实施例中,第一接线盒、第二接线盒与被测控制器之间的测试用的连接线为符合UL1015标准的AWG22连接线,考虑到信号的衰减问题,连接线的长度需控制在50CM之内。
图2为模拟采样转接板电源电路示意图,由二极管D1到D4组成的整流电路,电压通过该整流电路再由稳压管U2输出5V的电源,并输出连接到稳压器U24的输入端,经由该稳压器U24输出稳定的3.3V电源,本实施例中稳压器U24采用TPS76633D型号的稳压器,稳压管U2采用7805稳压芯片,其可以输入5V的直流稳压电源,采用上述现有的芯片,有助于简化电路,降低了成本。
请参阅图3所示,该运算放大电路中包括两个瞬态抑制二极管TVS1和TVS2,运算放大器U1,电阻R1、R5,电容C7、C9,其具有两个输入端INA1、IN1,两个输出端OUT1、OUTB1,输入端INA1的一端接地,另一端与输入端IN1连接后与运算放大器U1的正相输入端电连接,TVS1的阳极接地,其阴极与输入端INA1电连接,电容C7的一端与TVS1的阳极连接后接地,其另一端连接于U1的正相输入端和INA1之间,在运算放大器U1反相输入端和输出端之间电连接有电阻R1,电阻R5的一端与U1的输出端电连接,另一端与TVS2的阴极连接后与输出端OUT1和OUTB1的连接点电连接,电容C9的一端与输出端OUT1电连接,另一端与TVS2的阳极连接后接地,输出端OUTB1的一端接地。
本实施例中运算放大器U1采用的是MPC6024,采用的是运算放大器的跟随电路。其中TVS1和TVS2是5V的TVS二极管,作用是保护运算放大器。
请参阅图4所示,图4为电源切换电路,其包括SW-DIP4开关,当被测控制器主芯片选择的是5V供电,则电源切换电路通过SW-DIP4开关选择5V供电,当被测控制器的主芯片选择的是3.3V供电,则电源切换电路通过SW-DIP4开关选择3.3V供电,其中5V电源主要是供给通用的8位MCU采样使用,3.3V电源主要是供给通用的16位DSP或32位ARM芯片采用使用。
请参阅图5所示,为空调控制器测试操作过程流程图,首先将第一数据采集模块、第二数据采集模块连接在主机上,并将第一接线盒与第二接线盒通过连接线与被测控制的模拟和数字接口连接;然后测试人员需设计被测控制器的某一具体被测功能所需要的输入条件,包括数字输入条件、模拟输入条件、用户设定条件等,同时还需对某一具体被测功能所需要的输入条件的参数变化过程进行描述,并将这些描述表现到自动化测试系统的测试界面中,具体可通过手工输入方式和自动选择输入方式输入条件,手工输入方式是测试人员手动将输入条件一一的输入到自动化测试装置的测试界面中,自动选择输入方式即通过自动化测试装置的测试用例选择事先已设计好的测试用例;当设定好具体输入条件的参数,并将空调控制器自动化测试装置进行电气连接后,再在测试装置中选择文件保存的路径,按下“开始”按键,第一数据采集模块和第二数据采集模块就开始通过第一接线盒和第二接线盒采集被测控制器的模拟和数字信号并输入到主机,由主机根据预先输入的测试用例对各信号进行分析对比处理,得出测试结果;本实施例中有二种停止自动测试装置的方法,可自动停止:即由自动测试装置完成了所有的测试用例时,通过执行完最长时间的输入即完成了所有的测试用例,自动停止测试装置,并在停止之前,自动保存所有的输入和输出的数据,另一种是手动停止:即测试人员手动按下“停止”,强制停止自动测试装置运行,在停止之前,自动测试装置会保存从开始时刻到停止时刻的所有输入和输出的数据。
本实施例基于图形化开发软件LabVIEW对模拟数据和数字数据进行并行处理,具体是对以下步骤同步并行进行:保存模拟输入数据、保存数字输入数据、数字/模拟输出按预先输入的设定输出,其中保存模拟输入数据、保存数字输入数据均为0.5秒/次,这样保证了对输出的模拟量和数字的时间和物理量的连续和同步设定,而且通过大量保存被测控制器不同条件下的不同数据,能更好的模仿空调系统工作时的变化。
上述两种停止自动测试装置的方法可用于不同的测试场合。一般情况下,手工输入方式的测试用例针对性更强,因此手工输入方式的测试用例可通过自动停止的方式来停止自动测试系统运行,而自动选择输入方式的测试用例可通过手动停止的方式来停止自动测试装置运行。
请参阅图6所示,为实现输出模拟量是多组连续输出的目的,通过建立分段函数从而使不同维持时间的分段函数值对应模拟输出电压,从而实现模拟输出量的连续多组输出。将需要模拟输出的端口,按分段函数进行软件实现.并将函数通过While循环结构体不断运行,通过分段函数来实现被测控制器模拟输出量的连续输出,而不是分阶段输出.
时间维持的分段函数实现原理如下:
B;(维持时间)
Y0=a*0.5(秒)+B;
Y0;(维持时间)
Y1=a*0.5(秒)+Y0
Y1;(维持时间)
Y2=a*0.5(秒)+Y1
Y2;(维持时间)
Y3=a*0.5(秒)+Y2
Y3;(维持时间)
…………
实现的步骤如下:
(1)通过设定偏置值和初始直线斜率,建立第一段函数,这些斜率(a0,a1,a2,a3……)和偏置值(B)均可按输入条件进行人为修正,,本实施例中选择a0=a1=a2=a3……;
(2)根据所述第一段函数,按预定时间采样率计算对应的函数值,并计算函数值等于所需的模拟输出电压时的第一维持时间;预定时间采样率也可设置,默认为2/S采样率,最高可设置250K/S采样率。本实施例时间采样率订为0.5秒,即每0.5秒可得到一个模拟输出电压(即某一段的分段函数值),将该模拟输出电压逐步逼近(每一步步长为0.01V)所需要的模拟输出电压值;
(3)当第一维持时间达到预先设定的第一段函数维持时间时,将第一维持时间对应的函数值作为第二段函数的偏置值;
重复执行步骤(1)到(3),得到各段分段函数的函数值,该函数值即为模拟输出电压值。
拟输出的维持时间为B,Y0,Y1,Y2,Y3的维持时间之和,加上B到Y0的时间,Y0到Y1的时间,Y1到Y2的时间,Y2到Y3的时间之和。
如此通过设置分段函数的斜率方向;分段函数值;分段函数维持时间;偏置值;偏置值维持时间即可模拟出空调模拟输入信号的工作状态。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (9)

1.一种空调控制器自动化测试方法,基于与主机连接的第一数据采集模块、第二数据采集模块,其特征在于,包括如下步骤:
(1)采集被测控制器的模拟输出信号,并对模拟输出信号进行放大后通过第一接线盒输出到第一数据采集模块;采集被测控制器的模拟输入信号,并对模拟输入信号进行放大后通过第二接线盒输出到第二数据采集模块;第一数据采集模块通过第一接线盒采集被测控制器的数字输出信号、数字输入信号;
(2)第一数据采集模块、第二数据采集模块将采集到的模拟输出信号、模拟输入信号、数字输出信号、数字输入信号传送给主机,主机实时保存模拟输入信号、数字输入信号、模拟输出信号、数字输出信号,由主机根据预先输入的测试用例对信号进行分析对比处理,得出测试结果;
(3)主机对预先输入的测试用例或输入条件以及测试结果进行保存。
2.如权利要求1所述的空调控制器自动化测试方法,其特征在于:所述测试用例包括数字输入条件、模拟输入条件、用户设定条件。
3.如权利要求1或2所述的空调控制器自动化测试方法,其特征在于,所述模拟输出信号包括模拟输出电压值,该模拟输出电压值的实现方法包括如下步骤:
(1)设定偏置值和初始直线斜率,建立第一段函数;
(2)根据所述第一段函数,按预定时间采样率计算对应的函数值,并计算函数值等于所需的模拟输出电压时的第一维持时间;
(3)当所述第一维持时间达到预先设定的第一段函数维持时间时,将第一维持时间对应的函数值作为第二段函数的偏置值;
(4)重复执行步骤(1)到(3),得到各段分段函数的函数值,该函数值即为模拟输出电压值。
4.用于权利要求1所述测试方法的测试装置,包括有主机及安装到该主机PCI插槽中的第一数据采集模块、第二数据采集模块,该第一数据采集模块通过第一接线盒与被测控制器的模拟输出接口电连接,第一接线盒数字输入接口与被测控制器的数字输出接口对应电连接,第一接线盒数字输出接口与被测控制器的数字输入接口对应电连接,第二数据采集模块通过第二接线盒与被测控制器的模拟输入接口电连接,其特征在于:在所述模拟输出接口与第一接线盒、模拟输入接口与第二接线盒之间分别连接有对信号进行放大的第一模拟采样转换板、第二模拟采样转换板。
5.如权利要求4所述的测试装置,其特征在于:所述第一模拟采样转换板包含有第一运算放大电路,其通过第一电源切换电路供电,该第一运算放大电路的输入端与所述被测控制器的模拟输出端电连接,输出端与第一接线盒的模拟输入端电连接;所述第二模拟采样转换板包含有第二运算放大电路,其通过第一电源切换电路供电,该第二运算放大电路输入端与所述被测控制器的模拟输入端电连接,输出端与第二接线盒的模拟输出端电连接。
6.如权利要求5所述的测试装置,其特征在于:所述第一运算放大电路和第二运算放大电路分别包括运算放大器。
7.如权利要求6所述的测试装置,其特征在于:所述第一运算放大电路包括两个瞬态抑制二极管,该两个瞬态抑制二极管的阳极分别接地,其中一个瞬态抑制二极管的阴极与第一运算放大电路的输入端电连接,另一个瞬态抑制二极管的阴极与第一运算放大电路的输出端电连接;所述第二运算放大电路也包括两个瞬态抑制二极管,该两个瞬态抑制二极管的阳极分别接地,其中一个瞬态抑制二极管的阴极与第二运算放大电路的输入端电连接,另一个瞬态抑制二极管的阴极与第二运算放大电路的输出端电连接。
8.如权利要求5所述的测试装置,其特征在于:所述第一数据采集模块与第一接线盒之间、第二数据采集模块与第二接线盒之间通过屏蔽电缆线电连接。
9.如权利要求4到8中任一所述的测试装置,其特征在于:还包括有与所述第一模拟采样转换板、第二模拟采样转换板电连接的电源变压器。
CN2008101991415A 2008-10-14 2008-10-14 一种空调控制器自动化测试方法及测试装置 Active CN101727105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101991415A CN101727105B (zh) 2008-10-14 2008-10-14 一种空调控制器自动化测试方法及测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101991415A CN101727105B (zh) 2008-10-14 2008-10-14 一种空调控制器自动化测试方法及测试装置

Publications (2)

Publication Number Publication Date
CN101727105A CN101727105A (zh) 2010-06-09
CN101727105B true CN101727105B (zh) 2012-05-23

Family

ID=42448103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101991415A Active CN101727105B (zh) 2008-10-14 2008-10-14 一种空调控制器自动化测试方法及测试装置

Country Status (1)

Country Link
CN (1) CN101727105B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576667B (zh) * 2012-07-25 2016-02-24 珠海格力电器股份有限公司 主控板的测试方法、装置及系统
CN104280622B (zh) * 2013-07-12 2019-03-12 珠海格力电器股份有限公司 一种商用空调电器盒自动测试系统及方法
CN103631258B (zh) * 2013-12-12 2016-09-28 广东志高空调有限公司 一种控制器检测系统及方法
CN103926921A (zh) * 2014-05-05 2014-07-16 新杰克缝纫机股份有限公司 一种缝纫机操作面板的检测系统及方法
CN109782731B (zh) * 2018-12-26 2021-08-06 广东格兰仕集团有限公司 一种微波炉逻辑功能的自动测试方法
CN110514984B (zh) * 2019-09-09 2021-11-16 广东合立鼎峰科技有限公司 一种多功能电路板智能检测仪
CN111596647B (zh) * 2020-06-01 2021-08-06 国电联合动力技术有限公司 风电机组高效智能测试系统及方法
CN114489005A (zh) * 2022-01-12 2022-05-13 中国兵器装备集团上海电控研究所 适用于操控控制器的板卡检测装置及其检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108376A (zh) * 1993-10-29 1995-09-13 运载器有限公司 采暖、通风与空调系统的错误检测
JP2005251185A (ja) * 2004-02-05 2005-09-15 Toenec Corp 電気設備診断システム
CN200941158Y (zh) * 2006-08-29 2007-08-29 珠海格力电器股份有限公司 空调电器盒自动测试装置
CN101080682A (zh) * 2004-12-17 2007-11-28 特拉华兰科有限公司 改进的对加热、通风和空调控制系统的诊断和相关的使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108376A (zh) * 1993-10-29 1995-09-13 运载器有限公司 采暖、通风与空调系统的错误检测
JP2005251185A (ja) * 2004-02-05 2005-09-15 Toenec Corp 電気設備診断システム
CN101080682A (zh) * 2004-12-17 2007-11-28 特拉华兰科有限公司 改进的对加热、通风和空调控制系统的诊断和相关的使用方法
CN200941158Y (zh) * 2006-08-29 2007-08-29 珠海格力电器股份有限公司 空调电器盒自动测试装置

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
.基于AVR微控器SPI接口和AD7490的空调测试系统.《第八届全国空调器、电冰箱(柜)及压缩机学术交流会论文集》.2006,第94-96页.
.基于LabVIEW的空调参数测量.《今日电子》.2005,第41-42页.
.虚拟仪器软件LabVIEW在空调系统监控中的应用.《全国暖通空调制冷2002年学术年会资料集》.2002,第542-545页.
冯海杰
李德英
李德英;谢慧;.虚拟仪器软件LabVIEW在空调系统监控中的应用.《全国暖通空调制冷2002年学术年会资料集》.2002,第542-545页. *
谢慧
赵天光
赵天光;金钢;.基于AVR微控器SPI接口和AD7490的空调测试系统.《第八届全国空调器、电冰箱(柜)及压缩机学术交流会论文集》.2006,第94-96页. *
金钢
黄炳南
黄炳南;冯海杰;.基于LabVIEW的空调参数测量.《今日电子》.2005,第41-42页. *

Also Published As

Publication number Publication date
CN101727105A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
CN101727105B (zh) 一种空调控制器自动化测试方法及测试装置
CN101806869B (zh) 一种机车开关电源通用自动测试方法
CN202649810U (zh) 一种用于汽车电控模块can网络综合测试的设备
CN202533798U (zh) 一种新能源汽车整车控制器智能检测平台
CN102767456B (zh) 非接触式点火专用智能检测仪
CN202008519U (zh) 一种测试设备
CN102147333B (zh) 电调式双发直升机涡轴发动机超转试验系统
CN102523133A (zh) 多路数据传输总线信号性能参数自动测试设备及测试方法
CN203117380U (zh) 医疗设备pcba的测试装置
CN206805286U (zh) 一种dcs 系统模拟量信号采集实时性测试的装置
CN203759570U (zh) 一种温室智能控制装置
CN101846117B (zh) 液压缸性能测试装置
CN203950201U (zh) 汽车电控测试通用电子模拟器
CN205427063U (zh) 采集器现场故障模拟判断装置
CN201945657U (zh) 列车线缆布线检测装置
CN104298174B (zh) 基于PCIe的轨迹侦测比较的方法
CN203274783U (zh) 一种汽车仪表调试系统
CN103499969A (zh) 一种控制系统共模与串模抑制比测试方法
CN202948335U (zh) 基于双cpu的气体质量流量控制装置
CN204025832U (zh) Can总线智能型双流量采集阀门控制器
CN202956120U (zh) 单轴系陀螺仪组测试信号调理电路
CN203606695U (zh) 一种风力发电机组变流控制器测试仪
CN102565693A (zh) 一种机械及电气寿命试验系统
CN103792940B (zh) 动车组多通道调试系统及调试方法
CN103344800B (zh) 一种用于继电保护的程控电子负载

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant