CN101726644B - Digital storage oscilloscope with functions of waveform fast location and zooming - Google Patents

Digital storage oscilloscope with functions of waveform fast location and zooming Download PDF

Info

Publication number
CN101726644B
CN101726644B CN2009102162565A CN200910216256A CN101726644B CN 101726644 B CN101726644 B CN 101726644B CN 2009102162565 A CN2009102162565 A CN 2009102162565A CN 200910216256 A CN200910216256 A CN 200910216256A CN 101726644 B CN101726644 B CN 101726644B
Authority
CN
China
Prior art keywords
data
eigenvalue
storage
waveform memory
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102162565A
Other languages
Chinese (zh)
Other versions
CN101726644A (en
Inventor
张沁川
邱渡裕
曾浩
蒋俊
向川云
叶兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2009102162565A priority Critical patent/CN101726644B/en
Publication of CN101726644A publication Critical patent/CN101726644A/en
Application granted granted Critical
Publication of CN101726644B publication Critical patent/CN101726644B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本发明公开了一种具有波形快速定位与缩放功能的数字存储示波器,还包括:特征值检测模块、特征值存储FIFO;用大容量的详细波形存储器缓存全部的采样数据,同时特征值检测模块对采样数据进行筛选,从连续的N个采样数据中,筛选出特征值数据。在观察波形时,先读取特征值数据进行显示,由于特征值数据是全部采集数据的1/N,因此,响应速度非常快,波形捕获率高。当某段特征值数据有异常,通过详细波形存储器的采样数据和特征值数据的对应存储关系,读入大容量的详细波形存储器对应的采集数据进行处理和显示,详细观察该段特征值数据对应的波形,从而完成波形的快速定位与缩放,解决了深度存储下响应速度慢、波形捕获率低和毛刺等有害信号不易发现的问题。

Figure 200910216256

The invention discloses a digital storage oscilloscope with waveform rapid positioning and zooming functions, which also includes: a characteristic value detection module and a characteristic value storage FIFO; a large-capacity detailed waveform memory is used to cache all sampling data, and the characteristic value detection module is used for The sampling data is screened, and the eigenvalue data is screened out from the continuous N sampling data. When observing the waveform, the eigenvalue data is first read and displayed. Since the eigenvalue data is 1/N of all collected data, the response speed is very fast and the waveform capture rate is high. When there is an abnormality in a certain segment of eigenvalue data, through the corresponding storage relationship between the sampling data of the detailed waveform memory and the corresponding storage relationship of the eigenvalue data, the corresponding acquisition data of the large-capacity detailed waveform memory is read in for processing and display, and the corresponding eigenvalue data of the segment is observed in detail. The waveform can be quickly positioned and zoomed, which solves the problems of slow response speed, low waveform capture rate, and difficult detection of harmful signals such as glitches under deep storage.

Figure 200910216256

Description

一种具有波形快速定位与缩放功能的数字存储示波器A Digital Storage Oscilloscope with Waveform Rapid Locating and Scaling Functions

技术领域 technical field

本发明涉及数字存储示波器,具体来讲,涉及在深度存储下一种具有波形快速定位与缩放功能的数字存储示波器The present invention relates to a digital storage oscilloscope, in particular to a digital storage oscilloscope with the functions of fast positioning and scaling of waveforms under deep storage

背景技术 Background technique

数字存储示波器自上世纪七十年代诞生以来,其应用越来越广泛,现已成为测试工程师必备的工具之一。Since the digital storage oscilloscope was born in the 1970s, its application has become more and more extensive, and it has become one of the necessary tools for test engineers.

采样率、存储深度(memory depth)和波形捕获率是数字存储示波器(DSO)的三大主要性能指标。采样率是指每秒从连续信号中提取并组成离散信号的采样个数;存储深度表示在最高实时采样率下连续采集并存储采样点的能力,通常用采样点数(pts)表示;波形捕获率表示单位时间内示波器所能捕获并显示的波形幅数,通常以波形幅数/秒(wfms/s)表示。采样率直接与存储深度有密切关系,因为数字存储示波器必须根据使用者关于捕捉时间长度的指令来管理存储器。如果使用者把数字存储示波器的时基控制设置为100us/div,若波形显示区有10×8格,这就意味着整个屏幕代表1ms的时间,那么数字存储示波器必须确定在不耗尽其存储器资源的前提下捕捉长达1ms的信号时可以采用的最高采样率。如果数字存储示波器的最大采样速为5GSPS,而存储空间为10k,那么实际的采样率将不能高于10MSPS。这一采样率大大低于最高采样率,用户的测量将容易受到欠采样(undersampling)的不利影响——混叠、信号细节丢失和测量结果错误等。对于浅存储示波器来说,这些都是严重的问题。Sampling rate, memory depth (memory depth) and waveform capture rate are the three main performance indicators of digital storage oscilloscope (DSO). Sampling rate refers to the number of samples extracted from continuous signals and composed of discrete signals per second; storage depth indicates the ability to continuously collect and store sampling points at the highest real-time sampling rate, usually expressed in sampling points (pts); waveform capture rate Indicates the number of waveforms that the oscilloscope can capture and display per unit time, usually expressed in waveforms/second (wfms/s). The sampling rate is directly related to the memory depth, because the digital storage oscilloscope must manage the memory according to the user's instructions about the length of the capture time. If the user sets the time base control of the digital storage oscilloscope to 100us/div, if the waveform display area has 10×8 divisions, which means that the entire screen represents a time of 1ms, then the digital storage oscilloscope must be sure not to exhaust its memory The highest sampling rate that can be used to capture signals up to 1 ms without resource constraints. If the maximum sampling rate of the digital storage oscilloscope is 5GSPS and the storage space is 10k, then the actual sampling rate cannot be higher than 10MSPS. This sampling rate is significantly lower than the highest sampling rate, and the user's measurements will be susceptible to the adverse effects of undersampling—aliasing, loss of signal detail, and erroneous measurement results. These are serious problems for shallow memory oscilloscopes.

国内外数字存储示波器厂家都在提高存储深度方面取得了突破性的发展。美国泰克公司(Tektronix)的TDS6000系列数字存储示波器,双通道使用时,每条通道的存储深度是64Mpts,四条通道同时使用时,每条通道的存储深度是32Mpts;4000系列数字荧光示波器(DPO)每条通道上标配了10Mpts的存储深度,可以捕获长信号窗口,同时保持精细的定时分辨率。美国安捷伦公司(Agilent)54642A DSO和54642D MSO系列的存储深度是8Mpts;Agilent公司的DSO/DSA90000A系列示波器的存储深度标准是10Mpts,最大高达1Gpts。美国力科公司(LeCroy)的LT342L系列的存储深度是1Mpts。国内以普源的DS1000E系列为例,最大存储深度单通道达到了1Mpts,双通道是512Kpts。可见,存储深度的提高是未来数字存储示波器的发展方向之一。Manufacturers of digital storage oscilloscopes at home and abroad have made breakthroughs in improving storage depth. TDS6000 series digital storage oscilloscope from Tektronix, when two channels are used, the storage depth of each channel is 64Mpts, and when four channels are used at the same time, the storage depth of each channel is 32Mpts; 4000 series digital phosphor oscilloscope (DPO) Standard memory depth of 10Mpts per channel enables capture of long signal windows while maintaining fine timing resolution. The memory depth of Agilent's 54642A DSO and 54642D MSO series is 8Mpts; the memory depth standard of Agilent's DSO/DSA90000A series oscilloscope is 10Mpts, and the maximum is 1Gpts. The storage depth of the LT342L series of American LeCroy (LeCroy) is 1Mpts. In China, taking Puyuan's DS1000E series as an example, the maximum storage depth reaches 1Mpts for a single channel and 512Kpts for a dual channel. It can be seen that the improvement of the storage depth is one of the development directions of the digital storage oscilloscope in the future.

将大容量存储器,例如DDR、DDR2、DDR3、LPDDR等内存应用于数字存储示波器中,可以大大提高数字存储示波器的存储深度,同时AD的采样率会要求相应的提高。DSO的存储深度越高,那么更多更细致的波形就可以被记录下来。Applying large-capacity memory, such as DDR, DDR2, DDR3, LPDDR, etc., to digital storage oscilloscopes can greatly increase the storage depth of digital storage oscilloscopes, and at the same time, the sampling rate of AD will require a corresponding increase. The higher the memory depth of the DSO, the more detailed waveforms can be recorded.

在深度存储工作模式下,数据的采集和存储是由触发控制完成的。以触发信号为基准,在整个存储空间记录下触发信号到来前后的大量波形数据。大的存储深度,保证了在高采样率下的波形数据采集时间,为波形的分析提供了充分的数据信息,可以保证对细节信号的采集记录。但是,与模拟示波器相比,DSO本身就存在响应性不好的缺陷。随着存储深度的增加,由于数字波形记录的处理时间问题,势必会带来响应慢问题。有些存储深度极大的数字存储示波器每次屏幕波形刷新长达8到10秒。将如此大的存储器应用于DSO,在提高存储深度的同时,一定会带来响应速度慢的问题。比如说,1GSPS的采样率和128Mpts的存储深度,存一个样点数据的时间是1ns,那么存满需要128ms,微处理器读一个样点数据需要100ns,读完存储里面的数据需要128Mpts×100ns=12.8s,响应速度必然会很慢。存储深度越高,波形连续捕获时间越长,系统处理数据的时间越长,响应速度越慢,死区时间越大,波形捕获率越低,毛刺等有害信号越难被发现。In the deep storage working mode, data collection and storage are completed by trigger control. Based on the trigger signal, a large amount of waveform data before and after the arrival of the trigger signal is recorded in the entire storage space. The large storage depth ensures the acquisition time of waveform data at a high sampling rate, provides sufficient data information for waveform analysis, and can ensure the acquisition and recording of detailed signals. However, compared with the analog oscilloscope, DSO itself has the defect of poor response. As the storage depth increases, due to the processing time of digital waveform recording, it will inevitably bring about slow response. Some digital storage oscilloscopes with extremely deep memory can refresh the screen waveform for as long as 8 to 10 seconds each time. Applying such a large memory to DSO will definitely bring about the problem of slow response speed while increasing the memory depth. For example, with a sampling rate of 1GSPS and a storage depth of 128Mpts, the time to store a sample data is 1ns, then it takes 128ms to fully store, the microprocessor needs 100ns to read a sample data, and it takes 128Mpts×100ns to read the stored data. =12.8s, the response speed will inevitably be very slow. The higher the memory depth, the longer the continuous waveform capture time, the longer the data processing time of the system, the slower the response speed, the larger the dead time, the lower the waveform capture rate, and the harder it is for harmful signals such as glitches to be found.

发明内容 Contents of the invention

本发明的目的在于克服现有技术的不足,提供一种具有波形快速定位与缩放功能的数字存储示波器,在实现深度存储的同时又解决响应速度慢、波形捕获率低和毛刺等有害信号不易发现的问题。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a digital storage oscilloscope with fast waveform positioning and zooming functions. While realizing deep storage, it also solves the problem of slow response speed, low waveform capture rate, and difficult detection of harmful signals such as glitches. The problem.

为实现上述目的,本发明具有波形快速定位与缩放功能的数字存储示波器,包括信号调理通道、模数转换器、详细波形存储器控制模块、大容量的详细波形存储器、微处理器以及显示器,其特征在于,还包括:To achieve the above object, the present invention has a digital storage oscilloscope with waveform fast positioning and zooming functions, including a signal conditioning channel, an analog-to-digital converter, a detailed waveform storage control module, a large-capacity detailed waveform storage, a microprocessor, and a display. It also includes:

一特征值检测模块,与模数转换器连接,用于检测模数转换器输出的采样数据流,从连续的N个采样数据中筛选出特征值数据;A characteristic value detection module, connected with the analog-to-digital converter, used to detect the sampling data stream output by the analog-to-digital converter, and filter out the characteristic value data from the continuous N sampling data;

一特征值存储FIFO,与特征值检测模块连接,用于存储特征值检测模块筛选出的特征值数据;A eigenvalue storage FIFO is connected with the eigenvalue detection module for storing the eigenvalue data screened out by the eigenvalue detection module;

信号调理通道输出的调理后的模拟信号,送入模数转换器中进行采样,得到的为离散信号的采样数据流同时流入详细波形存储器控制模块和特征值检测模块;详细波形存储器控制模块控制采样数据流的全部采样数据存入大容量的详细波形存储器中进行深度缓存,特征值检测模块检测采样数据流,从连续的N个采样数据中筛选出特征值数据存入特征值存储FIFO中;大容量的详细波形存储器的采样数据和特征值存储FIFO的特征值数据对应存储;The conditioned analog signal output by the signal conditioning channel is sent to the analog-to-digital converter for sampling, and the obtained sampling data stream of discrete signal flows into the detailed waveform memory control module and the characteristic value detection module at the same time; the detailed waveform memory control module controls the sampling All the sampling data of the data stream are stored in the large-capacity detailed waveform memory for deep buffering, and the characteristic value detection module detects the sampling data stream, and selects the characteristic value data from the continuous N sampling data and stores them in the characteristic value storage FIFO; The sampling data of the detailed waveform memory of the capacity and the characteristic value data of the characteristic value storage FIFO are correspondingly stored;

在观察波形时,微处理器首先读取特征值存储FIFO中的特征值数据进行处理,并送显示器进行显示,当某段特征值数据需要详细观察时,通过详细波形存储器的采样数据和特征值存储FIFO的特征值数据的对应存储关系,快速找到大容量的详细波形存储器中该段特征值数据对应的地址,微处理器读入大容量的详细波形存储器对应的采样数据进行处理,并送到显示器中进行显示,详细观察该段特征值数据对应的波形,这就实现波形的快速定位与缩放。When observing the waveform, the microprocessor first reads the eigenvalue data in the eigenvalue storage FIFO for processing, and sends it to the display for display. Store the corresponding storage relationship of the eigenvalue data of the FIFO, quickly find the address corresponding to the eigenvalue data in the large-capacity detailed waveform memory, and the microprocessor reads the sampling data corresponding to the large-capacity detailed waveform memory for processing, and sends it to It is displayed on the monitor, and the waveform corresponding to the eigenvalue data of this segment is observed in detail, which realizes the rapid positioning and zooming of the waveform.

本发明的发明目的是这样实现的:The purpose of the invention of the present invention is achieved like this:

首先,用大容量的详细波形存储器缓存全部的采样数据,同时特征值检测模块对采样数据进行筛选,从连续的N个采样数据中,筛选出特征值数据,送入特征值存储FIFO中进行存储。检测的特征值数据可以包括最大值,最小值,拐点,平均值,特征值个数等。然后,在观察波形时,先读取特征值存储FIFO中的特征值数据进行处理,并送显示器进行显示,由于特征值存储FIFO中的特征值数据是全部采样数据的1/N,因此,显示时,响应速度非常快,波形捕获率高。当发现某段特征值数据有异常,比如在检测的特征值为最大值时,毛刺等有害信号可以使特征值数据突然变大或减小,这时,通过详细波形存储器的采样数据和特征值存储FIFO的特征值数据的对应存储关系,快速找到大容量的详细波形存储器中该段特征值数据对应的地址,微处理器读入大容量的详细波形存储器对应的采样数据进行处理,并送到显示器进行显示,详细观察该段特征值数据对应的波形,比如有毛刺的一段波形,从而完成波形的快速定位与缩放,解决了深度存储下响应速度慢、波形捕获率低和毛刺等有害信号不易发现的问题。Firstly, use the large-capacity detailed waveform memory to buffer all the sampled data, and at the same time, the feature value detection module screens the sampled data, filters out the feature value data from the continuous N sampled data, and sends them to the feature value storage FIFO for storage . The detected eigenvalue data can include maximum value, minimum value, inflection point, average value, number of eigenvalues, etc. Then, when observing the waveform, first read the eigenvalue data in the eigenvalue storage FIFO for processing, and send it to the display for display. Since the eigenvalue data in the eigenvalue storage FIFO is 1/N of all sampled data, the display , the response speed is very fast and the waveform capture rate is high. When it is found that a certain segment of eigenvalue data is abnormal, for example, when the detected eigenvalue is the maximum value, harmful signals such as glitches can suddenly increase or decrease the eigenvalue data. At this time, the sampling data and eigenvalue of the detailed waveform memory Store the corresponding storage relationship of the eigenvalue data of the FIFO, quickly find the address corresponding to the eigenvalue data in the large-capacity detailed waveform memory, and the microprocessor reads the sampling data corresponding to the large-capacity detailed waveform memory for processing, and sends it to Display on the monitor, observe the waveform corresponding to the eigenvalue data in detail, such as a section of waveform with glitches, so as to complete the rapid positioning and zooming of the waveform, and solve the problem of slow response speed, low waveform capture rate and glitches under deep storage. problem dicovered.

附图说明 Description of drawings

图1是本发明具有波形快速定位与缩放功能的数字存储示波器一种具体实施方式原理图;Fig. 1 is a schematic diagram of a specific embodiment of a digital storage oscilloscope with waveform rapid positioning and zooming functions in the present invention;

图2是本发明中数据位宽相等时的地址对应关系图;Fig. 2 is the address correspondence diagram when the data bit width is equal among the present invention;

图3是本发明中数据位宽不相等时的地址对应;Fig. 3 is the address correspondence when the data bit width is unequal among the present invention;

图4是特征值Ti和Ti+m之间详细波形数据的快速定位与缩放;Fig. 4 is the rapid positioning and zooming of detailed waveform data between eigenvalues T i and T i+m ;

图5是波形的定位与缩放效果图。Figure 5 is an effect diagram of the positioning and zooming of the waveform.

具体实施方式 Detailed ways

下面结合附图对本发明的具体实施方式进行描述,以便更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当采用已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。Specific embodiments of the present invention will be described below in conjunction with the accompanying drawings, so as to better understand the present invention. It should be noted that in the following description, when detailed descriptions of known functions and designs may dilute the main content of the present invention, these descriptions will be omitted here.

实施例Example

图1是本发明具有波形快速定位与缩放功能的数字存储示波器一种具体实施方式原理图。Fig. 1 is a schematic diagram of a specific embodiment of a digital storage oscilloscope with waveform rapid positioning and zooming functions according to the present invention.

如图1所示,在本实施例中,具有波形快速定位与缩放功能的数字存储示波器包括信号调理通道1、模数转换器2、详细波形存储器控制模块3、大容量的详细波形存储器4、微处理器5以及显示器6。为了实现快速定位和缩放功能,在现有深存储数字存储示波器的基础上,增加了一特征值检测模块7和特征值存储FIFO 8,特征值检测模块7与模数转换器2连接,检测模数转换器2输出的采样数据流,从连续的N个采样数据中筛选出特征值数据,并存入特征值存储FIFO 8中。As shown in Figure 1, in this embodiment, the digital storage oscilloscope with waveform fast positioning and zooming functions includes a signal conditioning channel 1, an analog-to-digital converter 2, a detailed waveform memory control module 3, a large-capacity detailed waveform memory 4, Microprocessor 5 and display 6. In order to realize fast positioning and zooming functions, on the basis of the existing deep storage digital storage oscilloscope, an eigenvalue detection module 7 and a eigenvalue storage FIFO 8 are added, the eigenvalue detection module 7 is connected with the analog-to-digital converter 2, and the detection mode The sampling data stream output by the digital converter 2 filters out the eigenvalue data from the continuous N sampling data, and stores it in the eigenvalue storage FIFO 8.

信号调理通道1对输入的模拟信号进行调理,输出模数转换器2输入范围的模拟信号,模拟信号在模数转换器2中进行采样,得到为离散信号的采样数据流。采样数据流分成两路,一路流入详细波形存储器控制模块3,控制采样数据流的全部采样数据存入大容量的详细波形存储器4中进行深度缓存;一路流入特征值检测模块进行检测,从连续的N个采样数据中筛选出特征值数据存入特征值存储FIFO中。The signal conditioning channel 1 conditions the input analog signal, and outputs an analog signal within the input range of the analog-to-digital converter 2 , and the analog signal is sampled in the analog-to-digital converter 2 to obtain a sampled data stream as a discrete signal. The sampling data flow is divided into two paths, one of which flows into the detailed waveform memory control module 3, and all the sampling data of the control sampling data flow are stored in the large-capacity detailed waveform memory 4 for deep buffering; one path flows into the characteristic value detection module for detection, from the continuous The eigenvalue data filtered out from the N sampling data are stored in the eigenvalue storage FIFO.

大容量的详细波形存储器的采样数据和特征值存储FIFO的特征值数据对应存储,在本实施例中,这种对应关系放在地址映射模块9中。特征值数据在特征值存储FIFO 8中存放的地址和大容量的详细波形存储器4中采样数据存放的地址有一定的对应关系。The sampling data of the large-capacity detailed waveform memory and the characteristic value data of the characteristic value storage FIFO are correspondingly stored. In this embodiment, this corresponding relationship is placed in the address mapping module 9 . There is a certain correspondence between the address of the eigenvalue data stored in the eigenvalue storage FIFO 8 and the address of the sampling data stored in the large-capacity detailed waveform memory 4.

如图2所示,在数据位宽相等的条件下,若大容量的详细波形存储器4存储使用的容量为D,特征值存储FIFO 8的容量为d,则特征值检测模块7按照

Figure GSB00000643972100051
的比例筛选特征值数据(即特征值存储FIFO 8中第i~i+k的存储空间对应着详细波形存储器中
Figure GSB00000643972100053
段存储空间。As shown in Figure 2, under the condition that the data bit width is equal, if the capacity used for storing the detailed waveform memory 4 of large capacity is D, and the capacity of the characteristic value storage FIFO 8 is d, then the characteristic value detection module 7 according to
Figure GSB00000643972100051
The proportion of screening eigenvalue data (ie The i-i+k storage space in the eigenvalue storage FIFO 8 corresponds to the detailed waveform storage
Figure GSB00000643972100053
segment memory.

如图3所示,在数据位宽不相等的条件下时,若大容量的详细波形存储器4存储使用的容量为D、数据位宽为M,特征值存储FIFO 8的容量为d、数据位宽为m,那么特征值存储FIFO 8的存储地址数为

Figure GSB00000643972100054
大容量的详细波形存储器4的存储地址数为
Figure GSB00000643972100055
则特征值存储FIFO 8按照
Figure GSB00000643972100056
的比例筛选特征值数据即
Figure GSB00000643972100057
特征值存储FIFO 8中第i~i+k的存储空间对应着大容量的详细波形存储器4中第
Figure GSB00000643972100058
段存储空间。As shown in Figure 3, under the condition that the data bit width is not equal, if the capacity used in the large-capacity detailed waveform memory 4 storage is D, the data bit width is M, the capacity of the characteristic value storage FIFO 8 is d, the data bit The width is m, then the number of storage addresses of the eigenvalue storage FIFO 8 is
Figure GSB00000643972100054
The number of storage addresses of the large-capacity detailed waveform memory 4 is
Figure GSB00000643972100055
Then the characteristic value storage FIFO 8 according to
Figure GSB00000643972100056
The proportion of screening eigenvalue data is
Figure GSB00000643972100057
The i-i+k storage space in the eigenvalue storage FIFO 8 corresponds to the large-capacity detailed waveform memory 4.
Figure GSB00000643972100058
segment memory.

需要详细观察某段特征值数据对应的波形时,微处理器5输出该段特征值数据的地址在地址映射模块9中找到对应的地址,即大容量的详细波形存储器4中对应的采样数据地址,然后根据该采样数据地址,微处理器5通过详细波形存储器控制模块3将大容量的详细波形存储器4中对应的采样数据读取到微处理器5中进行处理,并送到显示器6中进行显示。When the waveform corresponding to a certain section of characteristic value data needs to be observed in detail, the microprocessor 5 outputs the address of this section of characteristic value data to find the corresponding address in the address mapping module 9, that is, the corresponding sampling data address in the large-capacity detailed waveform memory 4 , then according to the sampling data address, the microprocessor 5 reads the corresponding sampling data in the large-capacity detailed waveform memory 4 through the detailed waveform memory control module 3 into the microprocessor 5 for processing, and sends it to the display 6 for processing. show.

在本实施例中,在现有的深存储数字存储示波器的基础上,还增加了数据流切换模块10,在微处理器5的控制下,切换特征值存储FIFO 8或大容量的详细波形存储器4的数据流进入微处理器5,微处理器5实现控制和数据处理功能,微处理器5处理后的数据送给显示器显示。In this embodiment, on the basis of the existing deep storage digital storage oscilloscope, a data flow switching module 10 is also added, and under the control of the microprocessor 5, the characteristic value storage FIFO 8 or large-capacity detailed waveform storage is switched. The data flow of 4 enters the microprocessor 5, and the microprocessor 5 realizes control and data processing functions, and the data processed by the microprocessor 5 is sent to the display for display.

在观察波形时,首先选择特征值存储FIFO 8中的特征值数据进行观察,即数据流切换模块10切换到特征值存储FIFO 8,特征值存储FIFO 8的特征值数据流进入微处理器5中进行处理,并送到显示器6中进行显示;对某段特征值数据需要详细观察时,微处理器5输出该段特征值数据的地址在地址映射模块9中找到对应的地址,即大容量的详细波形存储器4中对应的采样数据地址;在微处理器5的控制下,数据流切换模块10切换到大容量的详细波形存储器4数据流,大容量的详细波形存储器4的采样数据流,进入微处理器5中进行处理,并送到显示器6中进行显示,这就实现波形的快速定位与缩放。When observing the waveform, first select the eigenvalue data in the eigenvalue storage FIFO 8 to observe, that is, the data flow switching module 10 switches to the eigenvalue storage FIFO 8, and the eigenvalue data stream of the eigenvalue storage FIFO 8 enters the microprocessor 5 process, and send it to the display 6 for display; when a certain section of characteristic value data needs to be observed in detail, the address of the microprocessor 5 outputting this section of characteristic value data finds the corresponding address in the address mapping module 9, that is, a large-capacity Corresponding sampling data address in the detailed waveform memory 4; under the control of the microprocessor 5, the data stream switching module 10 switches to the large-capacity detailed waveform memory 4 data streams, and the sampling data stream of the large-capacity detailed waveform memory 4 enters Processed in the microprocessor 5, and sent to the display 6 for display, which realizes rapid positioning and zooming of the waveform.

如图1所示,在本实施中,详细波形存储器控制模块3、特征值检测模块7、特征值存储FIFO 8,地址映射模块9以及数据流切换模块10用一片现场可编程逻辑门阵列来设计。As shown in Figure 1, in this implementation, the detailed waveform memory control module 3, the characteristic value detection module 7, the characteristic value storage FIFO 8, the address mapping module 9 and the data stream switching module 10 are designed with a field programmable logic gate array .

在具体实施过程中,模数转换器一般采用并行时间交替采样模数转换器,以提高采样率,采用的AD的个数为a个,那么需要在对每个AD采样数据进行H∶1特征值检测筛选之后,再对筛选出的a个特征值数据进行二级特征值检测筛选一个特征值数据,最后筛选的比例为(a×H)∶1(N=a×H),那么特征值存储FIFO8中第i个特征值数据对应的详细波形存储器4中的采样数据可以由式(1)表示:In the specific implementation process, the analog-to-digital converter generally uses parallel time-alternating sampling analog-to-digital converters to increase the sampling rate, and the number of ADs used is a, so it is necessary to perform H: 1 feature on each AD sampling data After value detection and screening, perform secondary eigenvalue detection on the selected a eigenvalue data to filter a eigenvalue data, and the final screening ratio is (a×H):1 (N=a×H), then the eigenvalue The sampling data in the detailed waveform memory 4 corresponding to the i-th eigenvalue data in the storage FIFO8 can be represented by formula (1):

AA 11 ii AA 22 ii ·&Center Dot; ·· ·· AA aiai -- -- -- (( 11 ))

Ani(n=1,2,...,a)表示特征值存储FIFO 8中第i个特征值数据对应的详细波形存储器4中存储的第n个AD采样的H个数据构成的采样数据流。特征值存储FIFO 8中存储W个特征值数据时,大容量的详细波形存储器4存储满,大容量的详细波形存储器4中存储的数据与数据量可以用式(2)表示:A ni (n=1, 2, . flow. When storing W eigenvalue data in the eigenvalue storage FIFO 8, the detailed waveform storage 4 of large capacity is stored full, and the data and the amount of data stored in the detailed waveform storage 4 of large capacity can be represented by formula (2):

Figure GSB00000643972100062
Figure GSB00000643972100062

则大容量的详细波形存储器4的存储空间的采样数据存储可由式(3)表示:Then the sampling data storage of the storage space of the detailed waveform memory 4 of large capacity can be represented by formula (3):

特征值存储FIFO 8的特征值数据存储由式(4)表示:The eigenvalue data storage of eigenvalue storage FIFO 8 is represented by formula (4):

(T1,T2,…,Ti,…,Tw)                                   (4)(T 1 , T 2 , ..., T i , ..., T w ) (4)

大容量的详细波形存储器4的存储就是按式(3)的行来存储,从第一行的第一个位置开始地址计数存储,一行存储满了,接着存储下一行,存储数据对应的地址计数值表示数据的存储位置。式(3)的元素个数为大容量的详细波形存储器4存储使用的容量,式(4)中表示特征值存储FIFO 8中存储的特征值数据和特征值数据的存储位置。表示了特征值存储FIFO第i个特征值Ti对应的大容量的详细波形存储器4中的存储数据及其存储位置,式中的元素表示大容量的详细波形存储器4中对应的存储数据,元素的位置表示大容量的详细波形存储器4中对应数据的存储位置,对应数据的存储位置为N×(i-1)+1到Ni,其中1≤i≤W。当需要观察特征值Ti和Ti+m之间的详细波形数据时,如图4所示,在采用快速定位与缩放时,微处理器5把需要观察的波形的起始存储位置N×(i-1)+1发给寻址计数器作为寻址计数器的起始地址开始计数,快速读取需要的m×N个数据处理后送给显示器显示,这样就不需要读取无关的数据,大大节约了数据的读取和处理时间;如果没有采用快速定位与缩放,那么微处理器5读取数据就会从内存的起始地址开始读取详细波形存储器中的全部数据,然后处理和显示,很明显,这时候数据读取量远远大于采用快速定位与缩放技术时的数据读取量,需要的时间远远大于采用快速定位与缩放技术时数据读取所需要的时间。特征值数据Ti和Ti+m之间的详细波形数据以及详细波形数据在大容量的详细波形存储器4中的存储位置可由式(5)表示。The storage of the large-capacity detailed waveform memory 4 is to store according to the row of formula (3). The address count is stored from the first position of the first row. When one row is full, the next row is stored, and the address corresponding to the stored data is counted. The value represents where the data is stored. The number of elements in the formula (3) is the storage capacity of the large-capacity detailed waveform memory 4, and the formula (4) represents the characteristic value data stored in the characteristic value storage FIFO 8 and the storage location of the characteristic value data. Represents the storage data and its storage location in the large-capacity detailed waveform memory 4 corresponding to the i-th eigenvalue Ti of the eigenvalue storage FIFO, and the elements in the formula represent the corresponding storage data in the large-capacity detailed waveform memory 4, and the elements The position of represents the storage position of the corresponding data in the large-capacity detailed waveform memory 4, and the storage position of the corresponding data is N×(i-1)+1 to Ni, where 1≤i≤W. When it is necessary to observe detailed waveform data between eigenvalues T i and T i+m , as shown in Figure 4, when using fast positioning and zooming, the microprocessor 5 stores the initial storage position of the waveform to be observed N× (i-1)+1 is sent to the addressing counter as the starting address of the addressing counter to start counting, and the m×N data required for fast reading is processed and sent to the display for display, so that there is no need to read irrelevant data, Greatly saves data reading and processing time; if fast positioning and zooming are not used, then the microprocessor 5 reads data and reads all the data in the detailed waveform memory from the initial address of the memory, and then processes and displays , it is obvious that the amount of data read at this time is much greater than the amount of data read when using the fast positioning and zooming technology, and the time required is much longer than the time required for data reading when using the fast positioning and zooming technology. The detailed waveform data between eigenvalue data T i and T i+m and the storage position of the detailed waveform data in the large-capacity detailed waveform memory 4 can be represented by formula (5).

Figure GSB00000643972100072
Figure GSB00000643972100072

在本实施例中,特征值检测模块7是由现场可编程逻辑门阵列来配置。可以通过现场可编程逻辑门阵列对特征值数据进行筛选并存储到特征值存储FIFO8里面。特征值配置有两种方法:一种方法是直接用硬件语言对现场可编程逻辑门阵列进行特征值筛选配置,软件不参与特征值的选择;另一种方法是把所有的特征值通过硬件语言对现场可编程逻辑门阵列进行特征值筛选配置,然后根据用户需要通过软件控制来实现特征值数据检测的选择。In this embodiment, the characteristic value detection module 7 is configured by a field programmable logic gate array. The eigenvalue data can be screened and stored in the eigenvalue storage FIFO8 through the field programmable logic gate array. There are two methods for eigenvalue configuration: one method is to directly use the hardware language to perform eigenvalue screening and configuration on the field programmable logic gate array, and the software does not participate in the selection of eigenvalues; the other method is to pass all the eigenvalues through the hardware language Perform eigenvalue screening configuration on the field programmable logic gate array, and then realize the selection of eigenvalue data detection through software control according to user needs.

在本实施例中,大容量的详细波形存储器4的详细波形数据的存储寻址是由现场可编程逻辑门阵列来实现,在现场可编程逻辑门阵列内部配置一个存储数据寻址计数器,实现详细波形存储数据的正确存储。大容量的详细波形存储器4的详细波形数据读取寻址是由微处理器控制计数器实现,当需要显示详细波形存储器的某部分详细波形数据时,由微处理器5发出需要读取数据的首地址信号和读取数据数,从大容量的详细波形存储器4中快速读出想要的波形详细数据,再将这些波形详细数据送往显示器5进行显示。In this embodiment, the storage and addressing of the detailed waveform data of the large-capacity detailed waveform memory 4 is realized by a field programmable logic gate array, and a storage data addressing counter is configured inside the field programmable logic gate array to realize detailed waveform data. Correct storage of waveform memory data. The detailed waveform data reading and addressing of the large-capacity detailed waveform memory 4 is realized by the microprocessor control counter. The address signal and the number of read data are used to quickly read out the desired detailed waveform data from the large-capacity detailed waveform memory 4, and then send the detailed waveform data to the display 5 for display.

采用波形快速定位与缩放技术,我们能很容易的发现毛刺等有害信号,如图5所示。如图5下图所示,显示的波形是特征值存储FIFO中的波形数据,波形存在毛刺,需要观察毛刺处的详细波形。切换数据流,快速定位与放大波形,观察毛刺处的详细波形,图5上图显示的是下图中毛刺周围标线范围内的详细波形。Using waveform rapid positioning and zooming technology, we can easily find harmful signals such as glitches, as shown in Figure 5. As shown in the lower figure of Figure 5, the displayed waveform is the waveform data in the eigenvalue storage FIFO. There are glitches in the waveform, and the detailed waveform at the glitch needs to be observed. Switch the data stream, quickly locate and zoom in on the waveform, and observe the detailed waveform at the burr. The upper figure in Figure 5 shows the detailed waveform within the marking range around the burr in the figure below.

尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。Although the illustrative specific embodiments of the present invention have been described above, so that those skilled in the art can understand the present invention, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, As long as various changes are within the spirit and scope of the present invention defined and determined by the appended claims, these changes are obvious, and all inventions and creations using the concept of the present invention are included in the protection list.

Claims (4)

1.一种具有波形快速定位与缩放功能的数字存储示波器,包括信号调理通道、模数转换器、详细波形存储器控制模块、大容量的详细波形存储器、微处理器以及显示器,其特征在于,还包括:1. a kind of digital storage oscilloscope with waveform rapid positioning and scaling function, comprises signal conditioning channel, analog-to-digital converter, detailed waveform memory control module, large-capacity detailed waveform memory, microprocessor and display, it is characterized in that, also include: 一特征值检测模块,与模数转换器连接,用于检测模数转换器输出的采样数据流,从连续的N个采样数据中筛选出特征值数据;A characteristic value detection module, connected with the analog-to-digital converter, used to detect the sampling data stream output by the analog-to-digital converter, and filter out the characteristic value data from the continuous N sampling data; 一特征值存储FIFO,与特征值检测模块连接,用于存储特征值检测模块筛选出的特征值数据;A eigenvalue storage FIFO is connected with the eigenvalue detection module for storing the eigenvalue data screened out by the eigenvalue detection module; 信号调理通道输出的调理后的模拟信号,送入模数转换器中进行采样,得到的为离散信号的采样数据流同时流入详细波形存储器控制模块和特征值检测模块;详细波形存储器控制模块控制采样数据流的全部采样数据存入大容量的详细波形存储器中进行深度缓存,特征值检测模块检测采样数据流,从连续的N个采样数据中筛选出特征值数据存入特征值存储FIFO中;大容量的详细波形存储器的采样数据和特征值存储FIFO的特征值数据对应存储;The conditioned analog signal output by the signal conditioning channel is sent to the analog-to-digital converter for sampling, and the obtained sampling data stream of discrete signal flows into the detailed waveform memory control module and the characteristic value detection module at the same time; the detailed waveform memory control module controls the sampling All the sampling data of the data stream are stored in the large-capacity detailed waveform memory for deep buffering, and the characteristic value detection module detects the sampling data stream, and selects the characteristic value data from the continuous N sampling data and stores them in the characteristic value storage FIFO; The sampling data of the detailed waveform memory of the capacity and the characteristic value data of the characteristic value storage FIFO are correspondingly stored; 在观察波形时,微处理器首先读取特征值存储FIFO中的特征值数据进行处理,并送显示器进行显示,当某段特征值数据需要详细观察时,通过详细波形存储器的采样数据和特征值存储FIFO的特征值数据的对应存储关系,快速找到大容量的详细波形存储器中该段特征值数据对应的地址,微处理器读入大容量的详细波形存储器对应的采样数据进行处理,并送到显示器中进行显示,详细观察该段特征值数据对应的详细波形,这就实现波形的快速定位与缩放。When observing the waveform, the microprocessor first reads the eigenvalue data in the eigenvalue storage FIFO for processing, and sends it to the display for display. Store the corresponding storage relationship of the eigenvalue data of the FIFO, quickly find the address corresponding to the eigenvalue data in the large-capacity detailed waveform memory, and the microprocessor reads the sampling data corresponding to the large-capacity detailed waveform memory for processing, and sends it to It is displayed on the monitor, and the detailed waveform corresponding to the eigenvalue data of this segment is observed in detail, which realizes the rapid positioning and zooming of the waveform. 2.根据权利要求1所述的具有波形快速定位与缩放功能的数字存储示波器,其特征在于,还包括一地址映射模块,用于存储大容量的详细波形存储器的采样数据和特征值存储FIFO的特征值数据对应存储关系;2. The digital storage oscilloscope with waveform fast positioning and zooming function according to claim 1, is characterized in that, also comprises an address mapping module, is used to store the sampling data of the large-capacity detailed waveform memory and the eigenvalue storage FIFO Eigenvalue data corresponds to the storage relationship; 需要详细观察某段特征值数据对应的详细波形时,微处理器输出该段特征值数据的地址在地址映射模块中找到对应的地址,即大容量的详细波形存储器中对应的采样数据地址,然后根据该采样数据地址,微处理器通过详细波形存储器控制模块将大容量的详细波形存储器中对应的采样数据读取到微处理器中进行处理,并送到显示器中进行显示。When it is necessary to observe in detail the detailed waveform corresponding to a certain section of eigenvalue data, the microprocessor outputs the address of this section of eigenvalue data to find the corresponding address in the address mapping module, that is, the corresponding sampling data address in the large-capacity detailed waveform memory, and then According to the sampling data address, the microprocessor reads the corresponding sampling data in the large-capacity detailed waveform memory into the microprocessor through the detailed waveform memory control module for processing, and sends it to the display for display. 3.根据权利要求2所述的具有波形快速定位与缩放功能的数字存储示波器,其特征在于,还包括一数据流切换模块,在微处理器的控制下,切换特征值存储FIFO或大容量的详细波形存储器的数据流进入微处理器,微处理器处理后的数据送给显示器显示。3. The digital storage oscilloscope with waveform fast positioning and zooming function according to claim 2, further comprising a data flow switching module, under the control of the microprocessor, switching characteristic value storage FIFO or large-capacity The data flow of the detailed waveform memory enters the microprocessor, and the data processed by the microprocessor is sent to the display for display. 在观察波形时,首先选择特征值存储FIFO中的特征值数据进行观察,即数据流切换模块切换到特征值存储FIFO,特征值存储FIFO的特征值数据流进入微处理器中进行处理,并送到显示器中进行显示;对某段特征值数据需要详细观察时,微处理器输出该段特征值数据的地址在地址映射模块中找到对应的地址;在微处理器的控制下,数据流切换模块切换到大容量的详细波形存储器数据流,大容量的详细波形存储器的采样数据流,进入微处理器中进行处理,并送到显示器中进行显示。When observing the waveform, first select the eigenvalue data in the eigenvalue storage FIFO to observe, that is, the data flow switching module switches to the eigenvalue storage FIFO, and the eigenvalue data stream of the eigenvalue storage FIFO enters the microprocessor for processing and sends display on the display; when a certain section of characteristic value data needs to be observed in detail, the microprocessor outputs the address of the characteristic value data to find the corresponding address in the address mapping module; under the control of the microprocessor, the data flow switching module Switch to the data flow of the large-capacity detailed waveform memory, and the sampling data flow of the large-capacity detailed waveform memory enters the microprocessor for processing and is sent to the display for display. 4.根据权利要求1所述的具有波形快速定位与缩放功能的数字存储示波器,其特征在于,所述的模数转换器为并行时间交替采样模数转换器,其中的AD个数为a,大容量的详细波形存储器按以下方式进行存储:4. the digital storage oscilloscope with waveform rapid positioning and zooming function according to claim 1, is characterized in that, described analog-to-digital converter is parallel time alternate sampling analog-to-digital converter, and the AD number wherein is a, The large-capacity detailed waveform memory is stored as follows:
Figure FSB00000643972000021
Figure FSB00000643972000021
其中,
Figure FSB00000643972000022
是Ani的转置矩阵,Ani表示特征值存储FIFO中第i个特征值数据Ti对应的详细波形存储器中存储的第n个AD采样的H个数据构成的采样数据流,n=1,2,...,a,i=1,2,...,W,W为特征值存储FIFO中存储的特征值数据的个数;
in,
Figure FSB00000643972000022
is the transposition matrix of A ni , and A ni represents the sampling data stream composed of the H data of the nth AD sample stored in the detailed waveform memory corresponding to the i-th eigenvalue data T i in the eigenvalue storage FIFO, n=1 , 2, ..., a, i=1, 2, ..., W, W is the number of feature value data stored in the feature value storage FIFO;
特征值存储FIFO的特征值数据存储为:The eigenvalue data of the eigenvalue storage FIFO is stored as: (T1,T2,…,Ti,…,Tw)(T 1 , T 2 , ..., T i , ..., T w ) 其中,Ti是第i次特征值检测时的特征值数据。Among them, T i is the eigenvalue data of the i-th eigenvalue detection.
CN2009102162565A 2009-11-20 2009-11-20 Digital storage oscilloscope with functions of waveform fast location and zooming Expired - Fee Related CN101726644B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102162565A CN101726644B (en) 2009-11-20 2009-11-20 Digital storage oscilloscope with functions of waveform fast location and zooming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102162565A CN101726644B (en) 2009-11-20 2009-11-20 Digital storage oscilloscope with functions of waveform fast location and zooming

Publications (2)

Publication Number Publication Date
CN101726644A CN101726644A (en) 2010-06-09
CN101726644B true CN101726644B (en) 2011-12-21

Family

ID=42447822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102162565A Expired - Fee Related CN101726644B (en) 2009-11-20 2009-11-20 Digital storage oscilloscope with functions of waveform fast location and zooming

Country Status (1)

Country Link
CN (1) CN101726644B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915864B (en) * 2010-07-09 2012-12-26 苏州瀚瑞微电子有限公司 Vector oscilloscope device
CN102175902B (en) * 2011-01-04 2013-11-06 苏州瀚瑞微电子有限公司 Digital waveform processing system and method for oscilloscope
CN103176009B (en) * 2011-12-22 2017-10-24 北京普源精电科技有限公司 A kind of waveform Zoom method, device and oscillograph
CN103207299B (en) * 2012-01-16 2016-09-07 北京普源精电科技有限公司 A kind of detection method of the unusual waveforms of improvement
CN103207294B (en) * 2012-01-16 2016-12-14 北京普源精电科技有限公司 A kind of display packing of the unusual waveforms of improvement
CN103809000B (en) * 2012-11-09 2016-06-29 沈阳高精数控技术有限公司 data processing method based on servo drive unit
CN103033663A (en) * 2012-12-24 2013-04-10 电子科技大学 Anomaly detection method for three-dimensional waveform data
CN102998501B (en) * 2012-12-28 2015-06-10 福建利利普光电科技有限公司 Method for achieving data compression of digital oscilloscope based on field programmable gata array
CN103115968A (en) * 2013-01-25 2013-05-22 袁英民 Signal processing method and device of ultrasound detector
CN103278670A (en) * 2013-05-13 2013-09-04 电子科技大学 Waveform three-dimensional imaging method
CN104502657B (en) * 2014-12-25 2017-07-07 中国电子科技集团公司第四十一研究所 Digital waveform manipulation module and its method
CN104678144B (en) * 2015-02-13 2017-07-18 电子科技大学 The Bits Expanding method of three-dimensional waveform database under high waveform capture rate
CN104793031B (en) * 2015-04-14 2017-08-22 深圳市鼎阳科技有限公司 A kind of oscilloscope display Zoom method and device
CN104931754B (en) * 2015-04-29 2017-09-12 电子科技大学 The method for detecting abnormality of three-dimensional waveform data
CN105553545A (en) * 2015-12-11 2016-05-04 中国航空工业集团公司西安航空计算技术研究所 FC data acquisition and recording instrument recording condition control strategy
CN106324312B (en) * 2016-08-03 2023-05-09 深圳市鼎阳科技股份有限公司 Method for rapidly and accurately reading data in vertical direction of oscilloscope and oscilloscope
CN108761163A (en) * 2018-05-30 2018-11-06 郑州云海信息技术有限公司 A kind of oscillograph and Fault Locating Method safeguarded for server
CN109581016B (en) * 2018-11-07 2020-10-16 电子科技大学 Random time equivalent sampling system
CN110688083B (en) * 2019-09-27 2023-03-14 电子科技大学 DDR 3-based high-speed data stream long-delay frequency storage forwarding method
CN111239459A (en) * 2020-01-21 2020-06-05 深圳市雷赛软件技术有限公司 Oscilloscope and display method thereof
CN111965405B (en) * 2020-08-12 2021-08-13 电子科技大学 FPGA-based digital three-dimensional oscilloscope data mapping storage system
CN111929481B (en) * 2020-09-21 2021-06-22 深圳市鼎阳科技股份有限公司 Display method of oscilloscope amplification area and oscilloscope
CN112763778A (en) * 2020-12-23 2021-05-07 北京普源精电科技有限公司 Waveform display method, device, equipment and storage medium

Also Published As

Publication number Publication date
CN101726644A (en) 2010-06-09

Similar Documents

Publication Publication Date Title
CN101726644B (en) Digital storage oscilloscope with functions of waveform fast location and zooming
CN103308738B (en) Abnormal waveform recording method for oscilloscope with high capture rate
JP4408026B2 (en) Digital oscilloscope and its capture device
US9804200B2 (en) Digital oscilloscope comprising multiple data acquisition pathways
JP4532848B2 (en) Digital storage oscilloscope capture device
CN108776249B (en) Scope recorder with dual capture
JP6083922B2 (en) Waveform display apparatus and method
JP2003329709A (en) Digital oscilloscope and capture device
CN101324640A (en) Double-time-base digital storage oscilloscope
CN107133011A (en) A kind of multi-channel data storage method of electrographic recording instrument
US9291646B2 (en) Cross domain triggering in a test and measurement instrument
CN101762732A (en) Oscilloscope with automatic measurement function and measurement data storage method thereof
CN103033663A (en) Anomaly detection method for three-dimensional waveform data
CN105510664B (en) A kind of automatic setting method of digital oscilloscope
CN110940841A (en) Fast Acquisition System of Digital 3D Oscilloscope Based on FPGA
CN101261300B (en) Method for measuring digital storage oscillographs storage depth
CN109142835B (en) Data acquisition system with waveform multi-frame recording function
CN103884891B (en) A kind of digital oscilloscope with high wave-form refresh rate
CN109991458B (en) FPGA-based waveform longitudinal averaging system
CN108804044B (en) Data acquisition method and deep memory data acquisition system based on deep storage
CN106371005A (en) Switch matrix based microwave component switch response time measuring device and method
CN102944301B (en) Digital peak detection method and system for ultrasonic signals based on variable-pitch sectioning method
CN109767519B (en) Multi-channel signal monitoring system and method
CN104965936A (en) Multichannel data acquisition and test system
CN108732398A (en) Simulation transformation storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20141120

EXPY Termination of patent right or utility model