CN101726644B - Digital storage oscilloscope with functions of waveform fast location and zooming - Google Patents
Digital storage oscilloscope with functions of waveform fast location and zooming Download PDFInfo
- Publication number
- CN101726644B CN101726644B CN2009102162565A CN200910216256A CN101726644B CN 101726644 B CN101726644 B CN 101726644B CN 2009102162565 A CN2009102162565 A CN 2009102162565A CN 200910216256 A CN200910216256 A CN 200910216256A CN 101726644 B CN101726644 B CN 101726644B
- Authority
- CN
- China
- Prior art keywords
- data
- eigenvalue
- storage
- waveform memory
- waveform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000006870 function Effects 0.000 title claims abstract description 15
- 238000005070 sampling Methods 0.000 claims abstract description 65
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000013507 mapping Methods 0.000 claims description 7
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 230000003139 buffering effect Effects 0.000 claims description 3
- 230000001143 conditioned effect Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims 1
- 230000017105 transposition Effects 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 10
- 230000005856 abnormality Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 7
- 238000012216 screening Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Analogue/Digital Conversion (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
本发明公开了一种具有波形快速定位与缩放功能的数字存储示波器,还包括:特征值检测模块、特征值存储FIFO;用大容量的详细波形存储器缓存全部的采样数据,同时特征值检测模块对采样数据进行筛选,从连续的N个采样数据中,筛选出特征值数据。在观察波形时,先读取特征值数据进行显示,由于特征值数据是全部采集数据的1/N,因此,响应速度非常快,波形捕获率高。当某段特征值数据有异常,通过详细波形存储器的采样数据和特征值数据的对应存储关系,读入大容量的详细波形存储器对应的采集数据进行处理和显示,详细观察该段特征值数据对应的波形,从而完成波形的快速定位与缩放,解决了深度存储下响应速度慢、波形捕获率低和毛刺等有害信号不易发现的问题。
The invention discloses a digital storage oscilloscope with waveform rapid positioning and zooming functions, which also includes: a characteristic value detection module and a characteristic value storage FIFO; a large-capacity detailed waveform memory is used to cache all sampling data, and the characteristic value detection module is used for The sampling data is screened, and the eigenvalue data is screened out from the continuous N sampling data. When observing the waveform, the eigenvalue data is first read and displayed. Since the eigenvalue data is 1/N of all collected data, the response speed is very fast and the waveform capture rate is high. When there is an abnormality in a certain segment of eigenvalue data, through the corresponding storage relationship between the sampling data of the detailed waveform memory and the corresponding storage relationship of the eigenvalue data, the corresponding acquisition data of the large-capacity detailed waveform memory is read in for processing and display, and the corresponding eigenvalue data of the segment is observed in detail. The waveform can be quickly positioned and zoomed, which solves the problems of slow response speed, low waveform capture rate, and difficult detection of harmful signals such as glitches under deep storage.
Description
技术领域 technical field
本发明涉及数字存储示波器,具体来讲,涉及在深度存储下一种具有波形快速定位与缩放功能的数字存储示波器The present invention relates to a digital storage oscilloscope, in particular to a digital storage oscilloscope with the functions of fast positioning and scaling of waveforms under deep storage
背景技术 Background technique
数字存储示波器自上世纪七十年代诞生以来,其应用越来越广泛,现已成为测试工程师必备的工具之一。Since the digital storage oscilloscope was born in the 1970s, its application has become more and more extensive, and it has become one of the necessary tools for test engineers.
采样率、存储深度(memory depth)和波形捕获率是数字存储示波器(DSO)的三大主要性能指标。采样率是指每秒从连续信号中提取并组成离散信号的采样个数;存储深度表示在最高实时采样率下连续采集并存储采样点的能力,通常用采样点数(pts)表示;波形捕获率表示单位时间内示波器所能捕获并显示的波形幅数,通常以波形幅数/秒(wfms/s)表示。采样率直接与存储深度有密切关系,因为数字存储示波器必须根据使用者关于捕捉时间长度的指令来管理存储器。如果使用者把数字存储示波器的时基控制设置为100us/div,若波形显示区有10×8格,这就意味着整个屏幕代表1ms的时间,那么数字存储示波器必须确定在不耗尽其存储器资源的前提下捕捉长达1ms的信号时可以采用的最高采样率。如果数字存储示波器的最大采样速为5GSPS,而存储空间为10k,那么实际的采样率将不能高于10MSPS。这一采样率大大低于最高采样率,用户的测量将容易受到欠采样(undersampling)的不利影响——混叠、信号细节丢失和测量结果错误等。对于浅存储示波器来说,这些都是严重的问题。Sampling rate, memory depth (memory depth) and waveform capture rate are the three main performance indicators of digital storage oscilloscope (DSO). Sampling rate refers to the number of samples extracted from continuous signals and composed of discrete signals per second; storage depth indicates the ability to continuously collect and store sampling points at the highest real-time sampling rate, usually expressed in sampling points (pts); waveform capture rate Indicates the number of waveforms that the oscilloscope can capture and display per unit time, usually expressed in waveforms/second (wfms/s). The sampling rate is directly related to the memory depth, because the digital storage oscilloscope must manage the memory according to the user's instructions about the length of the capture time. If the user sets the time base control of the digital storage oscilloscope to 100us/div, if the waveform display area has 10×8 divisions, which means that the entire screen represents a time of 1ms, then the digital storage oscilloscope must be sure not to exhaust its memory The highest sampling rate that can be used to capture signals up to 1 ms without resource constraints. If the maximum sampling rate of the digital storage oscilloscope is 5GSPS and the storage space is 10k, then the actual sampling rate cannot be higher than 10MSPS. This sampling rate is significantly lower than the highest sampling rate, and the user's measurements will be susceptible to the adverse effects of undersampling—aliasing, loss of signal detail, and erroneous measurement results. These are serious problems for shallow memory oscilloscopes.
国内外数字存储示波器厂家都在提高存储深度方面取得了突破性的发展。美国泰克公司(Tektronix)的TDS6000系列数字存储示波器,双通道使用时,每条通道的存储深度是64Mpts,四条通道同时使用时,每条通道的存储深度是32Mpts;4000系列数字荧光示波器(DPO)每条通道上标配了10Mpts的存储深度,可以捕获长信号窗口,同时保持精细的定时分辨率。美国安捷伦公司(Agilent)54642A DSO和54642D MSO系列的存储深度是8Mpts;Agilent公司的DSO/DSA90000A系列示波器的存储深度标准是10Mpts,最大高达1Gpts。美国力科公司(LeCroy)的LT342L系列的存储深度是1Mpts。国内以普源的DS1000E系列为例,最大存储深度单通道达到了1Mpts,双通道是512Kpts。可见,存储深度的提高是未来数字存储示波器的发展方向之一。Manufacturers of digital storage oscilloscopes at home and abroad have made breakthroughs in improving storage depth. TDS6000 series digital storage oscilloscope from Tektronix, when two channels are used, the storage depth of each channel is 64Mpts, and when four channels are used at the same time, the storage depth of each channel is 32Mpts; 4000 series digital phosphor oscilloscope (DPO) Standard memory depth of 10Mpts per channel enables capture of long signal windows while maintaining fine timing resolution. The memory depth of Agilent's 54642A DSO and 54642D MSO series is 8Mpts; the memory depth standard of Agilent's DSO/DSA90000A series oscilloscope is 10Mpts, and the maximum is 1Gpts. The storage depth of the LT342L series of American LeCroy (LeCroy) is 1Mpts. In China, taking Puyuan's DS1000E series as an example, the maximum storage depth reaches 1Mpts for a single channel and 512Kpts for a dual channel. It can be seen that the improvement of the storage depth is one of the development directions of the digital storage oscilloscope in the future.
将大容量存储器,例如DDR、DDR2、DDR3、LPDDR等内存应用于数字存储示波器中,可以大大提高数字存储示波器的存储深度,同时AD的采样率会要求相应的提高。DSO的存储深度越高,那么更多更细致的波形就可以被记录下来。Applying large-capacity memory, such as DDR, DDR2, DDR3, LPDDR, etc., to digital storage oscilloscopes can greatly increase the storage depth of digital storage oscilloscopes, and at the same time, the sampling rate of AD will require a corresponding increase. The higher the memory depth of the DSO, the more detailed waveforms can be recorded.
在深度存储工作模式下,数据的采集和存储是由触发控制完成的。以触发信号为基准,在整个存储空间记录下触发信号到来前后的大量波形数据。大的存储深度,保证了在高采样率下的波形数据采集时间,为波形的分析提供了充分的数据信息,可以保证对细节信号的采集记录。但是,与模拟示波器相比,DSO本身就存在响应性不好的缺陷。随着存储深度的增加,由于数字波形记录的处理时间问题,势必会带来响应慢问题。有些存储深度极大的数字存储示波器每次屏幕波形刷新长达8到10秒。将如此大的存储器应用于DSO,在提高存储深度的同时,一定会带来响应速度慢的问题。比如说,1GSPS的采样率和128Mpts的存储深度,存一个样点数据的时间是1ns,那么存满需要128ms,微处理器读一个样点数据需要100ns,读完存储里面的数据需要128Mpts×100ns=12.8s,响应速度必然会很慢。存储深度越高,波形连续捕获时间越长,系统处理数据的时间越长,响应速度越慢,死区时间越大,波形捕获率越低,毛刺等有害信号越难被发现。In the deep storage working mode, data collection and storage are completed by trigger control. Based on the trigger signal, a large amount of waveform data before and after the arrival of the trigger signal is recorded in the entire storage space. The large storage depth ensures the acquisition time of waveform data at a high sampling rate, provides sufficient data information for waveform analysis, and can ensure the acquisition and recording of detailed signals. However, compared with the analog oscilloscope, DSO itself has the defect of poor response. As the storage depth increases, due to the processing time of digital waveform recording, it will inevitably bring about slow response. Some digital storage oscilloscopes with extremely deep memory can refresh the screen waveform for as long as 8 to 10 seconds each time. Applying such a large memory to DSO will definitely bring about the problem of slow response speed while increasing the memory depth. For example, with a sampling rate of 1GSPS and a storage depth of 128Mpts, the time to store a sample data is 1ns, then it takes 128ms to fully store, the microprocessor needs 100ns to read a sample data, and it takes 128Mpts×100ns to read the stored data. =12.8s, the response speed will inevitably be very slow. The higher the memory depth, the longer the continuous waveform capture time, the longer the data processing time of the system, the slower the response speed, the larger the dead time, the lower the waveform capture rate, and the harder it is for harmful signals such as glitches to be found.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种具有波形快速定位与缩放功能的数字存储示波器,在实现深度存储的同时又解决响应速度慢、波形捕获率低和毛刺等有害信号不易发现的问题。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a digital storage oscilloscope with fast waveform positioning and zooming functions. While realizing deep storage, it also solves the problem of slow response speed, low waveform capture rate, and difficult detection of harmful signals such as glitches. The problem.
为实现上述目的,本发明具有波形快速定位与缩放功能的数字存储示波器,包括信号调理通道、模数转换器、详细波形存储器控制模块、大容量的详细波形存储器、微处理器以及显示器,其特征在于,还包括:To achieve the above object, the present invention has a digital storage oscilloscope with waveform fast positioning and zooming functions, including a signal conditioning channel, an analog-to-digital converter, a detailed waveform storage control module, a large-capacity detailed waveform storage, a microprocessor, and a display. It also includes:
一特征值检测模块,与模数转换器连接,用于检测模数转换器输出的采样数据流,从连续的N个采样数据中筛选出特征值数据;A characteristic value detection module, connected with the analog-to-digital converter, used to detect the sampling data stream output by the analog-to-digital converter, and filter out the characteristic value data from the continuous N sampling data;
一特征值存储FIFO,与特征值检测模块连接,用于存储特征值检测模块筛选出的特征值数据;A eigenvalue storage FIFO is connected with the eigenvalue detection module for storing the eigenvalue data screened out by the eigenvalue detection module;
信号调理通道输出的调理后的模拟信号,送入模数转换器中进行采样,得到的为离散信号的采样数据流同时流入详细波形存储器控制模块和特征值检测模块;详细波形存储器控制模块控制采样数据流的全部采样数据存入大容量的详细波形存储器中进行深度缓存,特征值检测模块检测采样数据流,从连续的N个采样数据中筛选出特征值数据存入特征值存储FIFO中;大容量的详细波形存储器的采样数据和特征值存储FIFO的特征值数据对应存储;The conditioned analog signal output by the signal conditioning channel is sent to the analog-to-digital converter for sampling, and the obtained sampling data stream of discrete signal flows into the detailed waveform memory control module and the characteristic value detection module at the same time; the detailed waveform memory control module controls the sampling All the sampling data of the data stream are stored in the large-capacity detailed waveform memory for deep buffering, and the characteristic value detection module detects the sampling data stream, and selects the characteristic value data from the continuous N sampling data and stores them in the characteristic value storage FIFO; The sampling data of the detailed waveform memory of the capacity and the characteristic value data of the characteristic value storage FIFO are correspondingly stored;
在观察波形时,微处理器首先读取特征值存储FIFO中的特征值数据进行处理,并送显示器进行显示,当某段特征值数据需要详细观察时,通过详细波形存储器的采样数据和特征值存储FIFO的特征值数据的对应存储关系,快速找到大容量的详细波形存储器中该段特征值数据对应的地址,微处理器读入大容量的详细波形存储器对应的采样数据进行处理,并送到显示器中进行显示,详细观察该段特征值数据对应的波形,这就实现波形的快速定位与缩放。When observing the waveform, the microprocessor first reads the eigenvalue data in the eigenvalue storage FIFO for processing, and sends it to the display for display. Store the corresponding storage relationship of the eigenvalue data of the FIFO, quickly find the address corresponding to the eigenvalue data in the large-capacity detailed waveform memory, and the microprocessor reads the sampling data corresponding to the large-capacity detailed waveform memory for processing, and sends it to It is displayed on the monitor, and the waveform corresponding to the eigenvalue data of this segment is observed in detail, which realizes the rapid positioning and zooming of the waveform.
本发明的发明目的是这样实现的:The purpose of the invention of the present invention is achieved like this:
首先,用大容量的详细波形存储器缓存全部的采样数据,同时特征值检测模块对采样数据进行筛选,从连续的N个采样数据中,筛选出特征值数据,送入特征值存储FIFO中进行存储。检测的特征值数据可以包括最大值,最小值,拐点,平均值,特征值个数等。然后,在观察波形时,先读取特征值存储FIFO中的特征值数据进行处理,并送显示器进行显示,由于特征值存储FIFO中的特征值数据是全部采样数据的1/N,因此,显示时,响应速度非常快,波形捕获率高。当发现某段特征值数据有异常,比如在检测的特征值为最大值时,毛刺等有害信号可以使特征值数据突然变大或减小,这时,通过详细波形存储器的采样数据和特征值存储FIFO的特征值数据的对应存储关系,快速找到大容量的详细波形存储器中该段特征值数据对应的地址,微处理器读入大容量的详细波形存储器对应的采样数据进行处理,并送到显示器进行显示,详细观察该段特征值数据对应的波形,比如有毛刺的一段波形,从而完成波形的快速定位与缩放,解决了深度存储下响应速度慢、波形捕获率低和毛刺等有害信号不易发现的问题。Firstly, use the large-capacity detailed waveform memory to buffer all the sampled data, and at the same time, the feature value detection module screens the sampled data, filters out the feature value data from the continuous N sampled data, and sends them to the feature value storage FIFO for storage . The detected eigenvalue data can include maximum value, minimum value, inflection point, average value, number of eigenvalues, etc. Then, when observing the waveform, first read the eigenvalue data in the eigenvalue storage FIFO for processing, and send it to the display for display. Since the eigenvalue data in the eigenvalue storage FIFO is 1/N of all sampled data, the display , the response speed is very fast and the waveform capture rate is high. When it is found that a certain segment of eigenvalue data is abnormal, for example, when the detected eigenvalue is the maximum value, harmful signals such as glitches can suddenly increase or decrease the eigenvalue data. At this time, the sampling data and eigenvalue of the detailed waveform memory Store the corresponding storage relationship of the eigenvalue data of the FIFO, quickly find the address corresponding to the eigenvalue data in the large-capacity detailed waveform memory, and the microprocessor reads the sampling data corresponding to the large-capacity detailed waveform memory for processing, and sends it to Display on the monitor, observe the waveform corresponding to the eigenvalue data in detail, such as a section of waveform with glitches, so as to complete the rapid positioning and zooming of the waveform, and solve the problem of slow response speed, low waveform capture rate and glitches under deep storage. problem dicovered.
附图说明 Description of drawings
图1是本发明具有波形快速定位与缩放功能的数字存储示波器一种具体实施方式原理图;Fig. 1 is a schematic diagram of a specific embodiment of a digital storage oscilloscope with waveform rapid positioning and zooming functions in the present invention;
图2是本发明中数据位宽相等时的地址对应关系图;Fig. 2 is the address correspondence diagram when the data bit width is equal among the present invention;
图3是本发明中数据位宽不相等时的地址对应;Fig. 3 is the address correspondence when the data bit width is unequal among the present invention;
图4是特征值Ti和Ti+m之间详细波形数据的快速定位与缩放;Fig. 4 is the rapid positioning and zooming of detailed waveform data between eigenvalues T i and T i+m ;
图5是波形的定位与缩放效果图。Figure 5 is an effect diagram of the positioning and zooming of the waveform.
具体实施方式 Detailed ways
下面结合附图对本发明的具体实施方式进行描述,以便更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当采用已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。Specific embodiments of the present invention will be described below in conjunction with the accompanying drawings, so as to better understand the present invention. It should be noted that in the following description, when detailed descriptions of known functions and designs may dilute the main content of the present invention, these descriptions will be omitted here.
实施例Example
图1是本发明具有波形快速定位与缩放功能的数字存储示波器一种具体实施方式原理图。Fig. 1 is a schematic diagram of a specific embodiment of a digital storage oscilloscope with waveform rapid positioning and zooming functions according to the present invention.
如图1所示,在本实施例中,具有波形快速定位与缩放功能的数字存储示波器包括信号调理通道1、模数转换器2、详细波形存储器控制模块3、大容量的详细波形存储器4、微处理器5以及显示器6。为了实现快速定位和缩放功能,在现有深存储数字存储示波器的基础上,增加了一特征值检测模块7和特征值存储FIFO 8,特征值检测模块7与模数转换器2连接,检测模数转换器2输出的采样数据流,从连续的N个采样数据中筛选出特征值数据,并存入特征值存储FIFO 8中。As shown in Figure 1, in this embodiment, the digital storage oscilloscope with waveform fast positioning and zooming functions includes a signal conditioning channel 1, an analog-to-
信号调理通道1对输入的模拟信号进行调理,输出模数转换器2输入范围的模拟信号,模拟信号在模数转换器2中进行采样,得到为离散信号的采样数据流。采样数据流分成两路,一路流入详细波形存储器控制模块3,控制采样数据流的全部采样数据存入大容量的详细波形存储器4中进行深度缓存;一路流入特征值检测模块进行检测,从连续的N个采样数据中筛选出特征值数据存入特征值存储FIFO中。The signal conditioning channel 1 conditions the input analog signal, and outputs an analog signal within the input range of the analog-to-
大容量的详细波形存储器的采样数据和特征值存储FIFO的特征值数据对应存储,在本实施例中,这种对应关系放在地址映射模块9中。特征值数据在特征值存储FIFO 8中存放的地址和大容量的详细波形存储器4中采样数据存放的地址有一定的对应关系。The sampling data of the large-capacity detailed waveform memory and the characteristic value data of the characteristic value storage FIFO are correspondingly stored. In this embodiment, this corresponding relationship is placed in the address mapping module 9 . There is a certain correspondence between the address of the eigenvalue data stored in the
如图2所示,在数据位宽相等的条件下,若大容量的详细波形存储器4存储使用的容量为D,特征值存储FIFO 8的容量为d,则特征值检测模块7按照的比例筛选特征值数据(即特征值存储FIFO 8中第i~i+k的存储空间对应着详细波形存储器中段存储空间。As shown in Figure 2, under the condition that the data bit width is equal, if the capacity used for storing the detailed waveform memory 4 of large capacity is D, and the capacity of the characteristic
如图3所示,在数据位宽不相等的条件下时,若大容量的详细波形存储器4存储使用的容量为D、数据位宽为M,特征值存储FIFO 8的容量为d、数据位宽为m,那么特征值存储FIFO 8的存储地址数为大容量的详细波形存储器4的存储地址数为则特征值存储FIFO 8按照的比例筛选特征值数据即特征值存储FIFO 8中第i~i+k的存储空间对应着大容量的详细波形存储器4中第段存储空间。As shown in Figure 3, under the condition that the data bit width is not equal, if the capacity used in the large-capacity detailed waveform memory 4 storage is D, the data bit width is M, the capacity of the characteristic
需要详细观察某段特征值数据对应的波形时,微处理器5输出该段特征值数据的地址在地址映射模块9中找到对应的地址,即大容量的详细波形存储器4中对应的采样数据地址,然后根据该采样数据地址,微处理器5通过详细波形存储器控制模块3将大容量的详细波形存储器4中对应的采样数据读取到微处理器5中进行处理,并送到显示器6中进行显示。When the waveform corresponding to a certain section of characteristic value data needs to be observed in detail, the
在本实施例中,在现有的深存储数字存储示波器的基础上,还增加了数据流切换模块10,在微处理器5的控制下,切换特征值存储FIFO 8或大容量的详细波形存储器4的数据流进入微处理器5,微处理器5实现控制和数据处理功能,微处理器5处理后的数据送给显示器显示。In this embodiment, on the basis of the existing deep storage digital storage oscilloscope, a data
在观察波形时,首先选择特征值存储FIFO 8中的特征值数据进行观察,即数据流切换模块10切换到特征值存储FIFO 8,特征值存储FIFO 8的特征值数据流进入微处理器5中进行处理,并送到显示器6中进行显示;对某段特征值数据需要详细观察时,微处理器5输出该段特征值数据的地址在地址映射模块9中找到对应的地址,即大容量的详细波形存储器4中对应的采样数据地址;在微处理器5的控制下,数据流切换模块10切换到大容量的详细波形存储器4数据流,大容量的详细波形存储器4的采样数据流,进入微处理器5中进行处理,并送到显示器6中进行显示,这就实现波形的快速定位与缩放。When observing the waveform, first select the eigenvalue data in the
如图1所示,在本实施中,详细波形存储器控制模块3、特征值检测模块7、特征值存储FIFO 8,地址映射模块9以及数据流切换模块10用一片现场可编程逻辑门阵列来设计。As shown in Figure 1, in this implementation, the detailed waveform
在具体实施过程中,模数转换器一般采用并行时间交替采样模数转换器,以提高采样率,采用的AD的个数为a个,那么需要在对每个AD采样数据进行H∶1特征值检测筛选之后,再对筛选出的a个特征值数据进行二级特征值检测筛选一个特征值数据,最后筛选的比例为(a×H)∶1(N=a×H),那么特征值存储FIFO8中第i个特征值数据对应的详细波形存储器4中的采样数据可以由式(1)表示:In the specific implementation process, the analog-to-digital converter generally uses parallel time-alternating sampling analog-to-digital converters to increase the sampling rate, and the number of ADs used is a, so it is necessary to perform H: 1 feature on each AD sampling data After value detection and screening, perform secondary eigenvalue detection on the selected a eigenvalue data to filter a eigenvalue data, and the final screening ratio is (a×H):1 (N=a×H), then the eigenvalue The sampling data in the detailed waveform memory 4 corresponding to the i-th eigenvalue data in the storage FIFO8 can be represented by formula (1):
Ani(n=1,2,...,a)表示特征值存储FIFO 8中第i个特征值数据对应的详细波形存储器4中存储的第n个AD采样的H个数据构成的采样数据流。特征值存储FIFO 8中存储W个特征值数据时,大容量的详细波形存储器4存储满,大容量的详细波形存储器4中存储的数据与数据量可以用式(2)表示:A ni (n=1, 2, . flow. When storing W eigenvalue data in the
则大容量的详细波形存储器4的存储空间的采样数据存储可由式(3)表示:Then the sampling data storage of the storage space of the detailed waveform memory 4 of large capacity can be represented by formula (3):
特征值存储FIFO 8的特征值数据存储由式(4)表示:The eigenvalue data storage of
(T1,T2,…,Ti,…,Tw) (4)(T 1 , T 2 , ..., T i , ..., T w ) (4)
大容量的详细波形存储器4的存储就是按式(3)的行来存储,从第一行的第一个位置开始地址计数存储,一行存储满了,接着存储下一行,存储数据对应的地址计数值表示数据的存储位置。式(3)的元素个数为大容量的详细波形存储器4存储使用的容量,式(4)中表示特征值存储FIFO 8中存储的特征值数据和特征值数据的存储位置。表示了特征值存储FIFO第i个特征值Ti对应的大容量的详细波形存储器4中的存储数据及其存储位置,式中的元素表示大容量的详细波形存储器4中对应的存储数据,元素的位置表示大容量的详细波形存储器4中对应数据的存储位置,对应数据的存储位置为N×(i-1)+1到Ni,其中1≤i≤W。当需要观察特征值Ti和Ti+m之间的详细波形数据时,如图4所示,在采用快速定位与缩放时,微处理器5把需要观察的波形的起始存储位置N×(i-1)+1发给寻址计数器作为寻址计数器的起始地址开始计数,快速读取需要的m×N个数据处理后送给显示器显示,这样就不需要读取无关的数据,大大节约了数据的读取和处理时间;如果没有采用快速定位与缩放,那么微处理器5读取数据就会从内存的起始地址开始读取详细波形存储器中的全部数据,然后处理和显示,很明显,这时候数据读取量远远大于采用快速定位与缩放技术时的数据读取量,需要的时间远远大于采用快速定位与缩放技术时数据读取所需要的时间。特征值数据Ti和Ti+m之间的详细波形数据以及详细波形数据在大容量的详细波形存储器4中的存储位置可由式(5)表示。The storage of the large-capacity detailed waveform memory 4 is to store according to the row of formula (3). The address count is stored from the first position of the first row. When one row is full, the next row is stored, and the address corresponding to the stored data is counted. The value represents where the data is stored. The number of elements in the formula (3) is the storage capacity of the large-capacity detailed waveform memory 4, and the formula (4) represents the characteristic value data stored in the characteristic
在本实施例中,特征值检测模块7是由现场可编程逻辑门阵列来配置。可以通过现场可编程逻辑门阵列对特征值数据进行筛选并存储到特征值存储FIFO8里面。特征值配置有两种方法:一种方法是直接用硬件语言对现场可编程逻辑门阵列进行特征值筛选配置,软件不参与特征值的选择;另一种方法是把所有的特征值通过硬件语言对现场可编程逻辑门阵列进行特征值筛选配置,然后根据用户需要通过软件控制来实现特征值数据检测的选择。In this embodiment, the characteristic
在本实施例中,大容量的详细波形存储器4的详细波形数据的存储寻址是由现场可编程逻辑门阵列来实现,在现场可编程逻辑门阵列内部配置一个存储数据寻址计数器,实现详细波形存储数据的正确存储。大容量的详细波形存储器4的详细波形数据读取寻址是由微处理器控制计数器实现,当需要显示详细波形存储器的某部分详细波形数据时,由微处理器5发出需要读取数据的首地址信号和读取数据数,从大容量的详细波形存储器4中快速读出想要的波形详细数据,再将这些波形详细数据送往显示器5进行显示。In this embodiment, the storage and addressing of the detailed waveform data of the large-capacity detailed waveform memory 4 is realized by a field programmable logic gate array, and a storage data addressing counter is configured inside the field programmable logic gate array to realize detailed waveform data. Correct storage of waveform memory data. The detailed waveform data reading and addressing of the large-capacity detailed waveform memory 4 is realized by the microprocessor control counter. The address signal and the number of read data are used to quickly read out the desired detailed waveform data from the large-capacity detailed waveform memory 4, and then send the detailed waveform data to the
采用波形快速定位与缩放技术,我们能很容易的发现毛刺等有害信号,如图5所示。如图5下图所示,显示的波形是特征值存储FIFO中的波形数据,波形存在毛刺,需要观察毛刺处的详细波形。切换数据流,快速定位与放大波形,观察毛刺处的详细波形,图5上图显示的是下图中毛刺周围标线范围内的详细波形。Using waveform rapid positioning and zooming technology, we can easily find harmful signals such as glitches, as shown in Figure 5. As shown in the lower figure of Figure 5, the displayed waveform is the waveform data in the eigenvalue storage FIFO. There are glitches in the waveform, and the detailed waveform at the glitch needs to be observed. Switch the data stream, quickly locate and zoom in on the waveform, and observe the detailed waveform at the burr. The upper figure in Figure 5 shows the detailed waveform within the marking range around the burr in the figure below.
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。Although the illustrative specific embodiments of the present invention have been described above, so that those skilled in the art can understand the present invention, it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, As long as various changes are within the spirit and scope of the present invention defined and determined by the appended claims, these changes are obvious, and all inventions and creations using the concept of the present invention are included in the protection list.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102162565A CN101726644B (en) | 2009-11-20 | 2009-11-20 | Digital storage oscilloscope with functions of waveform fast location and zooming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102162565A CN101726644B (en) | 2009-11-20 | 2009-11-20 | Digital storage oscilloscope with functions of waveform fast location and zooming |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101726644A CN101726644A (en) | 2010-06-09 |
CN101726644B true CN101726644B (en) | 2011-12-21 |
Family
ID=42447822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102162565A Expired - Fee Related CN101726644B (en) | 2009-11-20 | 2009-11-20 | Digital storage oscilloscope with functions of waveform fast location and zooming |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101726644B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101915864B (en) * | 2010-07-09 | 2012-12-26 | 苏州瀚瑞微电子有限公司 | Vector oscilloscope device |
CN102175902B (en) * | 2011-01-04 | 2013-11-06 | 苏州瀚瑞微电子有限公司 | Digital waveform processing system and method for oscilloscope |
CN103176009B (en) * | 2011-12-22 | 2017-10-24 | 北京普源精电科技有限公司 | A kind of waveform Zoom method, device and oscillograph |
CN103207299B (en) * | 2012-01-16 | 2016-09-07 | 北京普源精电科技有限公司 | A kind of detection method of the unusual waveforms of improvement |
CN103207294B (en) * | 2012-01-16 | 2016-12-14 | 北京普源精电科技有限公司 | A kind of display packing of the unusual waveforms of improvement |
CN103809000B (en) * | 2012-11-09 | 2016-06-29 | 沈阳高精数控技术有限公司 | data processing method based on servo drive unit |
CN103033663A (en) * | 2012-12-24 | 2013-04-10 | 电子科技大学 | Anomaly detection method for three-dimensional waveform data |
CN102998501B (en) * | 2012-12-28 | 2015-06-10 | 福建利利普光电科技有限公司 | Method for achieving data compression of digital oscilloscope based on field programmable gata array |
CN103115968A (en) * | 2013-01-25 | 2013-05-22 | 袁英民 | Signal processing method and device of ultrasound detector |
CN103278670A (en) * | 2013-05-13 | 2013-09-04 | 电子科技大学 | Waveform three-dimensional imaging method |
CN104502657B (en) * | 2014-12-25 | 2017-07-07 | 中国电子科技集团公司第四十一研究所 | Digital waveform manipulation module and its method |
CN104678144B (en) * | 2015-02-13 | 2017-07-18 | 电子科技大学 | The Bits Expanding method of three-dimensional waveform database under high waveform capture rate |
CN104793031B (en) * | 2015-04-14 | 2017-08-22 | 深圳市鼎阳科技有限公司 | A kind of oscilloscope display Zoom method and device |
CN104931754B (en) * | 2015-04-29 | 2017-09-12 | 电子科技大学 | The method for detecting abnormality of three-dimensional waveform data |
CN105553545A (en) * | 2015-12-11 | 2016-05-04 | 中国航空工业集团公司西安航空计算技术研究所 | FC data acquisition and recording instrument recording condition control strategy |
CN106324312B (en) * | 2016-08-03 | 2023-05-09 | 深圳市鼎阳科技股份有限公司 | Method for rapidly and accurately reading data in vertical direction of oscilloscope and oscilloscope |
CN108761163A (en) * | 2018-05-30 | 2018-11-06 | 郑州云海信息技术有限公司 | A kind of oscillograph and Fault Locating Method safeguarded for server |
CN109581016B (en) * | 2018-11-07 | 2020-10-16 | 电子科技大学 | Random time equivalent sampling system |
CN110688083B (en) * | 2019-09-27 | 2023-03-14 | 电子科技大学 | DDR 3-based high-speed data stream long-delay frequency storage forwarding method |
CN111239459A (en) * | 2020-01-21 | 2020-06-05 | 深圳市雷赛软件技术有限公司 | Oscilloscope and display method thereof |
CN111965405B (en) * | 2020-08-12 | 2021-08-13 | 电子科技大学 | FPGA-based digital three-dimensional oscilloscope data mapping storage system |
CN111929481B (en) * | 2020-09-21 | 2021-06-22 | 深圳市鼎阳科技股份有限公司 | Display method of oscilloscope amplification area and oscilloscope |
CN112763778A (en) * | 2020-12-23 | 2021-05-07 | 北京普源精电科技有限公司 | Waveform display method, device, equipment and storage medium |
-
2009
- 2009-11-20 CN CN2009102162565A patent/CN101726644B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101726644A (en) | 2010-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101726644B (en) | Digital storage oscilloscope with functions of waveform fast location and zooming | |
CN103308738B (en) | Abnormal waveform recording method for oscilloscope with high capture rate | |
JP4408026B2 (en) | Digital oscilloscope and its capture device | |
US9804200B2 (en) | Digital oscilloscope comprising multiple data acquisition pathways | |
JP4532848B2 (en) | Digital storage oscilloscope capture device | |
CN108776249B (en) | Scope recorder with dual capture | |
JP6083922B2 (en) | Waveform display apparatus and method | |
JP2003329709A (en) | Digital oscilloscope and capture device | |
CN101324640A (en) | Double-time-base digital storage oscilloscope | |
CN107133011A (en) | A kind of multi-channel data storage method of electrographic recording instrument | |
US9291646B2 (en) | Cross domain triggering in a test and measurement instrument | |
CN101762732A (en) | Oscilloscope with automatic measurement function and measurement data storage method thereof | |
CN103033663A (en) | Anomaly detection method for three-dimensional waveform data | |
CN105510664B (en) | A kind of automatic setting method of digital oscilloscope | |
CN110940841A (en) | Fast Acquisition System of Digital 3D Oscilloscope Based on FPGA | |
CN101261300B (en) | Method for measuring digital storage oscillographs storage depth | |
CN109142835B (en) | Data acquisition system with waveform multi-frame recording function | |
CN103884891B (en) | A kind of digital oscilloscope with high wave-form refresh rate | |
CN109991458B (en) | FPGA-based waveform longitudinal averaging system | |
CN108804044B (en) | Data acquisition method and deep memory data acquisition system based on deep storage | |
CN106371005A (en) | Switch matrix based microwave component switch response time measuring device and method | |
CN102944301B (en) | Digital peak detection method and system for ultrasonic signals based on variable-pitch sectioning method | |
CN109767519B (en) | Multi-channel signal monitoring system and method | |
CN104965936A (en) | Multichannel data acquisition and test system | |
CN108732398A (en) | Simulation transformation storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111221 Termination date: 20141120 |
|
EXPY | Termination of patent right or utility model |