CN101725507B - 使用蒸气吸收冷却器来降低稀释氮气压缩机功率 - Google Patents

使用蒸气吸收冷却器来降低稀释氮气压缩机功率 Download PDF

Info

Publication number
CN101725507B
CN101725507B CN200910208864.1A CN200910208864A CN101725507B CN 101725507 B CN101725507 B CN 101725507B CN 200910208864 A CN200910208864 A CN 200910208864A CN 101725507 B CN101725507 B CN 101725507B
Authority
CN
China
Prior art keywords
cooling
diluent nitrogen
steam
thermal source
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910208864.1A
Other languages
English (en)
Other versions
CN101725507A (zh
Inventor
I·马宗德
R·萨哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101725507A publication Critical patent/CN101725507A/zh
Application granted granted Critical
Publication of CN101725507B publication Critical patent/CN101725507B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

本发明涉及使用蒸气吸收冷却器来降低稀释氮气压缩机功率。一种稀释氮气压缩机进入物冷却系统(200)包括:底循环热源(212);由底循环热源供能的蒸气吸收冷却器(201),该蒸气吸收冷却器构造成以便对稀释氮气(202)进行冷却;以及接收来自蒸气吸收冷却器的经冷却的稀释氮气的稀释氮气压缩机(203)。

Description

使用蒸气吸收冷却器来降低稀释氮气压缩机功率
技术领域
本文公开的主题涉及改进的整体煤气化联合循环(IGCC)发电设备。
发明背景
整体煤气化联合循环(IGCC)发电设备执行两级燃烧,且在级之间执行净化。第一级包括用于诸如煤或重燃油的矿物燃料的部分氧化的气化器,而第二级使用燃气轮机燃烧器,以燃烧由气化器产生的燃气。通过添加压缩的稀释氮气来提高燃气轮机燃烧器的性能。来自IGCC中的空气分离单元(ASU)的稀释氮气在级中被稀释氮气压缩机(DGAN)压缩,且由冷却塔水源在级之间对其进行中间冷却。然后将压缩氮气供应到燃气轮机燃烧器。DGAN压缩机作为辅助负载消耗功率。DGAN压缩机可能会消耗大量的功率,从而降低IGCC发电设备的总效率。
因此,在本领域中仍然需要降低由结合IGCC发电设备操作的DGAN压缩机所消耗的功率负载。
发明内容
根据本发明的一个方面,稀释氮气压缩机进入物冷却系统包括:底循环热源;由底循环热源供能(power)的蒸气吸收冷却器,该蒸气吸收冷却器构造成以便对稀释氮气进行冷却;以及稀释氮气压缩机,其接收来自蒸气吸收冷却器的经冷却的稀释氮气。
根据本发明的另一个方面,用于对稀释氮气压缩机的进入物进行冷却的方法包括:使用来自整体煤气化联合循环系统的底循环热源为蒸气吸收冷却器供能;用蒸气吸收冷却器直接对稀释氮气进行冷却;以及将经冷却的稀释氮气送到稀释氮气压缩机入口。
根据结合附图的以下描述,这些和其它优点和特征将变得更加显而易见。
附图简述
在说明书的结论部分处的权利要求书中特别指出和明确要求了保护被视为本发明的主题。根据结合附图得到的以下详细描述,本发明的前述和其它目的、特征和优点显而易见,其中:
图1是蒸气吸收冷却器(VAC)的一个实施例。
图2是结合VAC的DGAN压缩机入口的一个实施例。
图3是结合VAC的DGAN压缩机入口的一个实施例。
图4是对供应给DGAN压缩机入口的氮气进行冷却的方法的一个实施例。
作为结合附图的实例,详细描述阐述了本发明的实施例,以及优点和特征。部件列表:
  100   蒸气吸收冷却器
  101   吸收器
  102   发生器
  103   冷凝器
  104   蒸发器
  105   管道
  106   管道
  107   管道
  108   管道
  109   管道
  110   管道
  111   管道
  112   管道
  113   管道
  114   管道
  115   管道
  116   管道
  200   结合了VAC的DGAN压缩机入口
  201   蒸气吸收冷却器(VAC)
  202   氮气冷却装置
  203   DGAN入口
  204   管道
  205   管道
  206   管道
  207   管道
  208   管道
  209   管道
  212   低压节热器(LPE)
  213   管道
  214   管道
  300   结合了VAC的DGAN压缩机入口
  301   蒸气吸收冷却器(VAC)
  302   氮气冷却装置
  303   DGAN入口
  304   管道
  305   管道
  306   管道
  307   管道
  308   管道
  309   管道
  400   对供应到DGAN压缩机入口的氮气进行冷却的方法
  401   使用底循环热源为VAC供能
  402   VAC对稀释氮气进行冷却
  403   将经冷却的稀释氮气传送到DGAN入口
具体实施方式
DGAN功率消耗与DGAN压缩机进入物温度成正比。对于给定的质量流量,在较高的温度下DGAN压缩机的功率消耗较高;氮气的密度随着温度的升高而降低,从而需要进行更多的压缩。使进入氮气温度冷却会产生更密的氮气,从而需要进行更少的压缩,降低DGAN压缩机功率消耗。例如,通过降低约40°F的进入物温度,DGAN压缩机功率的功率消耗可降低约2兆瓦。
可使用来自IGCC发电设备的底循环的低级别热或废热来运行蒸气吸收冷却器(VAC)系统。VAC可产生冷却介质,以在氮气到达DGAN压缩机的入口之前对氮气进行冷却。冷却降低了通过压缩机的体积流量,从而导致压缩机功降低。因此降低了设备辅助负载,从而对于IGCC发电设备的实施例产生了约1兆瓦至1.8兆瓦的输出收益和约0.08%-0.12%的净效率收益。
图1显示了蒸气吸收冷却器(VAC)100的一个实施例。VAC100包括四个部分:吸收器101、发生器102、冷凝器103和蒸发器104。蒸发器104保持在低压或者真空下。蒸发器104中的真空使制冷剂,例如氨(NH3),在非常低的温度下蒸发;正在蒸发的制冷剂吸收来自冷却介质的热,该冷却介质通过管道109和110流通到蒸发器104以及自蒸发器104流通回来。冷却介质和制冷剂之间的热传递使制冷剂转化成蒸气。制冷剂蒸气传送到吸收器101。在吸收器101中,制冷剂蒸气被吸收到水中。富含制冷剂的水经由管道108从吸收器101泵送到发生器102。来自热水或蒸汽形式的底循环热源的热经由管道115由发生器102接收,且处于降低了温度下的水或蒸汽经由管道116从发生器102中输出。来自管道115中的热水或蒸汽的热转移到来自发生器102中的管道108的富含制冷剂的水中。来自管道115的热水或蒸汽的热使来自从管道108中接收到的富含制冷剂的水的制冷剂沸腾掉,从而产生制冷剂蒸气和热水。热水经由管道107传送到吸收器。在吸收器101中,通过经由管道111和112流通的来自冷却塔的冷却水流来从热水中移除多余的热。来自发生器102的制冷剂蒸气经由管道105传送到冷凝器103,在冷凝器103中,通过与经由管道113和114流通的来自冷却塔的冷水交换热来使制冷剂蒸气转化成液体。然后通过管道106将液体制冷剂传送回蒸发器104中的真空中,在蒸发器104中,液体制冷剂吸收来自在管道109和110中流通的冷却介质的热。冷却介质通过管道109和110在蒸发器104和氮气冷却器之间流通,这在以下结合图2和3进行了论述。
可选择为VAC 100供能的热源,以便不影响IGCC发电设备的总性能。可选择IGCC发电设备中的具有用于VAC 100的适当运行的充分流量、压力和温度的任何底循环热源。IGCC发电设备中的可用于为VAC 100供能的底循环热源的三个实例包括:烟道烟气热、来自蒸汽密封调节器(SSR)的蒸汽,或蒸发器排放流。
可使用烟道烟气对水进行加热。在一些实施例中,低压节热器(LPE)可使用烟道烟气对水进行加热。可使用经加热的水来为VAC 100供能。使用烟道烟气加热的水可达到约160°F的温度和约14.7psi(磅/平方英尺)的压力。
蒸汽以约600°F和约20psi的压力从SSR出口出来。在一些实施例中,该蒸汽也可用来为VAC 100供能。VAC 100可能需要最少约21psi的压力来运行,所以通过使用蒸汽压缩机,可使蒸汽压力提高到约25psi。蒸汽压缩机将使蒸汽温度升高到约665°F。蒸汽在VAC中冷凝,且当水在约240°F的温度时,蒸汽被排到汽封冷凝器(GSC)。可在GSC中使用水来进行预热冷凝,或者如果预热对于特定的IGCC发电设备来说不是必要的,则水可以绕过GSC。
水以约200°F从蒸发器排放流中出来。在一些实施例中,也可利用该水来使VAC 100运行。
图2示出了结合由使用烟道烟气加热的水供能的VAC的DGAN压缩机入口的一个实施例200。烟道烟气经由管道213输入到低压节热器(LPE)212,且烟道烟气通过管道214输出到烟囱。LPE 212使用烟道烟气来对水进行加热,且经由管道204将热水传送到VAC201。VAC 201使用通过管道204接收到的经加热的水来为发生器供能,该发生器为吸收器、蒸发器和冷凝器供能,如以上关于图1所论述的。处于降低的温度的水或蒸汽经由管道205从VAC 201中输出。来自VAC 201的冷却介质经由管道206和207运行到氮气冷却装置202以及从氮气冷却装置202运行(出来)。氮气冷却装置202通过管道208接收稀释氮气,使用经由管道206和207流通的冷却介质来冷却稀释氮气,并且经由管道209将经冷却的稀释氮气输出到DGAN压缩机入口203。
图3示出了结合由蒸汽或热水供能的VAC 301的DGAN压缩机入口的一个实施例300。VAC 301通过管道304接收蒸汽或热水。管道304可运送来自例如SSR出口的蒸汽,或者来自蒸发器排放流的热水。使用来自管道304的蒸汽或热水为发生器供能,该发生器为吸收器、蒸发器和冷凝器供能,如以上关于图1所论述的。处于降低的温度的水或蒸汽经由管道305从VAC 301中输出;在接收来自SSR的蒸汽的实施例中,管道305可连接到汽封冷凝器(GSC)上。由VAC 301产生的冷却介质经由管道306和307运行到稀释氮气冷却装置302及从稀释氮气冷却装置302运行(出来)。氮气冷却装置302接收来自管道308的氮气,用经由管道306和307流通的冷却介质来冷却稀释氮气,并且经由管道309将经冷却的稀释氮气输出到DGAN压缩机入口303。
图4示出了对供应到DGAN压缩机入口的氮气进行冷却的方法400的一个实施例。在框401中,使用来自底循环热源的热为VAC供能。在框402中,VAC冷却稀释氮气。在块403中,将经冷却的稀释氮气传送到DGAN压缩机入口。
对于示例性IGCC发电设备,特别是具有2个GT和在ISO日(ISO day)燃烧伊利诺斯州盆地煤的2个气化器的Gerenal ElectricMulti-Shaft STAG 207FB IGCC,最初的DGAN压缩机进入物温度为约80°F。通过使用SSR蒸汽作为热源的VAC,可使DGAN压缩机进入物温度降低到大约64°F,从而使得DGAN压缩机的功率消耗改进约1兆瓦,且提供约0.08%的效率收益。通过使用烟道烟气作为热源的VAC,可使DGAN压缩机进入物温度降低到约44°F,从而使DGAN压缩机功率消耗改进约1.8兆瓦,且提供约0.12%的效率收益。相比于由于在IGCC发电设备的生命周期中的效率提高而产生的节省,安装VAC系统所需的初始投资低。
虽然已经结合仅仅有限数量的实施例对本发明进行了详细描述,但是将容易地理解,本发明不限于这样的公开的实施例。相反,可将本发明修改成结合至今尚未描述但与本发明的精神和范围相当的任何数量的变型、修改、替换或等效布置。另外,虽然已经对本发明的各种实施例进行了描述,但是将理解,本发明的方面可仅包括所述实施例中的一些。因此,本发明不应视为受前述描述的限制,而是仅受所附权利要求书的范围限制。

Claims (12)

1.一种稀释氮气压缩机进入物冷却系统,包括:
底循环热源;
由所述底循环热源供能的蒸气吸收冷却器,所述蒸气吸收冷却器构造成以便冷却稀释氮气;以及
接收来自所述蒸气吸收冷却器的经冷却的所述稀释氮气的稀释氮气压缩机。
2.根据权利要求1所述的系统,其特征在于,所述底循环热源包括烟道烟气。
3.根据权利要求2所述的系统,其特征在于,所述系统进一步包括低压节热器,所述低压节热器构造成以便使用所述烟道烟气来加热水,且将经加热的所述水提供给所述蒸气吸收冷却器。
4.根据权利要求1所述的系统,其特征在于,所述底循环热源包括来自蒸汽密封调节器的蒸汽。
5.根据权利要求1所述的系统,其特征在于,所述底循环热源包括蒸发器排放。
6.根据权利要求1所述的系统,其特征在于,所述蒸气吸收冷却器使用经冷却的介质来间接冷却所述稀释氮气。
7.一种用于对稀释氮气压缩机的进入物进行冷却的方法,所述方法包括:
使用来自整体煤气化联合循环系统的底循环热源为蒸气吸收冷却器供能;
通过所述蒸气吸收冷却器来冷却稀释氮气;以及
将经冷却的所述稀释氮气提供到稀释氮气压缩机入口。
8.根据权利要求7所述的方法,其特征在于,所述底循环热源包括烟道烟气。
9.根据权利要求8所述的方法,其特征在于,所述方法进一步包括使用所述烟道烟气来加热低压节热器中的水,且将经加热的所述水提供给所述蒸气吸收冷却器。
10.根据权利要求7所述的方法,其特征在于,所述底循环热源包括来自蒸汽密封调节器的蒸汽。
11.根据权利要求7所述的方法,其特征在于,所述底循环热源包括蒸发器排放。
12.根据权利要求7所述的方法,其特征在于,冷却稀释氮气包括使用经冷却的介质来间接冷却。
CN200910208864.1A 2008-10-30 2009-10-30 使用蒸气吸收冷却器来降低稀释氮气压缩机功率 Expired - Fee Related CN101725507B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/261,452 US8020397B2 (en) 2008-10-30 2008-10-30 Reduction of diluent nitrogen compressor power using vapor absorption chiller
US12/261452 2008-10-30

Publications (2)

Publication Number Publication Date
CN101725507A CN101725507A (zh) 2010-06-09
CN101725507B true CN101725507B (zh) 2014-07-09

Family

ID=41259860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910208864.1A Expired - Fee Related CN101725507B (zh) 2008-10-30 2009-10-30 使用蒸气吸收冷却器来降低稀释氮气压缩机功率

Country Status (4)

Country Link
US (1) US8020397B2 (zh)
EP (1) EP2431695B1 (zh)
JP (1) JP5525233B2 (zh)
CN (1) CN101725507B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458685B2 (en) * 2016-11-08 2019-10-29 Heatcraft Refrigeration Products Llc Absorption subcooler for a refrigeration system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255524A (en) * 1992-02-13 1993-10-26 Air Products & Chemicals, Inc. Dual heat pump cycles for increased argon recovery
EP0580910A1 (en) * 1992-06-26 1994-02-02 Texaco Development Corporation Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
CN1128856A (zh) * 1994-09-27 1996-08-14 巴布考克及威尔考克斯公司 用于联合循环动力装置的吸氨制冷循环
US6170263B1 (en) * 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
CN1312430A (zh) * 2000-03-08 2001-09-12 株式会社日立制作所 热和电力供给系统及其操作方法
CN1643237A (zh) * 2002-03-28 2005-07-20 西门子公司 用于供冷的发电厂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586897A (ja) * 1991-09-20 1993-04-06 Hitachi Ltd 石炭ガス化複合発電プラント
JPH11156117A (ja) * 1997-11-26 1999-06-15 Ishikawajima Harima Heavy Ind Co Ltd サチュレーション設備
US6058695A (en) * 1998-04-20 2000-05-09 General Electric Co. Gas turbine inlet air cooling method for combined cycle power plants
US6216436B1 (en) * 1998-10-15 2001-04-17 General Electric Co. Integrated gasification combined cycle power plant with kalina bottoming cycle
JP4521855B2 (ja) * 2003-05-14 2010-08-11 荏原冷熱システム株式会社 吸収冷凍機
WO2007017387A2 (de) * 2005-08-05 2007-02-15 Siemens Aktiengesellschaft Verfahren zur steigerung des wirkungsgrads eines kombinierten gas- und dampfkraftwerks mit integrierter brennstoffvergasung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255524A (en) * 1992-02-13 1993-10-26 Air Products & Chemicals, Inc. Dual heat pump cycles for increased argon recovery
EP0580910A1 (en) * 1992-06-26 1994-02-02 Texaco Development Corporation Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
CN1128856A (zh) * 1994-09-27 1996-08-14 巴布考克及威尔考克斯公司 用于联合循环动力装置的吸氨制冷循环
US6170263B1 (en) * 1999-05-13 2001-01-09 General Electric Co. Method and apparatus for converting low grade heat to cooling load in an integrated gasification system
CN1312430A (zh) * 2000-03-08 2001-09-12 株式会社日立制作所 热和电力供给系统及其操作方法
CN1643237A (zh) * 2002-03-28 2005-07-20 西门子公司 用于供冷的发电厂

Also Published As

Publication number Publication date
US8020397B2 (en) 2011-09-20
JP2010106832A (ja) 2010-05-13
JP5525233B2 (ja) 2014-06-18
EP2431695A1 (en) 2012-03-21
EP2431695B1 (en) 2014-04-30
CN101725507A (zh) 2010-06-09
US20100107662A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
CN106440510B (zh) 第二类热驱动压缩式热泵
US9470114B2 (en) Integrated cooling, heating, and power systems
CN103195526A (zh) 基于超临界有机朗肯循环的冷电联产复合系统
CN105019956A (zh) 一种燃气-蒸汽联合循环发电余热利用系统
JP2006249942A (ja) 過給機付き往復式内燃機関の排熱回収システム
JP5909429B2 (ja) 湿分利用ガスタービンシステム
CN103233821B (zh) 一种空气温度调节系统
CN113818934B (zh) 一种可调节式冷电联供系统及其工艺和运行方法
KR101386179B1 (ko) 히트펌프를 이용하여 가스 터빈 출력 증대가 가능한 지역난방수 공급 시스템
CN114353037A (zh) 一种蓄热式蒸汽供应系统及具有该系统的酒厂
CN101725507B (zh) 使用蒸气吸收冷却器来降低稀释氮气压缩机功率
CN102278205A (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环方法
CN110953069A (zh) 一种燃机电站多能耦合发电系统
RU2643878C1 (ru) Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (АБХМ)
CN106440491B (zh) 第一类热驱动压缩-吸收式热泵
CN108757471A (zh) 水环真空泵工作液冷却水系统
CN204783144U (zh) 一种燃气-蒸汽联合循环发电余热利用系统
CN208732629U (zh) 一种利用纯碱生产工艺蒸汽冷凝液余热制取液氨的系统
CN201434542Y (zh) 蒸汽压缩与喷射式空调器
CN111520693A (zh) 一种高温蒸汽机组及利用其生产高温蒸汽的方法
CN101813352A (zh) 喷射式空调器
CN205718070U (zh) 混合式热泵装置
CN216408919U (zh) 一种梯级余热回收热泵蒸汽系统
CN108759092A (zh) 基于空气循环的闭式热泵热水装置
CN218915437U (zh) 一种用于冷电联产和碳封存的地热能利用系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709