CN101723313A - 一种制备纳米二氧化钛/碳纳米管复合材料的方法 - Google Patents

一种制备纳米二氧化钛/碳纳米管复合材料的方法 Download PDF

Info

Publication number
CN101723313A
CN101723313A CN200910153721A CN200910153721A CN101723313A CN 101723313 A CN101723313 A CN 101723313A CN 200910153721 A CN200910153721 A CN 200910153721A CN 200910153721 A CN200910153721 A CN 200910153721A CN 101723313 A CN101723313 A CN 101723313A
Authority
CN
China
Prior art keywords
carbon nano
nano tube
ball
titanium oxide
compound material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910153721A
Other languages
English (en)
Other versions
CN101723313B (zh
Inventor
邱发敏
聂安民
樊孝玉
杨杭生
张孝彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2009101537215A priority Critical patent/CN101723313B/zh
Publication of CN101723313A publication Critical patent/CN101723313A/zh
Application granted granted Critical
Publication of CN101723313B publication Critical patent/CN101723313B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种纳米二氧化钛/碳纳米管复合材料的制备方法,其步骤为:取无机钛盐、碱金属碳酸盐、碳纳米管和去离子水加入到球磨罐中;在球磨罐中球磨充分混合反应;将混合反应后的产物在450~700℃,惰性气体保护下,退火至少1小时;将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。本发明制备方法简单,成本低,产量高,易于工业化生产。制得的复合材料可望在传感器、催化剂和光电电池等领域广泛应用。

Description

一种制备纳米二氧化钛/碳纳米管复合材料的方法
技术领域
本发明涉及一种制备纳米二氧化钛/碳纳米管复合材料的方法,尤其是采用高能球磨制备纳米二氧化钛/碳纳米管复合材料的方法。
背景技术
碳纳米管(Cnts)具有的优异的机械、热学和电学性能,一直是国内外材料科学研究的热点。在碳纳米管表面接上具有某些碳纳米管本身不具备的性质的有机、无机或生物官能团,而可以大大拓展碳纳米管的应用领域。比如碳纳米管较大的比表面积和多孔结构,使其成为催化剂载体有力竞争者。最近,更发现碳纳米管具有选择性吸附一些有机物污染物的特性,例如,碳纳米管的吸附持久性有机污染物二恶英类的能力比目前工业用的活性炭吸附极强1030倍以上。近年来,在碳纳米管表面包覆一维纳米半导体晶成为研究的热门领域。TiO2作为一种宽禁带半导体,具有湿敏、光催化等功能,可以用于传感器、光分解水和光降解有机物以及太阳能电池等,锐钛矿型TiO2纳米粉体在光催化降解有机物方面性能更加突出。结合二者优点,制备氧化钛/碳纳米管复合材料可望应用领域十分广泛,如传感器、催化剂和光电电池等领域。目前已经有采用溶胶凝胶、溶剂热、沉淀法等方法制备二氧化钛/碳纳米管复合物。然而,采用这些方法,不但会用到一些有毒的溶剂、原料,且步骤也相对复杂。
发明内容
本发明的目的是提供一种方法简单、成本低廉、不需要有机溶剂、易于工业化的制备纳米二氧化钛/碳纳米管复合材料的方法。
本发明的制备纳米二氧化钛/碳纳米管复合材料的方法,采用的是高能球磨法,步骤如下:
1)取无机钛盐、碱金属碳酸盐、碳纳米管和去离子水加入到球磨罐中,其中,无机钛盐与碱金属碳酸盐的摩尔比为1∶1~1∶4,无机钛盐与碳纳米管的摩尔比为15∶1~15∶30,无机钛盐与去离子水的摩尔比为1∶10~1∶30;
2)球磨罐中的球与料的质量比为10∶1~20∶1,在200~450转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在450~700℃,惰性气体保护下,退火至少1小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。
本发明中,所说的无机钛盐可以是硫酸钛或硫酸氧钛。所说的碱金属碳酸盐可以是碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾或碳酸锂。所说的惰性气体是氮气或氩气。球磨时,球磨罐中球料的总体积占球磨罐体积的1/4~2/3。
本发明的有益效果在于:
本发明提供的制备纳米二氧化钛/碳纳米管复合材料的方法,以钛盐为钛源,成本较低,而且制备方法简单、产量高、易于工业化生产。制得的复合材料可望在传感器、催化剂和光电电池等领域广泛应用。
附图说明
图1为纳米二氧化钛/碳纳米管复合材料的扫描电镜图(SEM);
图2为纳米二氧化钛/碳纳米管复合材料的X射线衍射图(XRD);
图3为纳米二氧化钛/碳纳米管复合材料的热失重分析图(TG%/DTG);
具体实施方式
为了更好的理解本发明,下面结合具体实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
实施例1:
1)按摩尔比Ti(SO4)2∶Na2CO3∶H2O∶Cnts为1∶1∶10∶2称量取所需原料,加入到250ml的球磨罐中;
2)球磨罐中的球与料的质量比为20∶1,在300转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在600℃,氮气保护下,退火1小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。图1为该实施例所制得的纳米二氧化钛/碳纳米管复合材料的扫描电镜图(SEM)。图2为其X射线衍射图(XRD),说明其中的二氧化钛为锐钛矿结构,由于碳纳米管峰与锐钛矿二氧化钛(101)晶面峰重合,XRD中看不到碳纳米管的衍射峰,但从SEM图中很明显看出有碳纳米管。
实施例2:
1)按摩尔比Ti(SO4)2∶NaHCO3∶H2O∶Cnts为1∶4∶15∶1称量取所需原料,加入250ml的球磨罐中;
2)球磨罐中的球与料的质量比为10∶1,在450转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在700℃,氮气保护下,退火1小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。
实施例3:
1)按摩尔比TiOSO4∶Na2CO3∶H2O∶Cnts为1∶1∶20∶2称量取所需原料,加入5L的球磨罐中;
2)球磨罐中的球与料的质量比为15∶1,在300转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在650℃,氮气保护下,退火2小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。图3为所制备的复合材料的热失重分析图(TG%/DTG),其中400℃到650℃之间的失重为碳纳米管氧化所致。
实施例4:
1)按摩尔比Ti(SO4)2∶KHCO3∶H2O∶Cnts为1∶4∶30∶0.5称量取所需原料,加入250ml的球磨罐中;
2)球磨罐中的球与料的质量比为15∶1,在200转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在550℃,氮气保护下,退火3小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。
实施例5:
1)按摩尔比TiOSO4∶KHCO3∶H2O∶Cnts为1∶2∶15∶0.07称量取所需原料,加入5L的球磨罐中;
2)球磨罐中的球与料的质量比为15∶1,在250转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在550℃,氮气保护下,退火3小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。
实施例6:
1)按摩尔比TiOSO4∶Li2CO3∶H2O∶Cnts为1∶1∶25∶1.5称量取所需原料,加入250ml的球磨罐中;
2)球磨罐中的球与料的质量比为15∶1,在250转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在450℃,氩气保护下,退火6小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。

Claims (5)

1.一种制备纳米二氧化钛/碳纳米管复合材料的方法,其特征在于包括如下步骤:
1)取无机钛盐、碱金属碳酸盐、碳纳米管和去离子水加入到球磨罐中,其中,无机钛盐与碱金属碳酸盐的摩尔比为1∶1~1∶4,无机钛盐与碳纳米管的摩尔比为15∶1~15∶30,无机钛盐与去离子水的摩尔比为1∶10~1∶30;
2)球磨罐中的球与料的质量比为10∶1~20∶1,在200~450转/分钟转速下球磨,充分混合反应;
3)将混合反应后的产物在450~700℃,惰性气体保护下,退火至少1小时;
4)将退火后的粉末水洗过滤,干燥研碎,得纳米二氧化钛/碳纳米管复合材料。
2.根据权利要求1所述的制备纳米二氧化钛/碳纳米管复合材料的方法,其特征在于:所说的无机钛盐是硫酸钛或硫酸氧钛。
3.根据权利要求1所述的制备纳米二氧化钛/碳纳米管复合材料的方法,其特征在于:所说的碱金属碳酸盐是碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾或碳酸锂。
4.根据权利要求1所述的制备纳米二氧化钛/碳纳米管复合材料的方法,其特征在于:球磨罐中球料的总体积占球磨罐体积的1/4~2/3。
5.根据权利要求1所述的制备纳米二氧化钛/碳纳米管复合材料的方法,其特征在于:所说的惰性气体是氮气或氩气。
CN2009101537215A 2009-11-02 2009-11-02 一种制备纳米二氧化钛/碳纳米管复合材料的方法 Expired - Fee Related CN101723313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101537215A CN101723313B (zh) 2009-11-02 2009-11-02 一种制备纳米二氧化钛/碳纳米管复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101537215A CN101723313B (zh) 2009-11-02 2009-11-02 一种制备纳米二氧化钛/碳纳米管复合材料的方法

Publications (2)

Publication Number Publication Date
CN101723313A true CN101723313A (zh) 2010-06-09
CN101723313B CN101723313B (zh) 2012-05-30

Family

ID=42444973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101537215A Expired - Fee Related CN101723313B (zh) 2009-11-02 2009-11-02 一种制备纳米二氧化钛/碳纳米管复合材料的方法

Country Status (1)

Country Link
CN (1) CN101723313B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983764A (zh) * 2010-09-17 2011-03-09 东莞市可迪环保科技有限公司 大面积有序皮芯结构二氧化钛纳米管薄膜光催化剂的制备方法及其应用
CN102628115A (zh) * 2012-04-01 2012-08-08 昆明理工大学 一种碳纳米管增强铜基复合材料的制备方法
CN103804877A (zh) * 2014-02-19 2014-05-21 江南大学 具有导电和光转换储能功能的聚合物材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396373C (zh) * 2006-06-22 2008-06-25 厦门大学 一种碳纳米管/二氧化钛复合光催化剂的制备方法
CN101157521B (zh) * 2007-09-20 2011-05-04 复旦大学 可见光活性的纳米二氧化钛复合薄膜材料及其制备方法
CN101347725B (zh) * 2008-08-19 2010-12-08 武汉大学 碳纳米管/二氧化钛纳米复合光催化剂及其用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983764A (zh) * 2010-09-17 2011-03-09 东莞市可迪环保科技有限公司 大面积有序皮芯结构二氧化钛纳米管薄膜光催化剂的制备方法及其应用
CN101983764B (zh) * 2010-09-17 2012-08-29 东莞市可迪环保科技有限公司 大面积有序皮芯结构二氧化钛纳米管薄膜光催化剂的制备方法及其应用
CN102628115A (zh) * 2012-04-01 2012-08-08 昆明理工大学 一种碳纳米管增强铜基复合材料的制备方法
CN102628115B (zh) * 2012-04-01 2014-05-07 昆明理工大学 一种碳纳米管增强铜基复合材料的制备方法
CN103804877A (zh) * 2014-02-19 2014-05-21 江南大学 具有导电和光转换储能功能的聚合物材料的制备方法

Also Published As

Publication number Publication date
CN101723313B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
Shen et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction
Li et al. Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis
Shao et al. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light
Bafaqeer et al. Indirect Z-scheme assembly of 2D ZnV2O6/RGO/g-C3N4 nanosheets with RGO/pCN as solid-state electron mediators toward visible-light-enhanced CO2 reduction
Pham et al. Influence of g-C3N4 precursors in g-C3N4/NiTiO3 composites on photocatalytic behavior and the interconnection between g-C3N4 and NiTiO3
Tang et al. Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity
Liu et al. Fabricating visible-light photoactive 3D flower-like BiOCl nanostructures via a one-step solution chemistry method at room temperature
Zhu et al. Carbon nitride-modified defective TiO2–x@ carbon spheres for photocatalytic H2 evolution and pollutants removal: Synergistic effect and mechanism insight
Liu et al. One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light
Tang et al. Constructing novel visible-light-driven ternary photocatalyst of AgBr nanoparticles decorated 2D/2D heterojunction of g-C3N4/BiOBr nanosheets with remarkably enhanced photocatalytic activity for water-treatment
Ni et al. Facile construction of 3D hierarchical flower-like Ag2WO4/Bi2WO6 Z-scheme heterojunction photocatalyst with enhanced visible light photocatalytic activity
Chen et al. Facile synthesis of bimodal macroporous g-C3N4/SnO2 nanohybrids with enhanced photocatalytic activity
Zhang et al. Recent advances of MXenes‐based optical functional materials
Wang et al. Visible-light-driven double-shell SnIn4S8/TiO2 heterostructure with enhanced photocatalytic activity for MO removal and Cr (VI) cleanup
Li et al. Facial synthesis of dandelion-like g-C3N4/Ag with high performance of photocatalytic hydrogen production
Wang et al. In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
Ali et al. applications of the functional photocatalysts BiOX (X= Cl, Br, I) for clean energy, the environment, and future photobiorefineries
Sun et al. Synthesis of g-C3N4/NiO-carbon microsphere composites for Co-reduction of CO2 by photocatalytic hydrogen production from water decomposition
Wang et al. In situ synthesis of Ag/Ag2O on CeO2 for boosting electron transfer in photocatalytic hydrogen production
Wang et al. A facile synthesis of nano-layer structured g-C3N4 with efficient organic degradation and hydrogen evolution using a MDN energetic material as the starting precursor
Cao et al. Ternary non-noble metal zinc-nickel-cobalt carbonate hydroxide cocatalysts toward highly efficient photoelectrochemical water splitting
Xiao et al. Facile synthesis of SnO2 hollow microspheres composed of nanoparticles and their remarkable photocatalytic performance
CN109554176B (zh) 一种内嵌碳量子点的g-C3N复合材料及其制备方法和应用
Wang et al. When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications
Pavithra et al. Combustion-derived CuO nanoparticles: Application studies on lithium-ion battery and photocatalytic activities

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20151102

EXPY Termination of patent right or utility model