CN101722356B - 采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法 - Google Patents

采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法 Download PDF

Info

Publication number
CN101722356B
CN101722356B CN2009103124768A CN200910312476A CN101722356B CN 101722356 B CN101722356 B CN 101722356B CN 2009103124768 A CN2009103124768 A CN 2009103124768A CN 200910312476 A CN200910312476 A CN 200910312476A CN 101722356 B CN101722356 B CN 101722356B
Authority
CN
China
Prior art keywords
stainless steel
welding
metal material
electronic beam
titanium metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009103124768A
Other languages
English (en)
Other versions
CN101722356A (zh
Inventor
王廷
张秉刚
陈国庆
冯吉才
刘玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN2009103124768A priority Critical patent/CN101722356B/zh
Publication of CN101722356A publication Critical patent/CN101722356A/zh
Application granted granted Critical
Publication of CN101722356B publication Critical patent/CN101722356B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Arc Welding In General (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,属于异种难焊金属焊接领域。本发明解决了现有钛金属材料与不锈钢焊接方法无法避免脆性相生成问题。本发明方法是将纯铜和纯钒作为中间层组成由不锈钢-纯铜-纯钒-钛金属材料组成的待焊件,然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干,然后真空条件下进行二次电子束焊接。本发明方法获得接头中无脆性相,接头的抗拉强度299MPa以上,屈服强度260MPa以上。本发明方法适用于航空发动机推力室身部、核工业核燃料处理设备、化工以及医疗设备中钛/钢复合构件及钛合金/钢复合构件的制造。

Description

采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法
技术领域
本发明异种难焊金属焊接领域;具体涉及采用复合中间层的钛金属材料与不锈钢电子束焊焊缝中脆性相控制方法。
背景技术
航空航天业的发展对新一代发动机的性能提出了更高指标,要求发动机推力室工作压力和温度大幅度提高,同时还要提高发动机自身的推重比,进一步增强其快捷机动性能。采用钛合金取代部分钢质体与铜合金相连接用于发动机推力室身部制造,可实现局部减重10~15%,满足新一代液氧煤油大推力火箭发动机及高空分导发动机的高性能需求。同时,逐步在航天动力承载结构中使用钛合金替代部分钢质结构体亦成为今后航天器瘦身减重的重要手段之一。此外,在核动力装置中的核燃料后处理设备、卫星燃料喷注器及姿态推动控制系统中的部件、电极、电解槽、电镀、反应塔、强酸强碱容器、高尔夫球杆及医疗设备等也经常用到钛合金与不锈钢的复合构件。采用焊接技术实现钛合金与不锈钢的连接是最可靠的。对于钛合金与不锈钢的焊接,由于熔化焊时接头产生大量连续分布的脆性金属间化合物,焊后极易开裂,很难实现二者连接,而钎焊、扩散焊、摩擦焊接头则在使用中受到强度、接头形式、使用条件以及生产效率的限制,不能满足使用要求。
采用铜作中间层电子束焊钛金属材料与不锈钢通过改变钛金属材料板与不锈钢板直接电子束焊接接头内脆性相的分布形态和尺寸实现提高接头的韧性,并使接头无裂纹,但仍无法避免脆性相生成。
发明内容
本发明的目的为了解决现有钛金属材料与不锈钢焊接方法无法避免脆性相生成问题;而提供采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法。
本发明中采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法是通过下述步骤实现的:一、将厚度0.3~0.6mm的纯钒和厚度为0.5~1.0mm的纯铜作为中间层置于钛金属材料与不锈钢连接面之间,使纯铜靠近不锈钢,再用TIG焊点焊固定,使每个对接面的间隙均小于0.15mm,即得到由不锈钢-纯铜-纯钒-钛金属材料(见图1)组成的待焊件,钛金属材料为钛或钛合金;二、然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干;三、采用刚性固定法将经步骤二处理的待焊件固定于夹具内,然后置于真空电子束焊机的真空室内,抽真空至真空度为4.5×10-5Pa,分两次进行焊接,第一次焊接将电子束作用于铜上并控制电子束聚焦斑点距离纯铜与不锈钢对接中线的偏移距离为0~0.3mm,第一次焊接参数:焊接速度为300~500mm/min、加速电压为50~100kV、聚焦电流为2300~2500mA、电子束流为8~13mA,第二次焊接将电子束作用在纯钒的中部并控制电子束聚焦斑点距离第一次焊接电子束聚焦斑点的距离为0.4~1.0mm(见图2),第二次焊接参数:焊接速度为300~500mm/min、加速电压为50~100kV、聚焦电流为2300~2500mA、电子束流为8~13mA,其中第一次焊接与第二次焊接时间间隔为0.5~2min;即完成了钛金属材料与不锈钢电子束焊接头脆性相控制。
附图说明
图1是带焊件连接的示意图;图2是电子束作用位置示意图;图3是具体实施方式九方法获得近钛侧接头显微组织形貌图;图4是具体实施方式九方法获得近钢侧接头显微组织形貌图;图1和2中1表示钛金属材料,2表示纯钒,3表示纯铜,4表示不锈钢;图2中5表示第二次焊接电子束,6表示第一次焊接电子束。
具体实施方式
具体实施方式一:本实施方式中采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法是通过下述步骤实现的:一、将厚度0.3~0.6mm的纯钒和厚度为0.5~1.0mm的纯铜作为中间层置于钛金属材料与不锈钢连接面之间,使纯铜靠近不锈钢,再用TIG焊点焊固定,使每个对接面的间隙均小于0.15mm,即得到由不锈钢-纯铜-纯钒-钛金属材料(见图1)组成的待焊件,钛金属材料为钛或钛合金;二、然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干;三、采用刚性固定法将经步骤二处理的待焊件固定于夹具内,然后置于真空电子束焊机的真空室内,抽真空至真空度为4.5×10-5Pa,分两次进行焊接,第一次焊接将电子束作用于纯铜上并控制电子束聚焦斑点距离铜与不锈钢对接中线的偏移距离为0~0.3mm,第一次焊接参数:焊接速度为300~500mm/min、加速电压为50~100kV、聚焦电流为2300~2500mA、电子束流为8~13mA,第二次焊接将电子束作用在纯钒的中部(纯钒长向方向中心线附近)并控制电子束聚焦斑点距离第一次焊接电子束聚焦斑点的距离为0.4~1.0mm(见图2),第二次焊接参数:焊接速度为300~500mm/min、加速电压为50~100kV、聚焦电流为2300~2500mA、电子束流为8~13mA,其中第一次焊接与第二次焊接时间间隔为0.5~2min;即完成了钛金属材料与不锈钢电子束焊接头脆性相控制。
本实施方式方法所用纯铜的纯度在99.95%(重量)以上,纯钒的纯度在99.92%以上。本实施方式方法获得接头处冶金结合,无脆性相,接头的抗拉强度299MPa以上,接头的屈服强度260MPa以上。与铜作为中间层的焊接方法相比,接头的抗拉强度提高50MPa以上,接头的屈服强度提高60Mpa以上。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述纯钒厚度为0.4mm。其它步骤和参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是:步骤一所述的纯钒厚度为0.5mm。其它步骤和参数与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一至三不同的是:步骤一所述的纯铜厚度为0.6~0.8mm。其它步骤和参数与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至三不同的是步骤一所述的纯铜厚度为0.7mm。其它步骤和参数与具体实施方式一至三相同。
具体实施方式六:本实施方式与具体实施方式一至五不同的是:步骤二酸洗是将待焊件放入由HNO3和HF混合溶液中1~4min后蒸馏水冲洗干净,其中HNO3浓度为200g/L,HF浓度为30g/L。其它步骤和参数与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六不同的是:步骤二水洗是利用高速水流冲洗。其它步骤和参数与具体实施方式一至六相同。
高速水流是指流速较高而出现空化、掺气、冲击波、强烈脉动等一种或多种特殊现象的水流;一般高速水流的流速在15~20m/s。
具体实施方式八:本实施方式与具体实施方式一至七不同的是:步骤三第一次焊接电子束聚焦斑点距离铜与不锈钢对接中线的偏移距离为0.1~0.2mm。其它步骤和参数与具体实施方式一至七相同。
具体实施方式九:本实施方式中采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,以厚0.5mm×长50mm×宽2.5mm的纯度高于99.95%铜及厚0.5mm×长50mm×宽2.5mm的纯度高于99.92%钒作为中间层,钛合金与不锈钢的规格为50mm×25mm×2.5mm,钛合金牌号为TA15,钛合金的成分为:Ti-6.5Al-2Zr-1Mo-1V,不锈钢为0Cr18Ni9奥氏体不锈钢,具体是通过下述步骤实现的:一、将纯钒和纯铜作为中间层置于钛合金与不锈钢连接面之间,使纯铜靠近不锈钢,再用TIG焊点焊固定,使每个对接面的间隙均小于0.1mm,即得到由不锈钢-纯铜-纯钒-钛合金(见图1)组成的待焊件;二、然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干,酸洗采用具体实施方式六中的方法;三、采用刚性固定法将经步骤二处理的待焊件固定于夹具内,然后置于真空电子束焊机的真空室内,抽真空至真空度为4.5×10-5Pa,分两次进行焊接,第一次焊接将电子束作用于铜上并控制电子束聚焦斑点距离铜与不锈钢对接中线的偏移距离为0mm,第一次焊接参数:焊接速度为420mm/min、加速电压为55kV、聚焦电流为2450mA、电子束流为10mA,第二次焊接将电子束聚焦斑点距离第一次焊接电子束聚焦斑点的距离为0.8mm(见图2),第二次焊接参数:焊接速度为420mm/min、加速电压为55kV、聚焦电流为2450mA、电子束流为10mA,其中第一次焊接与第二次焊接时间间隔为1.5min;即完成了钛金属材料与不锈钢电子束焊接头脆性相控制。
对本实施方式的接头进行测试,结果如图3和4所示。图3所示为近钢侧焊缝区显微组织形貌图,由图3可知,在靠近钛合金母材的区域Ti-V固溶体和铜基固溶体组成,图4为不锈钢侧焊缝区形貌图,在靠近钢母材的区域由铜和钢和混合物组成,靠近铜钢混合物的区域由Ti-V固溶体组成,从上面的分析可知,本实施方式焊接的接头中无脆性化合物生成。接头抗拉强度为310MPa,屈服强度为263MPa。
具体实施方式十:本实施方式中采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,以厚0.8mm×长50mm×宽2.5mm的纯度高于99.95%铜及厚0.4mm×长50mm×宽2.5mm的纯度高于99.92%钒作为中间层,钛合金与不锈钢的规格为50mm×25mm×2.5mm,钛合金牌号为TA15,钛合金的成分为:Ti-6.5Al-2Zr-1Mo-1V,不锈钢为0Cr18Ni9奥氏体不锈钢,具体是通过下述步骤实现的:一、将纯钒和纯铜作为中间层置于钛合金与不锈钢连接面之间,使纯铜靠近不锈钢,再用TIG焊点焊固定,使每个对接面的间隙均小于0.15mm,即得到由不锈钢-纯铜-纯钒-钛合金(见图1)组成的待焊件;二、然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干,酸洗采用具体实施方式六中的方法;三、采用刚性固定法将经步骤二处理的待焊件固定于夹具内,然后置于真空电子束焊机的真空室内,抽真空至真空度为4.5×10-5Pa,分两次进行焊接,第一次焊接将电子束作用于铜上并控制电子束聚焦斑点距离铜与不锈钢对接中线的偏移距离为0.3mm,第一次焊接参数:焊接速度为480mm/min、加速电压为55kV、聚焦电流为2450mA、电子束流为11mA,第二次焊接将电子束聚焦斑点距离第一次焊接电子束聚焦斑点的距离为0.5mm(见图2),第二次焊接参数:焊接速度为420mm/min、加速电压为55kV、聚焦电流为2450mA、电子束流为11mA,其中第一次焊接与第二次焊接时间间隔为1.5min;即完成了钛金属材料与不锈钢电子束焊接头脆性相控制。
本实施方式焊接的接头中无脆性化合物生成。接头抗拉强度为300MPa,屈服强度为257MPa。
具体实施方式十一:本实施方式中采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,以厚0.5mm×长50mm×宽2.5mm的纯度高于99.95%铜及厚0.5mm×长50mm×宽2.5mm的纯度高于99.92%钒作为中间层,钛合金与不锈钢的规格为50mm×25mm×2.5mm,钛合金牌号为TB15,钛合金的成分为:Ti-15V-3Cr-3Al,不锈钢为0Cr18Ni9奥氏体不锈钢,具体是通过下述步骤实现的:一、将纯钒和纯铜作为中间层置于钛合金与不锈钢连接面之间,使纯铜靠近不锈钢,再用TIG焊点焊固定,使每个对接面的间隙均小于0.10mm,即得到由不锈钢-纯铜-纯钒-钛合金(见图1)组成的待焊件;二、然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干,酸洗采用具体实施方式六中的方法;三、采用刚性固定法将经步骤二处理的待焊件固定于夹具内,然后置于真空电子束焊机的真空室内,抽真空至真空度为4.5×10-5Pa,分两次进行焊接,第一次焊接将电子束作用于铜上并控制电子束聚焦斑点距离铜与不锈钢对接中线的偏移距离为0.2mm,第一次焊接参数:焊接速度为420mm/min、加速电压为55kV、聚焦电流为2450mA、电子束流为10mA,第二次焊接将电子束聚焦斑点距离第一次焊接电子束聚焦斑点的距离为0.7mm(见图2),第二次焊接参数:焊接速度为400mm/min、加速电压为55kV、聚焦电流为2450mA、电子束流为11mA,其中第一次焊接与第二次焊接时间间隔为1.5min;即完成了钛金属材料与不锈钢电子束焊接头脆性相控制。
本实施方式焊接的接头中无脆性化合物生成。接头抗拉强度为299MPa,屈服强度为250MPa。
具体实施方式十二:本实施方式与具体实施方式十一不同的是:钛替代钛合金。其它步骤和参数与具体实施方式十一相同。
本实施方式焊接的接头中无脆性化合物生成。接头抗拉强度为320MPa,屈服强度为269MPa。

Claims (8)

1.采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法是通过下述步骤实现的:一、将厚度0.3~0.6mm的纯钒和厚度为0.5~1.0mm的纯铜作为中间层置于钛金属材料与不锈钢连接面之间,使纯铜靠近不锈钢,再用TIG焊点焊固定,使每个对接面的间隙均小于0.15mm,即得到由不锈钢-纯铜-纯钒-钛金属材料组成的待焊件;二、然后将待焊件用丙酮超声清洗,再经酸洗、水洗后烘干;三、采用刚性固定法将经步骤二处理的待焊件固定于夹具内,然后置于真空电子束焊机的真空室内,抽真空至真空度为4.5×10-5Pa,分两次进行焊接,第一次焊接将电子束作用于铜上并控制电子束聚焦斑点距离纯铜与不锈钢对接中线的偏移距离为0~0.3mm,第一次焊接参数:焊接速度为300~500mm/min、加速电压为50~100kV、聚焦电流为2300~2500mA、电子束流为8~13mA,第二次焊接将电子束作用在纯钒的中部并控制电子束聚焦斑点距离第一次焊接电子束聚焦斑点的距离为0.4~1.0mm,第二次焊接参数:焊接速度为300~500mm/min、加速电压为50~100kV、聚焦电流为2300~2500mA、电子束流为8~13mA,其中第一次焊接与第二次焊接时间间隔为0.5~2min;即完成了钛金属材料与不锈钢电子束焊接头脆性相控制。
2.根据权利要求1所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤一所述的纯钒厚度为0.4mm。
3.根据权利要求1所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤一所述的纯钒厚度为0.5mm。
4.根据权利要求1、2或3所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤一所述的纯铜厚度为0.6~0.8mm。
5.根据权利要求1、2或3所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤一所述的纯铜厚度为0.7mm。
6.根据权利要求4所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤二酸洗是将待焊件放入由HNO3和HF混合溶液中1~4min后蒸馏水冲洗干净,其中HNO3浓度为200g/L,HF浓度为30g/L。
7.根据权利要求6所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤二水洗是利用高速水流冲洗。
8.根据权利要求7所述的采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法,其特征在于步骤三第一次焊接电子束聚焦斑点距离铜与不锈钢对接中线的偏移距离为0.1~0.2mm。
CN2009103124768A 2009-12-29 2009-12-29 采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法 Expired - Fee Related CN101722356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009103124768A CN101722356B (zh) 2009-12-29 2009-12-29 采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009103124768A CN101722356B (zh) 2009-12-29 2009-12-29 采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法

Publications (2)

Publication Number Publication Date
CN101722356A CN101722356A (zh) 2010-06-09
CN101722356B true CN101722356B (zh) 2011-08-10

Family

ID=42444230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009103124768A Expired - Fee Related CN101722356B (zh) 2009-12-29 2009-12-29 采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法

Country Status (1)

Country Link
CN (1) CN101722356B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335921A (zh) * 2017-07-11 2017-11-10 吉林大学 加钒中间层的钛合金‑不锈钢异种金属激光焊接方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912969B (zh) * 2010-08-03 2012-01-11 哈尔滨工业大学 复合填充层的制备方法及其电子束焊接钛金属材料与不锈钢的方法
CN101913023B (zh) * 2010-09-10 2012-02-15 哈尔滨工业大学 一种钛合金与锡青铜电子束焊接方法
CN101920391B (zh) * 2010-09-10 2012-05-09 哈尔滨工业大学 一种镍铝青铜与tc4钛合金异种材料电子束焊接方法
CN102059443B (zh) * 2010-12-28 2012-09-12 哈尔滨工业大学 一种钛金属材料与铜或铜合金高强度电子束焊接工艺
CN102284801A (zh) * 2011-07-25 2011-12-21 桐乡市伟达电子有限公司 双金属带的焊接方法
CN103192195B (zh) * 2013-04-25 2015-11-11 哈尔滨工业大学(威海) 钛合金与不锈钢电子束焊接填充材料、制备工艺及其方法
CN104400249A (zh) * 2014-09-24 2015-03-11 西安理工大学 钛-钢复合板异质接头过渡层用药芯焊丝及其制备方法
CN106825893A (zh) * 2017-03-02 2017-06-13 中国船舶重工集团公司第七二五研究所 一种针对船舶用Ti80与921A钢的真空电子束焊接方法
CN106956078A (zh) * 2017-03-15 2017-07-18 江苏科技大学 一种提高钢铌激光焊接接头强度的方法
CN108436269A (zh) * 2017-05-04 2018-08-24 江苏科技大学 一种高温强度优良的钢-铌连接方法
CN107398654A (zh) * 2017-08-31 2017-11-28 哈尔滨工业大学(威海) 钛合金与镍基高温合金的电子束焊接专用填充材料
US10857628B2 (en) * 2017-11-06 2020-12-08 The Boeing Company Interlayered structures for joining dissimilar materials and methods for joining dissimilar metals
US11465243B2 (en) 2017-11-06 2022-10-11 The Boeing Company Interlayered structures for joining dissimilar materials and methods for joining dissimilar metals
CN107999983A (zh) * 2017-11-30 2018-05-08 吉林大学 Ti3Al基合金与Ni基高温合金异种材料连接方法
CN107931836A (zh) * 2017-11-30 2018-04-20 吉林大学 TiAl合金与Ni基高温合金异种材料连接方法
CN108278166A (zh) * 2017-12-20 2018-07-13 北京控制工程研究所 一种应用于双组元液体火箭发动机的台阶状推力室
CN107931841B (zh) * 2017-12-26 2020-09-18 南京理工大学 一种钛-铝异种金属高强冶金结合的激光连接方法
CN107931805B (zh) * 2017-12-26 2021-09-03 江苏烁石焊接科技有限公司 一种钛合金和铝合金的等离子焊接方法
CN108941911A (zh) * 2018-09-30 2018-12-07 吉林大学 Ti3Al -不锈钢异种金属激光焊接方法
CN110293305B (zh) * 2019-06-04 2021-10-08 南京理工大学 一种因瓦合金与铝合金异种金属电子束焊接方法
CN110421261B (zh) * 2019-08-21 2021-09-28 新疆大学 添加复合中间层的钛合金-不锈钢异种金属激光焊接方法
CN111299795A (zh) * 2020-03-09 2020-06-19 西南交通大学 钛合金与不锈钢的异种真空电子束焊接方法
CN113500045A (zh) * 2021-07-12 2021-10-15 宁波江丰电子材料股份有限公司 一种靶材组件中间层的清洗方法
CN113618221B (zh) * 2021-08-17 2023-02-21 攀钢集团攀枝花钢铁研究院有限公司 100mm厚TA17钛合金板的真空电子束焊接方法及钛合金板
CN114083101B (zh) * 2021-11-30 2023-05-09 沈阳航空航天大学 一种避免钛/钢复合板钛复层稀释破坏的高能束焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313551A (ja) * 2006-05-29 2007-12-06 Toho Titanium Co Ltd クラッド容器の溶接方法および同容器を用いたスポンジチタンの製造方法
WO2008027474A2 (en) * 2006-08-30 2008-03-06 Fluor Technologies Corporation Compositions and methods for dissimilar material welding
CN101347854A (zh) * 2008-08-27 2009-01-21 陈亚 一种钛合金与不锈钢的焊接方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313551A (ja) * 2006-05-29 2007-12-06 Toho Titanium Co Ltd クラッド容器の溶接方法および同容器を用いたスポンジチタンの製造方法
WO2008027474A2 (en) * 2006-08-30 2008-03-06 Fluor Technologies Corporation Compositions and methods for dissimilar material welding
CN101347854A (zh) * 2008-08-27 2009-01-21 陈亚 一种钛合金与不锈钢的焊接方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯吉才,王廷,张秉刚,陈国庆.异种材料真空电子束焊接研究现状分析.《焊接学报》.2009,第30卷(第10期),108-112. *
赵东升,闫久春,王勇,杨士勤.采用铜和铌复合中间层的钛合金与不锈钢的真空热轧焊接.《焊接学报》.2006,第27卷(第11期),99-102. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335921A (zh) * 2017-07-11 2017-11-10 吉林大学 加钒中间层的钛合金‑不锈钢异种金属激光焊接方法

Also Published As

Publication number Publication date
CN101722356A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
CN101722356B (zh) 采用复合中间层的钛金属材料与不锈钢电子束焊接头脆性相控制方法
CN101648315B (zh) 一种钛金属材料与不锈钢的无裂纹电子束焊接方法
CN107442921B (zh) 一种异种铝合金材料的电子束焊接方法
CN103192195B (zh) 钛合金与不锈钢电子束焊接填充材料、制备工艺及其方法
CN105014207B (zh) 一种基于钒/铜固溶过渡连接的含钛金属层/管线钢层复合板焊接工艺
CN101920391B (zh) 一种镍铝青铜与tc4钛合金异种材料电子束焊接方法
CN101912969B (zh) 复合填充层的制备方法及其电子束焊接钛金属材料与不锈钢的方法
US20220281031A1 (en) Welding gas shielding device, laser filler wire welding system and welding method
CN102059443B (zh) 一种钛金属材料与铜或铜合金高强度电子束焊接工艺
CN102676904B (zh) 应用于高熵效应焊接TA2/0Cr18Ni9Ti的材料及方法
CN101480762B (zh) 钢基复合板塔器的制造方法
CN105033386B (zh) 钛或钛合金与2219铝合金的焊接方法
CN109014471A (zh) 一种钛合金-不锈钢的熔化极惰性气体保护电弧钎焊工艺
CN102049626A (zh) 一种大面积超厚高性能钛/钢复合管板的制备方法
CN101913021B (zh) 铬青铜与双相钛合金异种材料电子束叠加焊接方法
CN101954551A (zh) 一种钼铜合金与奥氏体不锈钢焊接的钎料及工艺
CN106001956B (zh) 一种钛/钢层状复合焊管的制造方法
CN101934432B (zh) 激光与电阻点焊的同轴复合焊接方法
CN101913022B (zh) 一种电子束焊接ta15钛合金与铬青铜异种材料的方法
CN101934424B (zh) 一种tb5钛合金与铜合金真空电子束焊接方法
CN113458549B (zh) 一种基于喷涂技术的复合管材的制备方法
WO2016185408A2 (en) Brazing filler
CN103143831B (zh) 一种含铝-钢异种材料热压焊接方法
CN101913023B (zh) 一种钛合金与锡青铜电子束焊接方法
CN103084716A (zh) 钛-铝微叠层复合材料的脉冲熔化极气体保护焊工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110810

Termination date: 20111229