CN101705872A - FPGA-based distributed aeroengine electronic controller in chip and control method - Google Patents
FPGA-based distributed aeroengine electronic controller in chip and control method Download PDFInfo
- Publication number
- CN101705872A CN101705872A CN200910213071A CN200910213071A CN101705872A CN 101705872 A CN101705872 A CN 101705872A CN 200910213071 A CN200910213071 A CN 200910213071A CN 200910213071 A CN200910213071 A CN 200910213071A CN 101705872 A CN101705872 A CN 101705872A
- Authority
- CN
- China
- Prior art keywords
- control
- fpga
- synchronous
- logic module
- processor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
本发明提供一种基于FPGA的片内分布式航空发动机电子控制器及控制方法,属于发动机控制技术领域。本发明包括输入信号接口电路(2)、FPGA芯片(1)、输出信号接口电路(3),FPGA芯片内部包括同步串行总线DB、同步时钟线CLK、同步控制线SC及通过这三根线互联的具有独立的数据空间RAM和程序空间ROM的n个处理器模块、用于控制FPGA内部各个模块同步工作的同步控制逻辑模块、用于发动机转速监测的超转保护逻辑模块、用于转换FPGA内部同步串行总线和外部总线协议的总线协议转换逻辑模块。本发明由FPGA内部的n个处理器和多个逻辑模块共同完成对航空发动机的控制,解决了基于传统处理器的电子控制器软件高度定制、可重用性差、并行实时任务开发困难的问题。
The invention provides an FPGA-based on-chip distributed aeroengine electronic controller and a control method, belonging to the technical field of engine control. The present invention comprises an input signal interface circuit (2), an FPGA chip (1), and an output signal interface circuit (3). The FPGA chip includes a synchronous serial bus DB, a synchronous clock line CLK, a synchronous control line SC and interconnected by these three lines. n processor modules with independent data space RAM and program space ROM, a synchronous control logic module used to control the synchronous work of each module inside the FPGA, an over-rotation protection logic module used for engine speed monitoring, and a logic module used to convert the FPGA internal Bus protocol conversion logic module for synchronous serial bus and external bus protocol. The invention uses n processors and multiple logic modules inside the FPGA to jointly control the aeroengine, and solves the problems of highly customized electronic controller software based on traditional processors, poor reusability, and difficult development of parallel real-time tasks.
Description
技术领域technical field
本发明涉及一种嵌入式电子控制器,具体的说一种基于FPGA的片内分布式航空发动机电子控制器及控制方法。The invention relates to an embedded electronic controller, in particular to an FPGA-based on-chip distributed aeroengine electronic controller and a control method.
背景技术Background technique
随着科学技术的进步,尤其是电子技术的迅速发展和现代控制理论的日趋完善,航空发动机的控制系统也产生了根本变化,从传统的机械液压控制系统发展到部分电子控制系统直到目前的全权限数字电子式控制(FADEC)。采用FADEC带来的效益是明显的,例如:控制范围变大、控制精度提高、能够实现复杂的控制规律、提高了系统的可靠性,同时控制系统的体积减小、重量减轻。当前航空发动机的FADEC系统普遍使用的是集中式双通道冗余架构,其特点是:系统软、硬件高度定制,传感器信号采集、处理、冗余管理、控制算法、控制信号输出、故障诊断、隔离等任务都由单一的CPU完成,这种集中式控制系统的缺点如下:With the progress of science and technology, especially the rapid development of electronic technology and the improvement of modern control theory, the control system of aero-engine has also undergone fundamental changes, from the traditional mechanical hydraulic control system to the partial electronic control system to the current full-scale control system. Authority Digital Electronic Control (FADEC). The benefits brought by the use of FADEC are obvious, such as: larger control range, higher control accuracy, complex control laws, improved system reliability, and reduced volume and weight of the control system. At present, the FADEC system of aero-engine generally uses a centralized dual-channel redundant architecture, which is characterized by: highly customized system software and hardware, sensor signal acquisition, processing, redundancy management, control algorithm, control signal output, fault diagnosis, isolation And other tasks are completed by a single CPU, the disadvantages of this centralized control system are as follows:
(1)、数据采集、处理、控制算法等所有任务都有单一的CPU完成,该CPU的计算任务相当繁重、软件复杂度急剧增加,软件系统的可靠性验证变得非常困难。(1) All tasks such as data acquisition, processing, and control algorithms are completed by a single CPU. The calculation tasks of this CPU are quite heavy, the complexity of the software increases sharply, and the reliability verification of the software system becomes very difficult.
(2)、在单一CPU内运行的数据采集、处理、冗余管理、控制算法、故障诊断等软件程序之间是高度关联的,设计定型后,任意局部的软件修改都可能导致很大一部分系统软件的重新验证,这使得系统后期的升级、维护成本急剧增加。(2) Software programs such as data acquisition, processing, redundancy management, control algorithms, and fault diagnosis running in a single CPU are highly correlated. After the design is finalized, any partial software modification may cause a large part of the system to Software re-verification, which makes the later upgrade and maintenance costs of the system increase sharply.
(3)、所有的软件程序都是针对特定的发动机定制的,可重用性差,在设计新的发动机控制系统时,所有的程序模块必须重新编写、验证,这降低了开发效率,增加了开发成本。(3) All software programs are customized for specific engines, and the reusability is poor. When designing a new engine control system, all program modules must be rewritten and verified, which reduces development efficiency and increases development costs .
目前航空发动机控制正朝着多变量、自适应、智能化、综合化、分布式、高可靠性等方向发展。为了降低开发成本、提高开发效率,要求软、硬件具有高度的模块化和可重用性,分布式控制系统正是为了满足这种需求而提出的,例如:Bhal Tulpule等人在第43届AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit上的论文“Vision for Next Generation Modular Adaptive Generic Integrated Controls(MAGIC)For Military/Commercial Turbine Engines”和黄金泉等人在《航空动力学报》第18卷第5期上的论文“航空发动机分布式控制系统结构分析”都给出了航空发动机分布式控制系统的实现方案。相对于集中式控制系统,分布式控制系统的软、硬件具有高度的模块化和重用性,这将极大的提高开发效率,降低开发、维护成本。但是Bhal Tulpule和黄金泉给出的航发动机分布式控制系统限于高温电子元器件、高可靠总线等关键技术的发展水平,目前还不具备实施的条件。At present, aero-engine control is developing in the direction of multivariable, self-adaptive, intelligent, comprehensive, distributed, and high reliability. In order to reduce development costs and improve development efficiency, software and hardware are required to be highly modular and reusable. Distributed control systems are proposed to meet this demand. For example: Bhal Tulpule et al. at the 43rd AIAA/ The paper "Vision for Next Generation Modular Adaptive Generic Integrated Controls (MAGIC) For Military/Commercial Turbine Engines" on ASME/SAE/ASEE Joint Propulsion Conference&Exhibit and Jin Quan et al. The dissertation "Structure Analysis of Distributed Control System of Aero-Engine" provides the realization scheme of distributed control system of aero-engine. Compared with the centralized control system, the software and hardware of the distributed control system are highly modular and reusable, which will greatly improve the development efficiency and reduce the development and maintenance costs. However, the aeroengine distributed control system proposed by Bhal Tulpule and Huang Jinquan is limited to the development level of key technologies such as high-temperature electronic components and high-reliability buses, and is not yet ready for implementation.
基于现场可编程门阵列FPGA(Field Programmable Gate Array)的可编程片上系统SOPC(System On Programmable Chip),或者说是基于大规模FPGA的单片系统代表了当代嵌入式系统的发展方向.SOPC的设计技术是现代计算机辅助设计技术、EDA技术和大规模集成电路技术高度发展的产物.SOPC技术的目标就是试图将尽可能大而完整的电子系统,包括嵌入式处理器系统、接口系统、硬件协处理器或加速器系统、DSP系统、数字通信系统、存储电路以及普通数字系统等,在单一FPGA中实现,使得所设计的电路系统在规模、可靠性、体积、功耗、功能、性能指标、上市周期、开发成本、产品维护及其硬件升级等多方面实现最优化.因此,基于FPGA的SOPC技术为航空发动机电子控制器的设计提供了一种高效、高性能的解决方案.SOPC (System On Programmable Chip) based on Field Programmable Gate Array (Field Programmable Gate Array), or a single-chip system based on large-scale FPGA represents the development direction of contemporary embedded systems. The design of SOPC Technology is a highly developed product of modern computer-aided design technology, EDA technology and large-scale integrated circuit technology. The goal of SOPC technology is to try to integrate as large and complete electronic systems as possible, including embedded processor systems, interface systems, hardware co-processing Accelerator or accelerator system, DSP system, digital communication system, storage circuit, and general digital system, etc., can be implemented in a single FPGA, so that the designed circuit system can improve the scale, reliability, volume, power consumption, function, performance index, and time to market. , development costs, product maintenance and hardware upgrades, etc. are optimized. Therefore, FPGA-based SOPC technology provides an efficient and high-performance solution for the design of aeroengine electronic controllers.
发明内容Contents of the invention
发明目的:Purpose of the invention:
本发明的目的是解决集中式航空发动机电子控制器设计时的软件高度定制、复杂度大、可重用性差、并行实时任务开发困难、开发效率低等问题,提供一种基于FPGA的片内分布式航空发动机电子控制器及控制方法。The purpose of the present invention is to solve the problems of highly customized software, high complexity, poor reusability, difficulty in developing parallel real-time tasks, and low development efficiency in the design of centralized aeroengine electronic controllers, and to provide an FPGA-based on-chip distributed Aeroengine electronic controller and control method.
技术方案:Technical solutions:
本发明为实现上述发明目的采用以下技术方案:The present invention adopts the following technical solutions for realizing the above-mentioned purpose of the invention:
本发明的基于FPGA的片内分布式航空发动机电子控制器,由输入信号接口电路、FPGA芯片、输出信号接口电路依次连接组成,所述FPGA芯片内部包括同步串行总线DB、同步时钟线CLK、同步控制线SC及通过这三根线互联的n个处理器模块、用于实时测量航空发动机转速的超转保护逻辑模块、用于控制FPGA内部各个模块同步工作的同步控制逻辑模块、用于转换FPGA内部同步串行总线和外部总线协议的总线协议转换逻辑模块,其中n代表发动机传感器和执行机构的数量,n是自然数,3<n<20。The on-chip distributed aeroengine electronic controller based on FPGA of the present invention is composed of an input signal interface circuit, an FPGA chip, and an output signal interface circuit connected in sequence, and the inside of the FPGA chip includes a synchronous serial bus DB, a synchronous clock line CLK, The synchronous control line SC and the n processor modules interconnected through these three lines, the over-rotation protection logic module for real-time measurement of the speed of the aeroengine, the synchronous control logic module for controlling the synchronous work of each module inside the FPGA, and the conversion of the FPGA Bus protocol conversion logic module of internal synchronous serial bus and external bus protocol, where n represents the number of engine sensors and actuators, n is a natural number, 3<n<20.
本发明的基于FPGA的片内分布式航空发动机电子控制器,FPGA内部嵌入的n个处理器是独立运行的,每个处理器都有单独的程序空间ROM和数据空间RAM。这n个处理器分别独立执行油门杆指令采集与处理、温度信号采集与处理、压力信号采集与处理、核心控制算法、主燃油量小闭环控制、加力燃油量小闭环控制、尾喷管面积小闭环控制等任务。In the FPGA-based on-chip distributed aeroengine electronic controller of the present invention, the n processors embedded in the FPGA operate independently, and each processor has a separate program space ROM and data space RAM. These n processors independently execute throttle lever command acquisition and processing, temperature signal acquisition and processing, pressure signal acquisition and processing, core control algorithm, main fuel volume small closed-loop control, afterburner fuel volume small closed-loop control, tail nozzle area Small closed-loop control and other tasks.
本发明的基于FPGA的片内分布式航空发动机电子控制器,所述超转保护逻辑模块用于实时测量航空发动机转速,当转速超过安全限制时,按照预定的安全模式控制发动机转速远离安全边界。In the FPGA-based on-chip distributed aero-engine electronic controller of the present invention, the over-rotation protection logic module is used to measure the speed of the aero-engine in real time, and when the speed exceeds a safety limit, control the speed of the engine to stay away from the safety boundary according to a predetermined safety mode.
本发明的基于FPGA的片内分布式航空发动机电子控制器,所述FPGA芯片内部的同步控制逻辑模块是一个可以配置的高精度定制器,通过同步控制线SC控制FPGA芯片内部的n个处理器模块、超转保护逻辑模块、总线协议转换逻辑模块按照预定的时间间隔T1,即主回路控制步长同步运行。In the FPGA-based on-chip distributed aeroengine electronic controller of the present invention, the synchronous control logic module inside the FPGA chip is a configurable high-precision customizer, which controls n processors inside the FPGA chip through the synchronous control line SC The module, the overrun protection logic module, and the bus protocol conversion logic module operate synchronously according to the predetermined time interval T1, that is, the control step of the main loop.
本发明的的基于FPGA的片内分布式航空发动机电子控制器,所述FPGA芯片内部的总线协议转换逻辑模块用于FPGA芯片内部同步串行总线和外部总线之间的协议转换,外部总线用于和发动机冗余控制器通道、飞行控制系统进行通信。In the FPGA-based on-chip distributed aeroengine electronic controller of the present invention, the bus protocol conversion logic module inside the FPGA chip is used for protocol conversion between the FPGA chip internal synchronous serial bus and the external bus, and the external bus is used for Communicate with engine redundant controller channel, flight control system.
本发明的基于FPGA的片内分布式航空发动机电子控制器,所述n个处理器中用于主燃油量小闭环控制、加力燃油量小闭环控制、尾喷管面积小闭环控制任务的处理器内部还包含一个高精度定制器,其定时间隔T2是同步控制逻辑模块定时间隔T1的1/4。In the FPGA-based on-chip distributed aeroengine electronic controller of the present invention, the n processors are used for processing the tasks of small closed-loop control of main fuel volume, small closed-loop control of afterburning fuel volume, and small closed-loop control of tail nozzle area The device also contains a high-precision customizer, whose timing interval T2 is 1/4 of the timing interval T1 of the synchronous control logic module.
此外,本发明还提供一种基于FPGA的片内分布式航空发动机电子控制器的控制方法,每当同步控制信号SC有效时,所述FPGA内部的n个处理器模块、超转保护逻辑模块、同步控制逻辑模块和总线协议转换逻辑模块按照以下的步骤完成对航空发动机的控制任务,包括以下步骤:In addition, the present invention also provides a control method based on an FPGA-based on-chip distributed aeroengine electronic controller. Whenever the synchronous control signal SC is valid, the n processor modules, the overrunning protection logic module, the The synchronous control logic module and the bus protocol conversion logic module complete the task of controlling the aeroengine according to the following steps, including the following steps:
a)同步控制逻辑按照预设的时间间隔T1重复产生有效的同步控制信号SC;a) The synchronous control logic repeatedly generates an effective synchronous control signal SC according to the preset time interval T1;
b)检测到有效的同步控制信号SC后,各个处理器分别完成油门杆信号的采集与处理;b) After detecting an effective synchronous control signal SC, each processor completes the acquisition and processing of the throttle lever signal;
c)检测到有效的同步控制信号SC后,各个处理器分别完成温度、压力信号的采集、线性化、量纲转换、故障诊断与隔离等任务;c) After detecting the effective synchronous control signal SC, each processor completes the tasks of temperature and pressure signal acquisition, linearization, dimension conversion, fault diagnosis and isolation, etc.;
d)检测到有效的同步控制信号SC后,超转保护逻辑模块测量当前发动机转速;d) After detecting an effective synchronous control signal SC, the over-rotation protection logic module measures the current engine speed;
e)检测到有效的同步控制信号SC后,总线协议转换逻辑从飞行控制系统获得大气数据信息;e) After detecting an effective synchronous control signal SC, the bus protocol conversion logic obtains atmospheric data information from the flight control system;
f)上述采集到的油门杆、压力、温度、转速、大气数据信息依次通过同步串行总线DB发送到负责核心控制算法的核心处理。f) The throttle lever, pressure, temperature, rotational speed, and air data information collected above are sequentially sent to the core processing in charge of the core control algorithm through the synchronous serial bus DB.
g)核心处理器根据当前发动机的转速、温度、压力、大气数据信息及油门杆参考指令,按照预定的控制模式核计算发动机的主燃油量、加力燃油量和尾喷口面积等输出控制量,并将这些输出控制量发送到同步串行总线DB上;g) The core processor calculates the output control quantities of the engine such as the main fuel quantity, afterburner fuel quantity and tail nozzle area according to the current engine speed, temperature, pressure, atmospheric data information and reference command of the throttle lever according to the predetermined control mode, And send these output control quantities to the synchronous serial bus DB;
h)用于小闭环控制的各个处理器通过同步串行总线DB接收核心处理器输出的控制量,按照预定的控制模式分别完成对主燃油流量、加力燃油流量、尾喷管面积的小闭环控制任务。h) Each processor used for small closed-loop control receives the control quantity output by the core processor through the synchronous serial bus DB, and completes the small closed-loop control of the main fuel flow, afterburner fuel flow, and tail nozzle area respectively according to the predetermined control mode control tasks.
有益效果:Beneficial effect:
(1)、在集中式控制器中由单个处理器完成的数据采集、控制算法、小闭环控制等复杂任务,采用本发明后由多个处理器共同完成,这将降低控制软件的复杂度、简化了并行实时软件任务的开发,并使软件验证变得相对容易。(1), complex tasks such as data acquisition, control algorithm, and small closed-loop control completed by a single processor in the centralized controller are jointly completed by a plurality of processors after adopting the present invention, which will reduce the complexity of the control software, Simplifies the development of parallel real-time software tasks and makes software verification relatively easy.
(2)、本发明对系统控制软件按照数据采集、控制算法、小闭环控制等功能进行了分解,分别由独立的处理器完成,而这几部分是相对独立的软件模块,这些软件模块的开发可以由多个软件开发人员同时进行,提高了开发效率。(2), the present invention decomposes the system control software according to functions such as data acquisition, control algorithm, small closed-loop control, is completed by independent processor respectively, and these several parts are relatively independent software modules, the development of these software modules It can be carried out by multiple software developers at the same time, which improves the development efficiency.
(3)、本发明对系统控制软件按照数据采集、控制算法、小闭环控制等功能进行了分解,分别由独立的处理器执行,对任意一个软件模块的修改并不影响其他软件模块,这将降低使用过程中的软件维护、升级费用。(3), the present invention decomposes the system control software according to functions such as data acquisition, control algorithm, small closed-loop control, respectively by independent processors, the modification of any software module does not affect other software modules, which will Reduce software maintenance and upgrade costs during use.
(4)、本发明的数据采集、小闭环控制等软件模块是在独立的处理器上运行的,并且和发动机相关性不大。在设计新的发动机控制系统时,这些原先设计的、经过验证的软件模块可以重复使用,提高了新系统的开发效率、降低了开发成本。(4), software modules such as data collection of the present invention, small closed-loop control run on independent processors, and have little correlation with engine. When designing a new engine control system, these originally designed and verified software modules can be reused, which improves the development efficiency of the new system and reduces the development cost.
附图说明Description of drawings
附图1是基于FPGA的片内分布式航空发动机电子控制器结构示意图。Accompanying drawing 1 is the structure schematic diagram of on-chip distributed aeroengine electronic controller based on FPGA.
附图2是基于本发明的双轴涡喷发动机数字控制系统原理图。Accompanying
附图3是同步串行总线终端结构框图。Accompanying
附图4是同步串行总线的数据帧结构图。Accompanying drawing 4 is the data frame structural diagram of synchronous serial bus.
附图5是总线协议转换逻辑结构框图。Accompanying drawing 5 is a logical structural block diagram of bus protocol conversion.
附图6是基于FPGA的片内分布式航空发动机电子控制器的控制流程图。Accompanying drawing 6 is the control flowchart of the on-chip distributed aeroengine electronic controller based on FPGA.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案进行详细说明:The technical scheme of the present invention is described in detail below in conjunction with accompanying drawing:
对照附图1所示的本发明结构框图,包括输入接口电路2、一片FPGA1和输出接口电路3,其中输入信号接口电路2和输出号接口电路3的设计方法是控制系统技术人员熟知的技术领域,本实施例仅给出FPGA内部的分布式处理结构的设计过程及该控制器的控制方法,下面给出本发明的实现步骤。Contrast the structure block diagram of the present invention shown in accompanying drawing 1, comprise
一种基于FPGA的片内分布式航空发动机电子控制器,其完成是包括以下步骤:A distributed aero-engine electronic controller in a chip based on FPGA, its completion comprises the following steps:
(1)、在一片FPGA内部嵌入n个独立运行的处理器,并在FPGA内部为每个处理器分别定制程序存储空间ROM和程序运行空间RAM,每个处理器都具有和同步串行总线DB、同步时钟CLK的接口,可根据需求为处理器添加PWM输出、定时器、通用I/O等外设。(1), Embed n independently running processors inside a FPGA, and customize the program storage space ROM and program running space RAM for each processor inside the FPGA, each processor has and synchronous serial bus DB , Synchronous clock CLK interface, can add PWM output, timer, general-purpose I/O and other peripherals to the processor according to requirements.
(2)、在处理器1中采用C语言实现发动机进口温度的信号采集、线性化、量纲转换、故障诊断与隔离等功能;在处理器2中采用C语言实现低压涡轮出口温度信号的采集、线性化、量纲转换、故障诊断与隔离等功能;在处理器3中采用C语言实现高压涡轮出口压力信号的采集、线性化、量纲转换、故障诊断与隔离等功能;在处理器4中采用C语言编程将油门杆参考信号转换为发动机的参考状态;在处理器5中采用C语言实现核心控制算法和一些简单的开关量输入、输出功能;在处理器6中采用C语言实现主燃油量小闭环控制;在处理器7中采用C语言实现加力燃油量小闭环控制;在处理器8中采用C语言实现尾喷管面积小闭环控制;上述处理器6、7、8中都内置一个定时间隔为T2(小闭环的控制步长)的高精度定制器。不同类型的发动机和控制模式对传感器、执行机构的要求各不相同,需要定制的处理器核的数目也就各不相同,需根据实际情况确定。(2), adopt C language in processor 1 to realize functions such as signal acquisition, linearization, dimension conversion, fault diagnosis and isolation of engine inlet temperature; Adopt C language in
(3)、同步串行总线由双向数据线DB和同步时钟线CLK组成,其中CLK信号由总线协议转换逻辑产生,周期为T3可以由用户配置。总线空闲时DB默认状态是高电平“1”,任何模块发送数据前首先将DB线拉为低电平“0”,并持续时间T4(T4>=10*T3)作为总线请求信号,同时告知其它模块总线将要传输数据。同步串行总线在任意时刻只能接受一个模块的数据发送请求,而其它未发送数据的模块都可以接收总线上的数据,总线上各个模块发送数据的顺序需预先设定。(3) The synchronous serial bus is composed of a bidirectional data line DB and a synchronous clock line CLK, wherein the CLK signal is generated by the bus protocol conversion logic, and the period T3 can be configured by the user. When the bus is idle, the default state of DB is high level "1". Before any module sends data, first pull the DB line to low level "0", and last for T4 (T4>=10*T3) as the bus request signal, and at the same time Inform other modules that the bus is about to transfer data. The synchronous serial bus can only accept the data sending request of one module at any time, while other modules that have not sent data can receive the data on the bus, and the order of sending data of each module on the bus needs to be set in advance.
(4)、采用硬件描述语言VHDL/Verilog,在FPGA内部实现超转保护逻辑。该逻辑实时监测发动机的高压压气机转速,当转速超过安全限制时,该逻辑模块按照预设的安全保护模式控制发动机远离安全转速边界。(4) The hardware description language VHDL/Verilog is adopted to implement the over-rotation protection logic inside the FPGA. The logic monitors the high-pressure compressor speed of the engine in real time. When the speed exceeds the safety limit, the logic module controls the engine to stay away from the safe speed limit according to the preset safety protection mode.
(5)、采用硬件描述语言VHDL/Verilog,在FPGA内部实现同步控制逻辑,该逻辑是一个可以配置的高精度定制器,通过同步控制信号线SC控制FPGA内部的n个处理器、超转保护逻辑,总线协议转换逻辑按照预定的时间间隔T1(主回路控制步长)同步运行。(5) Using the hardware description language VHDL/Verilog, the synchronous control logic is implemented inside the FPGA. This logic is a configurable high-precision customizer, which controls n processors inside the FPGA and overrun protection through the synchronous control signal line SC Logic, the bus protocol conversion logic operates synchronously according to the predetermined time interval T1 (main loop control step).
(6)、采用硬件描述语言VHDL/Verilog在FPGA、内部实现总线协议转换逻辑,该逻辑主要实现FPGA内部的串行同步总线DB和外部总线的协议转换,外部总线与发动机冗余控制通道、飞行控制系统通信。(6), using the hardware description language VHDL/Verilog to implement the bus protocol conversion logic inside the FPGA, this logic mainly realizes the protocol conversion between the serial synchronous bus DB inside the FPGA and the external bus, the external bus and the redundant control channel of the engine, the flight Control system communication.
(7)、在FPGA内部将上述定制的n个处理器模块、同步控制逻辑模块、超转保护逻辑模块和总线协议转换逻辑模块通过同步串行总线DB和同步时钟CLK互联,并为每个模块分配唯一的总线地址。(7), interconnect the above-mentioned customized n processor modules, synchronous control logic module, overrun protection logic module and bus protocol conversion logic module through synchronous serial bus DB and synchronous clock CLK in FPGA, and provide each module Assign a unique bus address.
实施例一:Embodiment one:
本实施例以某型涡喷发动机数字控制系统为例,附图2为系统框图,包括传感器、基于FPGA的片内分布式航空发动机电子控制器、执行机构、供油装置、油泵及作为被控对象的双轴涡轮喷气发动机。该发动机数字控制系统的输入参数包括:压气机进口温度T2、压力P2,低压压气机转速N1,低压压气机出口压力P2.5,高压压气机转速Nh,高压压气机出口压力P3,低压涡轮出口温度T5、压力P5,尾喷管液压作动筒位移Lp1,反映主燃油流量的位置信号Lp2,反映加力燃油流量的位置信号Lp3,油门杆位置输入。输出参数包括:主燃油量控制信号qmf,加力燃油量控制信号qm,faf,尾喷口面积控制信号A8。This embodiment takes a certain type of turbojet engine digital control system as an example. Accompanying drawing 2 is a system block diagram, including a sensor, an FPGA-based on-chip distributed aeroengine electronic controller, an actuator, a fuel supply device, an oil pump and a controlled engine. The object of the twin-spool turbojet engine. The input parameters of the engine digital control system include: compressor inlet temperature T2, pressure P2, low pressure compressor speed N1, low pressure compressor outlet pressure P2.5, high pressure compressor speed Nh, high pressure compressor outlet pressure P3, low pressure turbine outlet Temperature T5, pressure P5, tail nozzle hydraulic cylinder displacement Lp1, position signal Lp2 reflecting main fuel flow, position signal Lp3 reflecting afterburner fuel flow, throttle lever position input. Output parameters include: main fuel quantity control signal qmf, afterburner fuel quantity control signal qm, faf, tail nozzle area control signal A8.
附图2中的基于FPGA的片内分布式航空发动机电子控制器的详细结构如附图1所示,包括输入信号接口电路2、一片基于SRAM架构的FPGA及配套外围电路、输入信号接口电路3。其中输入信号接口电路2、输出信号接口电路3的设计方法,及发动机的控制模式、软件编程等都是控制系统技术人员熟知的技术领域,本实施例仅给出FPGA内部的分布式处理结构的设计过程及该控制器的控制方法。The detailed structure of the on-chip distributed aeroengine electronic controller based on FPGA in accompanying drawing 2 is as shown in accompanying drawing 1, comprises input
一种基于FPGA的片内分布式航空发动机电子控制器,其实施是包括以下步骤:A kind of on-chip distributed aeroengine electronic controller based on FPGA, its implementation comprises the following steps:
(1)、在FPGA内部嵌入n个处理器。(1) Embed n processors inside the FPGA.
本实施例选用的FPGA为Altera公司的基于SRAM架构的Cyclone II系列的EP2C35F672C6。基于该公司的FPGA的开发软件Quartus II和SOPC开发平台SOPCBulider,根据本实施例的双轴涡轮喷气发动机的控制系统需求,在EP2C35F672C6中嵌入了11个NIOS II处理器。NIOS II是一种嵌入式软核处理器,分为快速型、经济性和标准型。快速型追求最高的性能,经济型具有最低的资源占用,而标准型在性能和资源占用之间做了一个平衡。本实施例选用1个快速型的NIOS II作为核心处理器运行核心控制算法,3个标准型的NIOS II用于小闭环控制,7个经济型的NIOS II用于油门杆、压力、温度信号的采集与处理。这些处理器的功能分别是:The FPGA selected in this embodiment is the EP2C35F672C6 of the Cyclone II series based on the SRAM architecture of Altera Corporation. Based on the company's FPGA development software Quartus II and SOPC development platform SOPCBulider, according to the requirements of the control system of the biaxial turbojet engine of this embodiment, 11 NIOS II processors are embedded in EP2C35F672C6. NIOS II is an embedded soft-core processor, which is divided into fast type, economical type and standard type. The fast type pursues the highest performance, the economical type has the lowest resource usage, and the standard type balances performance and resource usage. In this embodiment, one fast NIOS II is used as the core processor to run the core control algorithm, three standard NIOS IIs are used for small closed-loop control, and seven economical NIOS IIs are used for throttle lever, pressure, and temperature signals. Collection and processing. The functions of these processors are:
经济型处理器1:该处理器执行压气机进口温度T2的信号采集、线性化、故障诊断、隔离、量纲转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8。Economical processor 1: This processor performs tasks such as signal acquisition, linearization, fault diagnosis, isolation, and dimension conversion of the compressor inlet temperature T2, and sends the collected effective data to the operating core through the synchronous serial bus DB Core processor 8 for control algorithm.
经济型处理器2:该处理器执行压气机进口压力P2的信号采集、线性化、故障诊断、隔离、量纲转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8。Economical processor 2: This processor performs tasks such as signal acquisition, linearization, fault diagnosis, isolation, and dimension conversion of the compressor inlet pressure P2, and sends the collected effective data to the operating core through the synchronous serial bus DB Core processor 8 for control algorithm.
经济型处理器3:该处理器执行低压压气机出口压力P2.5的信号采集、线性化、故障诊断、隔离、量纲转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8。Economical processor 3: This processor performs tasks such as signal acquisition, linearization, fault diagnosis, isolation, and dimension conversion of the outlet pressure P2.5 of the low-pressure compressor, and sends the collected effective data through the synchronous serial bus DB to the core processor 8 that runs the core control algorithm.
经济型处理器4:该处理器执行高压压气机出口压力P3的信号采集、线性化、故障诊断、隔离、量纲转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8。Economical processor 4: This processor performs tasks such as signal acquisition, linearization, fault diagnosis, isolation, and dimension conversion of the outlet pressure P3 of the high-pressure compressor, and sends the collected effective data to the operating system through the synchronous serial bus DB Core processor 8 for core control algorithm.
经济型处理器5:该处理器执行低压涡轮出口温度T5的信号采集、线性化、故障诊断、隔离、量纲转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8。Economical processor 5: This processor performs tasks such as signal acquisition, linearization, fault diagnosis, isolation, and dimension conversion of the low-pressure turbine outlet temperature T5, and sends the collected effective data to the operating core through the synchronous serial bus DB Core processor 8 for control algorithm.
经济型处理器6:该处理器执行低压涡轮出口压力P5的信号采集、线性化、故障诊断、隔离、量纲转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8.Economical processor 6: This processor performs tasks such as signal acquisition, linearization, fault diagnosis, isolation, and dimension conversion of the low-pressure turbine outlet pressure P5, and sends the collected effective data to the operating core through the synchronous serial bus DB The core processor of the control algorithm 8.
经济型处理器7:该处理器执行油门杆信号采集与转换等任务,并将采集到的有效数据通过同步串行总线DB发送到运行核心控制算法的核心处理器8。Economical processor 7: This processor performs tasks such as throttle lever signal acquisition and conversion, and sends the collected effective data to the core processor 8 that runs the core control algorithm through the synchronous serial bus DB.
核心处理器8:核心处理器8是一个快速型的NIOS II处理器,该处理器通过同步串行总线DB接收发动机温度、压力、转速信号(由附图1中的超转保护逻辑测量)和油门杆指令,按照预定的控制模式(PID控制算法、控制步长为20ms)计算输出主燃油量qm,f,加力燃油量qm,faf,尾喷口面积A8,并将这些数据发送到同步串行总线DB上。Core processor 8: core processor 8 is a fast type NIOS II processor, and this processor receives engine temperature, pressure, rotating speed signal (measured by the overrunning protection logic in accompanying drawing 1) and by synchronous serial bus DB Throttle lever command, calculate and output main fuel quantity q m, f , afterburner fuel quantity q m, faf , tail nozzle area A 8 according to the predetermined control mode (PID control algorithm, control step length is 20ms), and send these data to the synchronous serial bus DB.
标准型处理器9:该处理器在同步串行总线DB上接收由核心处理器8发出的主燃油流量指令qm,f作为参考输入,并采集表征主燃油泵流量的位移Lp2形成局部闭环控制(PID控制算法,控制步长为5ms),提高系统稳定性和动态品质。Standard processor 9: This processor receives the main fuel flow command q m, f issued by the core processor 8 on the synchronous serial bus DB as a reference input, and collects the displacement Lp2 representing the flow of the main fuel pump to form a local closed-loop control (PID control algorithm, control step size is 5ms), improve system stability and dynamic quality.
标准型处理器10:该处理器在同步串行总线DB上接收由核心处理器8发出的加力燃油流量指令qm,faf作为参考输入,并采集表征加力燃油泵流量的位移Lp3形成局部闭环控制(PID控制算法,控制步长为5ms),提高系统稳定性和动态品质。Standard processor 10: This processor receives the afterburner fuel flow command q m and faf issued by the core processor 8 on the synchronous serial bus DB as a reference input, and collects the displacement Lp3 representing the flow rate of the afterburner fuel pump to form a local Closed-loop control (PID control algorithm, control step size is 5ms), improving system stability and dynamic quality.
标准型处理器11:该处理器在同步串行总线DB上接收由核心处理器8发出的尾喷口面积控制指令A8作为参考输入,并采表征尾喷口面积的位移量Lp1形成局部闭环控制(PID控制算法,控制步长为5ms),提高系统稳定性和动态品质。Standard type processor 11: this processor receives on the synchronous serial bus DB the tail nozzle area control instruction A 8 that is sent by the core processor 8 as a reference input, and adopts the displacement Lp1 representing the tail nozzle area to form a local closed-loop control ( PID control algorithm, control step length is 5ms), improve system stability and dynamic quality.
(2)、定制同步串行总线接口(2), customized synchronous serial bus interface
如附图3所示的同步串行总线接口框图,包括总线终端控制器、接收FIFO、发送FIFO,两个FIFO的宽度为16位,深度为8。发送数据的帧格式附图4所示,数据校验采用简单的求和校验。总线终端控制器在发送数据时读取发送FIFO缓存的数据,并进行并/串转换、时钟信号边沿检测,在时钟信号CLK的下降沿将数据发送到总线DB上。总线终端控制器在接收数据时检测时钟信号CLK的边沿,并在CLK的上升沿读取数据总线DB上的数据,进行串/并转换后放入接收缓存FIFO。本模块采用硬件描述语言Verilog设计,设计过程是嵌入式系统技术人员熟知的技术领域,这里不做详细介绍。The synchronous serial bus interface block diagram shown in Figure 3 includes a bus terminal controller, a receiving FIFO, and a sending FIFO. The width of the two FIFOs is 16 bits, and the depth is 8. The frame format of the sent data is shown in Figure 4, and the data check adopts a simple sum check. When sending data, the bus terminal controller reads the data buffered in the sending FIFO, performs parallel/serial conversion, clock signal edge detection, and sends the data to the bus DB on the falling edge of the clock signal CLK. The bus terminal controller detects the edge of the clock signal CLK when receiving data, and reads the data on the data bus DB at the rising edge of CLK, performs serial/parallel conversion and puts it into the receiving buffer FIFO. This module is designed using the hardware description language Verilog. The design process is a technical field well-known to embedded system technicians, and will not be introduced in detail here.
(3)、定制超转保护逻辑(3), customized over-rotation protection logic
超转保护逻辑用于监测发动机的低压转子、高压转子转速Nl和Nh,其原理是采用系统高频时钟(50Mhz)对转速传感器发出的转速脉冲信号进行边沿检测,并测量两个相同边沿的之间的时间间隔,进而得到发动机转速。当该模块发现高压转子转速Nh超过预设的安全限制时,按照预定的安全模式控制发动机远离转速安全边界。本模块采用硬件描述语言Verilog设计,设计过程是嵌入式系统技术人员熟知的技术领域,这里不做详细介绍。The over-rotation protection logic is used to monitor the low-pressure rotor, high-pressure rotor speed Nl and Nh of the engine. The principle is to use the system high-frequency clock (50Mhz) to detect the edge of the speed pulse signal sent by the speed sensor, and measure the difference between the two same edges. The time interval between, and then get the engine speed. When the module finds that the high-pressure rotor speed Nh exceeds the preset safety limit, it controls the engine to stay away from the speed safety boundary according to a predetermined safety mode. This module is designed using the hardware description language Verilog. The design process is a technical field well-known to embedded system technicians, and will not be introduced in detail here.
(4)、定制同步控制逻辑(4), customized synchronous control logic
同步控制逻辑是一个可以通过同步串行总线(DB)配置的高精度定时器,该逻辑对系统时钟(50Mhz)进行分频,得到控制系统的控制步长20ms。每隔20ms同步控制逻辑通过同步控制信号线SC向11个处理器模块、超转保护逻辑模块、总线协议转换逻辑模块发送一个同步脉冲信号控制各个模块的同步工作。本模块采用硬件描述语言Verilog设计,设计过程是嵌入式系统技术人员熟知的技术领域,这里不做详细介绍。The synchronous control logic is a high-precision timer that can be configured through the synchronous serial bus (DB). This logic divides the frequency of the system clock (50Mhz) to obtain a control step of 20ms for the control system. Every 20ms, the synchronous control logic sends a synchronous pulse signal to the 11 processor modules, the overrun protection logic module, and the bus protocol conversion logic module through the synchronous control signal line SC to control the synchronous work of each module. This module is designed using the hardware description language Verilog. The design process is a technical field well-known to embedded system technicians, and will not be introduced in detail here.
(5)、定制总线转换逻辑(5), custom bus conversion logic
如附图5所示的总线协议转换逻辑模块的结构框图,该模块实现内部串行同步总线到外部总线UART的协议转换.本模块采用硬件描述语言Verilog设计,设计过程是嵌入式系统技术人员熟知的技术领域,这里不做详细介绍.The structural block diagram of the bus protocol conversion logic module as shown in accompanying drawing 5, this module realizes the protocol conversion from the internal serial synchronous bus to the external bus UART. This module adopts the hardware description language Verilog design, and the design process is familiar to embedded system technicians technical field, which will not be described in detail here.
(6)、片内系统互连(6), on-chip system interconnection
最后,将上述定制的11个处理器模块、超转保护逻辑模块、同步控制逻辑模块、总线协议转换逻辑模块通过同步串行总线DB和同步时钟CLK互联,并为每个模块分配唯一的总线地址,确定各个模块在总线上发送数据的顺序,依次是:处理器1,2,3,4,5,6,7,超转保护逻辑发送转速信息,总线协议转换逻辑发送大气数据信息,处理器8发送控制量。Finally, interconnect the above-mentioned 11 customized processor modules, overrun protection logic modules, synchronous control logic modules, and bus protocol conversion logic modules through the synchronous serial bus DB and the synchronous clock CLK, and assign a unique bus address to each module , to determine the order in which each module sends data on the bus, in order:
一种基于FPGA的片内分布式航空发动机电子控制器的控制方法,对照附图6,其实施是包括以下步骤:A control method based on FPGA-based distributed aero-engine electronic controller on-chip, with reference to accompanying drawing 6, its implementation comprises the following steps:
(1)同步控制逻辑按照预设的时间间隔20ms重复产生有效的同步控制信号SC;(1) The synchronous control logic repeatedly generates an effective synchronous control signal SC according to a preset time interval of 20 ms;
(2)检测到有效的同步控制信号SC后,经济型处理器7完成油门杆信号的采集与处理任务;(2) After detecting an effective synchronous control signal SC, the economical processor 7 completes the task of collecting and processing the throttle lever signal;
(3)检测到有效的同步控制信号SC后,经济型处理器1、2、3、4、5、6分别完成发动机各个截面温度、压力信号的采集、线性化、量纲转换、故障诊断与隔离等任务;(3) After detecting the effective synchronous control signal SC, the
(4)检测到有效的同步控制信号SC后,超转保护逻辑模块测量当前发动机转速;(4) After detecting an effective synchronous control signal SC, the over-rotation protection logic module measures the current engine speed;
(5)检测到有效的同步控制信号SC后,总线协议转换逻辑从飞行控制系统获得大气数据信;(5) After detecting the effective synchronous control signal SC, the bus protocol conversion logic obtains the air data signal from the flight control system;
(6)上述采集到的油门杆、压力、温度、转速、大气数据信息按照预设的顺序通过同步串行总线DB发送到负责核心控制算法的核心型处理器8。(6) The throttle lever, pressure, temperature, rotational speed, and air data information collected above are sent to the core processor 8 responsible for the core control algorithm through the synchronous serial bus DB in a preset order.
(7)核心型处理器8根据当前发动机的转速、温度、压力、大气数据信息及油门杆参考指令,按照预定的控制模式核计算发动机的主燃油量、加力燃油量和尾喷口面积等输出控制量,并将这些输出控制量发送到同步串行总线DB上;(7) The core processor 8 calculates the output of the engine's main fuel volume, afterburner fuel volume, and tail nozzle area according to the predetermined control mode according to the current engine speed, temperature, pressure, atmospheric data information and reference instructions of the throttle lever control quantity, and send these output control quantities to the synchronous serial bus DB;
(8)用于小闭环控制的标准型处理器9、10、11通过同步串行总线DB接收核心处理器8输出的控制量,按照预定的控制模式分别完成对主燃油流量、加力燃油流量、尾喷管面积的小闭环控制任务。(8) The standard processors 9, 10, and 11 used for small closed-loop control receive the control quantity output by the core processor 8 through the synchronous serial bus DB, and respectively complete the control of the main fuel flow and the afterburner fuel flow according to the predetermined control mode , The small closed-loop control task of the tail nozzle area.
上述的1、2、3、4、5、6、7、8是一个完整控制步长的控制步骤,每当同步控制信号SC有效时,控制器都按照1、2、3、4、5、6、7、8描述的步骤完成控制任务。The above 1, 2, 3, 4, 5, 6, 7, and 8 are control steps for a complete control step. Whenever the synchronous control signal SC is valid, the controller will follow the steps of 1, 2, 3, 4, 5, The steps described in 6, 7, and 8 complete the control task.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102130719A CN101705872B (en) | 2009-11-10 | 2009-11-10 | FPGA-based distributed aeroengine electronic controller in chip and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102130719A CN101705872B (en) | 2009-11-10 | 2009-11-10 | FPGA-based distributed aeroengine electronic controller in chip and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101705872A true CN101705872A (en) | 2010-05-12 |
CN101705872B CN101705872B (en) | 2011-11-30 |
Family
ID=42376122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102130719A Expired - Fee Related CN101705872B (en) | 2009-11-10 | 2009-11-10 | FPGA-based distributed aeroengine electronic controller in chip and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101705872B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103075255A (en) * | 2013-01-10 | 2013-05-01 | 哈尔滨东安发动机(集团)有限公司 | Start control system for aircraft engine |
CN103850802A (en) * | 2012-12-04 | 2014-06-11 | 中航商用航空发动机有限责任公司 | TTP/C (time-triggered protocol communication) bus-based electronic controller and FADEC (full authority digital engine control) system |
CN103869791A (en) * | 2014-03-27 | 2014-06-18 | 西安航天动力试验技术研究所 | Engine test collecting-distributing type control system and method |
CN104219183A (en) * | 2013-06-05 | 2014-12-17 | 中国石油天然气集团公司 | Downhole modem based on Nios soft core and method |
CN104749967A (en) * | 2015-04-08 | 2015-07-01 | 南京航空航天大学 | Quick prototype architecture of aero-engine control unit |
CN105298665A (en) * | 2015-10-22 | 2016-02-03 | 天津大学 | Redundant type electronic control unit for aviation piston-type engine |
CN105988385A (en) * | 2015-02-12 | 2016-10-05 | 中航商用航空发动机有限责任公司 | Engine electronic controller |
CN106444425A (en) * | 2016-10-24 | 2017-02-22 | 南京航空航天大学 | Design method of DCS controlled TTP/C bus controller catering to aeroengine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10248430B2 (en) | 2016-12-16 | 2019-04-02 | Hamilton Sundstrand Corporation | Runtime reconfigurable dissimilar processing platform |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201526375U (en) * | 2009-11-10 | 2010-07-14 | 南京航空航天大学 | On-chip distributed aeroengine electronic controller based on FPGA |
-
2009
- 2009-11-10 CN CN2009102130719A patent/CN101705872B/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103850802A (en) * | 2012-12-04 | 2014-06-11 | 中航商用航空发动机有限责任公司 | TTP/C (time-triggered protocol communication) bus-based electronic controller and FADEC (full authority digital engine control) system |
CN103850802B (en) * | 2012-12-04 | 2016-04-20 | 中航商用航空发动机有限责任公司 | Based on electronic controller and the FADEC system of time triggered agreement TTP/C bus |
CN103075255B (en) * | 2013-01-10 | 2015-12-09 | 哈尔滨东安发动机(集团)有限公司 | Start control system for aircraft engine |
CN103075255A (en) * | 2013-01-10 | 2013-05-01 | 哈尔滨东安发动机(集团)有限公司 | Start control system for aircraft engine |
CN104219183B (en) * | 2013-06-05 | 2018-08-14 | 中国石油天然气集团公司 | A kind of downhole modem and method based on the soft cores of Nios |
CN104219183A (en) * | 2013-06-05 | 2014-12-17 | 中国石油天然气集团公司 | Downhole modem based on Nios soft core and method |
CN103869791A (en) * | 2014-03-27 | 2014-06-18 | 西安航天动力试验技术研究所 | Engine test collecting-distributing type control system and method |
CN103869791B (en) * | 2014-03-27 | 2017-03-01 | 西安航天动力试验技术研究所 | A kind of engine test collecting and distributing control system and method |
CN105988385A (en) * | 2015-02-12 | 2016-10-05 | 中航商用航空发动机有限责任公司 | Engine electronic controller |
CN105988385B (en) * | 2015-02-12 | 2018-10-16 | 中国航发商用航空发动机有限责任公司 | Engine electronic control |
CN104749967A (en) * | 2015-04-08 | 2015-07-01 | 南京航空航天大学 | Quick prototype architecture of aero-engine control unit |
CN105298665A (en) * | 2015-10-22 | 2016-02-03 | 天津大学 | Redundant type electronic control unit for aviation piston-type engine |
CN106444425A (en) * | 2016-10-24 | 2017-02-22 | 南京航空航天大学 | Design method of DCS controlled TTP/C bus controller catering to aeroengine |
CN106444425B (en) * | 2016-10-24 | 2019-12-24 | 南京航空航天大学 | Design method of TTP/C bus controller for distributed control of aeroengine |
Also Published As
Publication number | Publication date |
---|---|
CN101705872B (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101705872B (en) | FPGA-based distributed aeroengine electronic controller in chip and control method | |
Borer et al. | Comparison of aero-propulsive performance predictions for distributed propulsion configurations | |
CN100442016C (en) | An Integrated Integrated Navigation Computer Based on Double DSP | |
CN103412990B (en) | A kind of multi-level collaborative low-power design method | |
CN103699035B (en) | Signal matching method and signal matching device for vehicle engine hardware-in-loop simulation process | |
CN201526375U (en) | On-chip distributed aeroengine electronic controller based on FPGA | |
CN109344427B (en) | Simple trajectory correction missile-borne computer system based on SoC FPGA and calculating method | |
CN108052018A (en) | A kind of Guidance And Control Assembly light-weight technologg method and Guidance And Control Assembly | |
CN111913558A (en) | Implementation of a low-power microcontroller based on RISC-V instruction set | |
CN110471308A (en) | Aeroengine distributed control system simulation model modeling method based on TrueTime | |
CN110414089A (en) | The simulated prediction method of vehicle PEMS discharge based on Engine Universal Characteristics | |
CN101719177A (en) | Method and device for system modeling and simulation | |
Zong-ling et al. | The design of lightweight and multi parallel CNN accelerator based on FPGA | |
CN110362960A (en) | The aero-engine system identifying method of Expansion Model Based on Equilibrium Manifold is converted into based on more born of the same parents | |
Liu et al. | A heterogeneous architecture for evaluating real-time one-dimensional computational fluid dynamics on FPGAs | |
Wu et al. | Marine Diesel Engine Fault Detection Based on Xilinx ZYNQ SoC | |
CN101620643B (en) | Design method of architecture simulating system based on FPGA | |
CN105046014A (en) | AMS based asynchronous sequential circuit design method | |
CN112862080B (en) | Hardware computing method of attention mechanism of Efficient Net | |
CN205315053U (en) | Gas turbine generator's rotational speed controlling means | |
CN115421869A (en) | Hardware-in-the-loop simulation method and device based on data interaction event-driven | |
CN102777277A (en) | Electronic control diesel engine oil mass control development system and method based on MATLAB (matrix laboratory) algorithm output | |
CN107784188A (en) | A kind of pressure booster blower impeller design optimization method based on MATLAB | |
Huang et al. | FPGA verification methodology for SiSoC based SoC design | |
Song et al. | Parametric design of turbine blades based on feature modeling. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111130 Termination date: 20151110 |
|
EXPY | Termination of patent right or utility model |