CN101679890A - 用于燃料气深脱硫的方法、系统和装置 - Google Patents
用于燃料气深脱硫的方法、系统和装置 Download PDFInfo
- Publication number
- CN101679890A CN101679890A CN200880020526A CN200880020526A CN101679890A CN 101679890 A CN101679890 A CN 101679890A CN 200880020526 A CN200880020526 A CN 200880020526A CN 200880020526 A CN200880020526 A CN 200880020526A CN 101679890 A CN101679890 A CN 101679890A
- Authority
- CN
- China
- Prior art keywords
- gas
- metal
- oxidation
- reduction
- based sorbents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0233—Compounds of Cu, Ag, Au
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28095—Shape or type of pores, voids, channels, ducts
- B01J20/28097—Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/345—Regenerating or reactivating using a particular desorbing compound or mixture
- B01J20/3458—Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3483—Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/32—Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/112—Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/306—Organic sulfur compounds, e.g. mercaptans
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/308—Carbonoxysulfide COS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40083—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
- B01D2259/40088—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
- B01D2259/4009—Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/048—Composition of the impurity the impurity being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0485—Composition of the impurity the impurity being a sulfur compound
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Industrial Gases (AREA)
Abstract
能够通过使热燃料气经过在中孔基质中布置的金属基吸附剂使这些热气体脱硫的高效可再生方法、系统和装置。这种技术保护Fischer-Tropsch合成催化剂和其他硫敏感催化剂,不急剧冷却燃料气。本发明可单独用于一种方法或与其他分离方法一起利用,并且允许此气体中的总硫减少到小于500ppb,在某些情况下低至50ppb。
Description
关于在联邦资助的研究和开发下产生本发明的权利的声明
[0001]本发明是根据美国能源部授予的合同DE-AC0576RLO1830在政府支持下产生。政府拥有本发明的某些权利。
发明背景
[0002]由煤或生物质气化产生的合成气有很多潜在应用,包括制造烃运输燃料、化学品(包括氢)和电力。大多数合成气包含可能使其不适合各种最终用途的杂质。含硫分子,主要是H2S和COS,是尤其令人困扰的催化剂毒物,为了制造燃料和化学品必须除到ppb水平。虽然有一些除去这些硫物质的技术方法,但这些方法一般倾向于相当耗费,需要温度变动,并且在很多情况下要替补消耗的吸附剂。由于制造燃料和化学品的催化过程一般在225-300℃操作,因此需要冷却合成气随后重新加热的过程能量效率低。能够在或略高于合成步骤温度将硫气除到50ppb水平的方法非常优选。
[0003]合成气组成为几种参数的函数,包括气化器类型、操作条件和燃料源。在煤的情况下,氧化锌与可再生下流精制床的组合为一种有前途的方法。对于一般产生小于100ppm硫气体的生物质,独立的可再生硫吸附剂可提供一种有吸引力的手段。在过去,研发可再生的金属吸附剂一般由于再生过程中强烈的金属熔结或聚集倾向处于困境。这导致表面积损失,因此损失硫吸附容量。因此,需要允许燃料气深(ppb)脱硫的方法、系统和装置。也需要可再生的脱硫系统。还需要在热温度进行有效脱硫的脱硫系统。本发明提供了满足这些需要的方法。
[0004]本发明的其他优点和新的特征将在以下阐述,并且很容易通过本文阐述的说明和示范明显看出。因此,本发明的以下描述应视作为本发明的说明,不以任何方式作为限制。
发明概述
[0005]本发明为能够通过使热燃料气经过在中孔基质中布置的金属基吸附剂使这些热气体深脱硫的高效可再生方法、系统和装置。这种技术保护Fischer-Tropsch合成催化剂和其他硫敏感催化剂,不急剧冷却燃料气,并且不在再生过程中使金属吸附剂熔结或附聚。这允许设计更加能量有效的深脱硫方法。所述系统的特征在于结合到多孔基质(特别是中孔硅酸盐,如SBA-16)的活性金属基吸附剂,例如过渡金属,如Cr、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、Pt、Au及其混合物和合金。
[0006]这些装置使得在工艺过程中具有20至900℃温度的热燃料气能够通过这些吸附剂实现这些气体的脱硫达到ppb水平,燃料气如天然气、合成气、H2、CO、烃气体、烃气体的混合物和烃气体与惰性气体的混合物。这些装置也允许这些物质在使用后通过一种循环“氧化-还原”方法再生,所述方法利用在100℃至900℃温度的各种组合的H2、CO、O2、N2、空气、惰性气体和蒸汽。这些方法可单独用于一种方法或与其他分离方法一起利用。对于高硫煤气净化,可使纳米结构的金属基吸附剂床结合到能够除硫到ppm水平的分离过程(如氧化锌和相关的氧化物吸附剂)。然后,本发明通过将硫除到ppb水平精制此气流。本发明允许此气体中的总硫减少到小于100ppb,在某些情况下低至10ppb。
[0007]本发明利用在能够用于热燃料气脱硫的控制纳米孔基质上分散的稳定化活性金属吸附剂颗粒。在本发明的一些实施方案中,金属基吸附剂包含相对于基质0.1至100%重量的金属。可作为吸附剂的各种类型的金属的实例包括Cr、Mn、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Ag、Pt、Au及其合金。在此组中,在利用选自Ni、Cu、Fe、Ag、Co及其合金的过渡金属的系统中已显示具体的成功。
[0008]各种类型基质的实例包括二氧化硅基物质(包括任何形式的中孔二氧化硅,任何形式的热解法二氧化硅和任何形式的沸石)。这些类型物质可以多种形式组合,并且可用于处理多种气体,包括但不限于天然气、合成气(包括煤和生物质合成气两者)、H2、CO和其他烃气体、其混合物及其与惰性气体的混合物。可捕获的物质类型的实例包括但不限于H2S、COS、硫醇、硫醚、二硫化物和噻吩。
[0009]这些金属-中孔物质可加入其中可有效处理具有环境温度(20℃)至900℃温度的热燃料气的系统中。在本发明的一个实施方案中,此温度优选为100℃至700℃,更优选150℃至500℃。在此处理过程中已填充这些吸附剂后,可通过“氧化-还原”处理的组合经一系列循环再生这些吸附剂。此再生步骤一般在1至10个循环进行,优选2至5个循环。此“氧化-还原”再生过程可用任何能够使金属硫化物氧化的气流(如O2及其与惰性气体和蒸汽的混合物)和任何能够使金属氧化物还原的气流(如H2、CO、合成气及其与惰性气体和蒸汽的混合物)进行。此结构的实例包括其中氧化气体为2%O2(在N2中)的那些结构。
[0010]本发明能够使热气体深脱硫。所述中孔结构防止金属颗粒附聚和孔堵塞,并且保持达到活性金属部位的通路。这些纳米结构的吸附剂可使热燃料气的硫浓度降低到充分低于50ppb,并且可用组合的氧化和还原过程重复再生。
[0011]前面摘要的目的是使美国专利商标局和公众(尤其是不熟悉专利或法律术语或用语的本领域的科学家、工程师和专业人员)一般能够从粗略阅读快速确定本申请技术内容的性质和本质。摘要既不限定由权利要求衡量的本申请的发明,也不以任何方式限制本发明的范围。
[0012]本发明的不同优点和新的特征在本文描述,并且通过以下详述对本领域的技术人员将变得更加明显。在前面和以下描述中本人只通过实施本发明涵盖的最佳方式的说明展示和描述本发明的优选实施方案。应认识到,可在不脱离本发明下在不同的方面对本发明作出修改。因此,以后阐述的优选实施方案的附图和描述应本质上认为是说明性,而不为限制性。
附图简述
[0013]图1A和1B为本发明的优选实施方案的示意图。
[0014]图1C为图1A和1B中所示本发明的优选实施方案的TEM视图。
[0015]图2A为现有技术脱硫方法的示意图。
[0016]图2B为本发明的一个实施方案的示意图。
[0017]图3为显示本发明的一个实施方案的除硫能力的标绘图。
[0018]图4为显示对本发明的一个实施方案的试验结果的汇总的标绘图。
[0019]图5为显示一个再生循环的图解。
[0020]图6为显示不同实施方案和物质的试验结果的表。
[0021]图7为显示对本发明的一个实施方案的试验结果的图解。
[0022]图8为显示对本发明的第二实施方案的试验结果的图解。
发明详述
[0023]以下描述包括本发明的一个实施方案的优选最佳方式。从本发明详述明显看出,本发明不限于这些举例说明的实施方案,本发明也包括多种改进和改进的实施方案。因此,本详述应被视作为说明性而非限制。尽管本发明容许有不同的修改和供选结构,但应了解,没有意向使本发明限于公开的具体形式,相反,本发明覆盖落在权利要求限定的本发明精神和范围内的所有修改、供选结构及其等同。
[0024]图1-8显示本发明的多种实施方案。首先参考图1A和1B,图1A和1B显示本发明的一个实施方案的示意图。在第一优选的实施方案中描述一种可再生的硫气吸附剂,所述吸附剂一般可用于净化气化器得到的用于合成应用的合成气。在本发明的优选实施方案中,在纳米孔材料内利用金属,如镍(Ni)或铜(Cu)。此纳米孔材料允许表面化学吸附胜过本体硫化物生成,并能够达到50ppb最高残余硫量。利用金属基吸硫剂的现有尝试限制于消耗吸附剂,这主要是由于金属强烈倾向于在再生过程中熔结或聚集。此熔结或聚集过程导致表面积和硫吸附剂容量的损失。
[0025]此实施方案显示其中包含小金属颗粒(包括Ni-Cu合金)并且在纳米孔二氧化硅结构内使小金属颗粒稳定的独特金属基吸附剂结构和应用。隔离和稳定小金属颗粒允许以最小熔结和容量损失通过多个循环再生完全负载的吸附剂。在图1所示的实施方案中,将镍金属选择为在三维立方孔结构中孔二氧化硅(SBA-16)内负载的活性吸附剂物质。除了提供高表面积和极佳的化学惰性外,SBA 16也包括在通道交叉处具有相对较大孔径(5nm)的独特三维互连通道结构(~3nm孔径)。填入SBA-16通道交叉处的镍颗粒由于3nm小的连通孔径受到约束。
[0026]SBA-16的结构防止Ni颗粒熔结,并允许含硫分子由扩散通过3维互连孔结构容易达到Ni颗粒。虽然本文描述SBA-16,但应清楚地了解,本发明不限于此,在本发明的精神和范围内也可利用各种其他类型的中孔材料。在此实施方案中,通过用镍盐溶液浸渍二氧化硅载体(16.6%重量),随后干燥,空气氧化(煅烧),并现场还原将镍引入。虽然描述这种制备方法,但应清楚地了解,本发明不限于此,可根据具体用户的相应要求和需要以不同方式体现本发明。图1C提供在SBA-16中含16.6%重量Ni的新鲜硫吸附剂的透射电子显微(TEM)图像。
[0027]在使用中,热的燃料气流(如合成气)通过这些吸附剂。现在参考图2A和2B,附图显示现有技术方法的示意图2A和本发明方法的一个实施方案的示意图2B。首先参考图2A,图2A显示用Rectisol方法从合成气除硫的高级流程图。此方法需要气流温度变动,以允许用冷甲醇在-40℃除硫。由于为了升高和降低气体温度以便脱硫必须完成变温,因此这种方法能量效率低。
[0028]图2B显示本发明方法的一个实施方案的高级流程图,其中从热合成气深除硫的高级流程图使用ZnO和负载NiCu的SBA-16复合吸附剂。此方法显示在350℃(ZnO基床)和300℃(负载NiCu的SBA-16床)除硫。吸附剂再生在650℃(ZnO基床,利用空气/N2)和500℃(负载NiCu的SBA-16床,用空气/N2和纯合成气/N2交替处理)。再生期间,来自ZnO床和来自NiCu-SBA-16床氧化处理的废气合并用于产硫。在还原处理期间来自NiCu-SBA-16床的废气将通过废气处理系统,以氧化还原剂并吸收硫。此废气流也可与主废气流合并用于产硫。
[0029]在一个实例中,煤气深脱硫用含10ppm H2S的合成气进行(代表后ZnO床),并在处理气中观察100ppb H2S之前达到0.75%重量硫容量。对硫:Ni原子比粗略计算证明,可通过在Ni表面上化学吸附解释H2S除去(容量~1.0%重量,假定Ni2S表面化学计量)。因此,本体硫化镍生成未必显著有助于总硫容量。此反应的结果显示于图3中。
[0030]图4显示对于Ni-SBA-16吸附剂通过5个循环的试验结果的汇总。第2个循环得到最高硫容量,这可能是由于金属的再分布。利用纯合成气(14%CO2,38%H2,48%CO)的第三循环得到比利用纯氢气时更低的随后容量。在第4循环和第5循环达到0.68%重量硫容量稳态性能水平。虽然此容量值显得有些低,但作为将硫气体从3ppm减少到50ppb需要的可再生防护床,并且对于在我们的试验中的流速,再生循环之间的时间为约100小时。对于将高硫煤气从1000ppm减少到3ppm的ZnO基吸附剂,再生循环之间的时间为约20小时。因此,在集成的可再生床中,此Ni-SBA-16吸附剂与ZnO的相对重量为约1比5。
[0031]在使用后,通过氧化还原循环序列进行硫化Ni-SBA-16的再生。在这些循环中,氧化气体为10%在Ar中的空气,还原气体为纯H2。在再生过程中由质谱监测废气指示在氧化和还原序列下SO2均为主要硫物质。此“氧化-还原”过程一般重复5次。在此过程中发生多种反应:这些反应包括:
氧化:Ni2S+2O2=2NiO+SO2 (2)
2Ni2S+5O2=2NiSO4+2NiO (3)
2NiO+2SO2+O2=2NiSO4 (4)
2Ni(本体)+O2=2NiO(本体) (5)
还原:NiSO4+H2=NiO+H2O+SO2 (6)
2NiSO4+6H2=Ni2S+SO2+6H2O (7)
NiO(本体和表面)+H2=Ni(本体和表面)+H2O (8)
3H2+SO2=H2S+2H2O (9)
H2S+2Ni=Ni2S+H2 (10)
在氧化步骤期间,吸附的硫和任何非硫化的镍均被氧化。氧化的硫部分作为SO2释放,但一些硫酸镍通过表面Ni2S直接氧化或在氧存在下SO2与NiO的后续化合反应保留。在后续还原步骤期间,使硫酸镍转化成Ni、SO2和水与硫化镍,硫化镍可通过直接还原或在还原的Ni部位通过中间体H2S再吸附产生。在吸附剂床下游未观察到元素硫。以上反应方案需要数个氧化还原循环使所用的吸附剂完全再生。总的说来,此氧化-还原再生比简单还原再生更有效,因为所有的反应均在热力学上有利。在图5中显示这些反应的标绘图。
[0032]图6显示不同物质的实例和比较。空白试验用SBA-16进行,没有任何镍。未观察到硫除去。负载于市售热解法SiO2上的Ni显示一些可再生硫容量。然而,此容量低,因为存在大Ni颗粒,并且Ni颗粒很容易在再生期间附聚和生长。在不同中孔SiO2(二维六角形SBA-15)内负载的镍给予很高的第一循环除硫容量(3%重量)。然而,吸附剂不能用“氧化-还原”方法再生。TEM分析证明镍作为很细的颗粒载入六角形通道。然而,在吸附和再生后,发现镍颗粒已迁出中孔结构并熔结。也合成并试验用γ-Al2O3作为载体的Ni吸附剂。这种吸附剂得到不可再生的1.5%重量容量。然而,SBA-16的立方中孔结构似乎提供用于保留小Ni颗粒的3维框架,这种框架被认为在此应用中最有效。然而,此结果不是要穷举本发明的所有不同的实施方案。除了Ni外,对于具体的优点也可使用其他类型物质。
[0033]Ni在SBA-16中的性能可通过将少量铜加到镍进一步改善。镍和铜形成合金,虽然有证据表明合金表面倾向于在还原条件下富集铜。加铜提高Ni基吸附剂的还原性。因此,稀释的H2或合成气可用于利用Ni-Cu的还原再生步骤,而以前发现利用Ni需要纯氢,这显著增加操作成本。另外,纯氢一般不能在气化器合成设备得到,除非有意制备氢。在Ni-Cu合金中铜的表面富集提供另外的益处,因为已知显著降低Ni甲烷化活性。
[0034]在SBA-16中含1.6%重量Cu和15.0%重量Ni的吸附剂在以下试验条件下的除硫-再生性能显示于图7中。从热煤合成气除硫使用1.6%重量Cu和15.0%重量Ni掺杂的SBA-16吸附剂。试验条件:T=300℃;煤气组成:23%H2,29%CO,8%CO2,30%H2O,10%He,10ppm H2S;流速:12,000hr-1GHSV。再生条件:在500℃四个“氧化-还原”处理。氧化在24,000hr-1GHSV在Ar中的10%空气中。还原在24,000hr-1GHSV在Ar中的2%H2中(对于脱硫循环1至5),和在24,000hr-1GHSV在Ar中的5%无H2O且无硫的合成气中(对于脱硫循环6至8)。在氧化处理和还原处理之间用Ar吹扫3分钟。
[0035]这些结果证明,通过8个脱硫循环保持约0.75%重量硫的稳定穿透容量,很类似于用纯镍吸附剂显示的容量。再生在500℃用2%H2(对于循环1至5)和5%纯合成气(对于循环6至8)作为还原气体,用10%空气作为氧化气体进行。每次再生进行四个氧化还原处理。用新鲜Ni-Cu-SBA-16产生甲烷为0.16%摩尔,而对于经再生的无铜的镍吸附剂则为0.7%摩尔。在除硫期间没有观察到经处理合成气中CO、CO2和H2浓度的变化。同样评价纯Cu-SBA-16的除硫效率。达到高初始硫容量(0.8%重量),非常类似于Ni和Ni-Cu样品,但是,尽管SBA-16有限制孔结构,但在再生后容量减小到小于0.2%,表明金属Cu熔结。
[0036]然后试验Ni-Cu-SBA-16吸附剂(15%重量Ni,1.6%重量Cu)对从生物质气化器模拟的合成气的脱硫。试验条件:T=300℃;生物质气体组成:18%H2,12%CO,10%CO2,50%H2O,4%He,36ppmH2S;流速:12,000hr-1GHSV。再生条件:在500℃四个“氧化-还原”处理。氧化在14,000hr-1GHSV的空气中。还原在14,000hr-1GHSV的纯干燥合成气中。在氧化处理和还原处理之间用Ar吹扫3分钟。使用生物质基合成气的硫容量显著高于使用煤基合成气,为2.3%重量,约增加3倍。用硫化羰作为硫气也得到类似吸收容量。这是一个很积极的结果,困为例如氧化锌的吸附剂除去COS不如除去H2S有效。进料中较高的硫浓度可有助于这些较高容量(吸收容量随H2S分压而增加),但另外较高蒸汽浓度和较低CO浓度也可有助于较佳的性能。在此吸收容量,不能简单地由表面吸附机制解释除硫,而是必然引起硫化镍本体生成,这通过载硫吸附剂的XRD分析清楚地观察到。经多个再生循环的性能在图8中给出,图8显示氧化-还原再生方法用本体金属硫化物同样有效。
[0037]已发现简化的“氧化-还原”方法与多循环方法一样有效。此方法只需要两个步骤:在700℃在空气中氧化20小时,在500℃在还原气体中还原4小时,例如在稀释或未稀释的纯合成气流中。在700℃,NiSO4和CuSO4不稳定,它们分成成金属氧化物和SO2。因此,吸附剂上几乎所有的硫可在此步骤期间除去。这种新方法可很容易与同样需要ZnS高温(~700℃)氧化的ZnO基吸附剂的再生方法结合。在此再生方法中发生的主要反应包括:
氧化(700℃):NixS+(1+x/2)O2=xNiO+SO2 (11)
CuxS+(1+x/2)O2=xCuO+SO2 (12)
还原(500℃):NiO+H2=Ni+H2O (13)
CuO+H2=Cu+H2O (14)
在上述镍和铜负载结构中,在SBA-16的中孔结构内保持显著部分的空隙。这暗示在材料内可能有较高金属负载,从而提供增加硫吸附容量的手段。在较高容量,可将Ni-Cu-SBA-16吸附剂作为独立装置操作,而不需要上游氧化锌床。
[0038]概括地讲,通过在三维中孔结构二氧化硅SBA-16中捕获Ni和Ni-Cu合金纳米颗粒,我们研究出一类金属基吸附剂,此类吸附剂可从煤或生物质的气化器产生合成气除硫到小于50ppb水平。似乎组合发生硫化学吸附和(在较高吸收)本体硫化物生成。序列氧化-还原处理可有效再生负载硫的吸附剂。与基于环境或较低温度溶剂基净化系统的现有技术比较,这种基于固体吸附剂的方法可提供经济的优点。利用可包含数千ppm硫的基于煤的合成气,这些吸附剂可与较高容量氧化锌吸附剂组合使用,从而提供由单独氧化锌不能提供的必需的亚ppm精制能力。利用一般可包含30-80ppm硫气的基于生物质的合成气,这些吸附剂可形成亚ppm独立脱硫系统的基础。
[0039]虽然已显示和描述本发明的不同优选实施方案,但应清楚地了解,本发明不限于此,可在以下权利要求的范围内以不同方式实施体现本发明。从前面描述显而易见,可在不脱离以下权利要求限定的本发明的精神和范围下作出各种变化。
Claims (10)
1.一种用于热燃料气深脱硫的系统,所述系统的特征在于在多孔基质上分散的活性金属基吸附剂。
2.权利要求1的系统,其中所述金属基吸附剂包含相对于基质0.1至100%重量的金属。
3.权利要求1的系统,其中所述金属基吸附剂包含选自Cr、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、Pt、Au及其合金的过渡金属。
4.权利要求1的系统,其中所述二氧化硅基物质为中孔二氧化硅。
5.权利要求1的系统,其中所述金属基吸附剂能够通过“氧化-还原”处理的组合再生。
6.一种用于使热燃料气脱硫的方法,所述方法的特征在于使热燃料气通过在多孔基质上分散的活性金属基吸附剂的步骤。
7.权利要求6的方法,其中所述热燃料气包括天然气、合成气、H2、CO、烃气体、烃气体的混合物和烃气体与惰性气体的混合物,其中所述热燃料气具有20至900℃的温度。
8.权利要求6的方法,所述方法进一步包括使所述金属基吸附剂再生的步骤。
9.权利要求8的方法,其中所述使所述金属基吸附剂再生的步骤包括利用使金属硫化物氧化的氧化气体和使金属氧化物还原的还原气流使所述金属基吸附剂经历“氧化-还原”过程。
10.权利要求8的系统,其中所述“氧化-还原”再生过程在100℃至900℃温度进行。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94462107P | 2007-06-18 | 2007-06-18 | |
US60/944,621 | 2007-06-18 | ||
US12/140,798 | 2008-06-17 | ||
US12/140,798 US8158545B2 (en) | 2007-06-18 | 2008-06-17 | Methods, systems, and devices for deep desulfurization of fuel gases |
PCT/US2008/067298 WO2008157580A1 (en) | 2007-06-18 | 2008-06-18 | Methods, systems, and devices for deep desulfurization of fuel gases |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101679890A true CN101679890A (zh) | 2010-03-24 |
Family
ID=39743831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200880020526A Pending CN101679890A (zh) | 2007-06-18 | 2008-06-18 | 用于燃料气深脱硫的方法、系统和装置 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8158545B2 (zh) |
EP (1) | EP2158307A1 (zh) |
JP (1) | JP2010530473A (zh) |
KR (1) | KR20100033961A (zh) |
CN (1) | CN101679890A (zh) |
AU (1) | AU2008265757B2 (zh) |
CA (1) | CA2681679A1 (zh) |
NZ (1) | NZ581260A (zh) |
WO (1) | WO2008157580A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110039686A1 (en) * | 2009-08-14 | 2011-02-17 | Battelle Memorial Institute | Fast regeneration of sulfur deactivated Ni-based hot biomass syngas cleaning catalysts |
US8308848B1 (en) * | 2009-11-27 | 2012-11-13 | Tda Research, Inc. | High temperature gas desulfurization sorbents |
US8480793B2 (en) | 2010-09-15 | 2013-07-09 | Exxonmobil Research And Engineering Company | Method and apparatus for removing contaminant from fluid |
US8879275B2 (en) * | 2012-02-21 | 2014-11-04 | International Business Machines Corporation | Anti-corrosion conformal coating comprising modified porous silica fillers for metal conductors electrically connecting an electronic component |
EP2684856A1 (en) | 2012-07-09 | 2014-01-15 | Paul Scherrer Institut | A method for methanation of gasification derived producer gas on metal catalysts in the presence of sulfur |
US8946118B2 (en) * | 2012-07-10 | 2015-02-03 | Red Lion Chem Tech, Llc | Removal of hydrophobic contaminants |
CN104084041B (zh) * | 2014-07-17 | 2016-08-17 | 北京三聚创洁科技发展有限公司 | 一种氧化锌脱硫废剂的再生方法 |
US9790442B2 (en) * | 2014-12-17 | 2017-10-17 | Uop Llc | Selective hydrogenation method |
CN111569624B (zh) * | 2019-02-19 | 2022-06-03 | 中国石油天然气股份有限公司 | 含硫醇的恶臭气的处理装置及处理方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2119803B1 (zh) | 1970-09-08 | 1973-11-23 | Aquitainechimie | |
DE3131257C2 (de) * | 1981-08-07 | 1986-10-30 | VEG-Gasinstituut N.V., Apeldoorn | Verfahren zum Entfernen von Schwefelwasserstoff aus Gasen |
JPH11104432A (ja) * | 1997-09-30 | 1999-04-20 | Kawasaki Heavy Ind Ltd | ガス処理方法及び装置 |
JPH11147039A (ja) * | 1997-11-18 | 1999-06-02 | Tonen Corp | 水素化処理用触媒および該水素化処理用触媒を使用する水素化脱硫方法 |
US6930219B2 (en) | 1999-09-07 | 2005-08-16 | Abb Lummus Global Inc. | Mesoporous material with active metals |
GB0227081D0 (en) | 2002-11-20 | 2002-12-24 | Exxonmobil Res & Eng Co | Methods for preparing catalysts |
EP1447124A1 (en) | 2003-02-04 | 2004-08-18 | Gastec N.V. | Supported catalyst system for removing sulfur compounds from gases |
SE0301071D0 (sv) | 2003-04-11 | 2003-04-11 | Hoeganaes Ab | Gas purification |
US7897538B2 (en) | 2004-05-21 | 2011-03-01 | Exxonmobil Research And Engineering Company | Process for removing sulfur compounds from hydrocarbon streams and adsorbent used in this process |
-
2008
- 2008-06-17 US US12/140,798 patent/US8158545B2/en not_active Expired - Fee Related
- 2008-06-18 CA CA002681679A patent/CA2681679A1/en not_active Abandoned
- 2008-06-18 JP JP2010513370A patent/JP2010530473A/ja active Pending
- 2008-06-18 CN CN200880020526A patent/CN101679890A/zh active Pending
- 2008-06-18 KR KR1020097024696A patent/KR20100033961A/ko not_active Application Discontinuation
- 2008-06-18 AU AU2008265757A patent/AU2008265757B2/en not_active Ceased
- 2008-06-18 NZ NZ581260A patent/NZ581260A/xx not_active IP Right Cessation
- 2008-06-18 EP EP08771326A patent/EP2158307A1/en not_active Withdrawn
- 2008-06-18 WO PCT/US2008/067298 patent/WO2008157580A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP2158307A1 (en) | 2010-03-03 |
AU2008265757B2 (en) | 2012-05-03 |
AU2008265757A1 (en) | 2008-12-24 |
CA2681679A1 (en) | 2008-12-24 |
US8158545B2 (en) | 2012-04-17 |
NZ581260A (en) | 2012-08-31 |
KR20100033961A (ko) | 2010-03-31 |
JP2010530473A (ja) | 2010-09-09 |
US20090114093A1 (en) | 2009-05-07 |
WO2008157580A1 (en) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101679890A (zh) | 用于燃料气深脱硫的方法、系统和装置 | |
Gao et al. | A review of recent developments in hydrogen production via biogas dry reforming | |
CA2628970C (en) | Apparatus and methods for non-regenerative and regenerative hot gas desulfurization | |
JP6956665B2 (ja) | 燃焼排ガス中の二酸化炭素のメタン化方法及びメタン製造設備 | |
US7556672B2 (en) | Regenerative process for removal of mercury and other heavy metals from gases containing H2 and/or CO | |
CN106102901A (zh) | 用于从气流中除去硫化合物的可再生系统 | |
JP5479812B2 (ja) | ガス流からの不純物減少のための方法及びシステム | |
US8858691B2 (en) | Adsorbents for removing contaminants from gas flows containing water | |
US7901566B2 (en) | Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst | |
JP4330846B2 (ja) | 燃料電池システムにおいて用いられるための低硫黄改質油ガスを調製するプロセス | |
US5252528A (en) | Hot gas, regenerative, supported H2 S sorbents | |
Kiani et al. | Syngas conditioning (catalyst, process: sulfur and tar Cl, F) | |
CA2654787A1 (en) | Method for removing heavy metals from gases | |
WO2024185654A1 (ja) | 触媒への供給方法および供給装置 | |
JPS61245819A (ja) | 高温還元性ガスの精製法 | |
KR100530954B1 (ko) | 도시 가스의 탈황을 위한 흡착제 및 그 방법 | |
Atimtay | Development of supported sorbents for hydrogen sulfide removal from fuel gas | |
Monteleone et al. | Fuel gas clean-up and conditioning | |
Sakbodin | Novel regeneration schemes of cerium oxide-based and lanthanum oxide sorbents used for hot reformate gas desulfurization | |
Voecks et al. | Hot gas, regenerative, supported H 2 S sorbents | |
McPhail et al. | Fuel Gas Clean-up and Conditioning | |
Voecks et al. | Hot gas, regenerative, supported H. sub. 2 S sorbents | |
Sun et al. | Selective removal of sulfur from model diesel fuel over regenerable metal oxide adsorbents for fuel cell applications | |
JPS61190592A (ja) | 高温還元性ガスの精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20100324 |