CN101669018A - 具有包含碳纳米管或半导体纳米线的复合隔膜的传感器 - Google Patents

具有包含碳纳米管或半导体纳米线的复合隔膜的传感器 Download PDF

Info

Publication number
CN101669018A
CN101669018A CN200880012593A CN200880012593A CN101669018A CN 101669018 A CN101669018 A CN 101669018A CN 200880012593 A CN200880012593 A CN 200880012593A CN 200880012593 A CN200880012593 A CN 200880012593A CN 101669018 A CN101669018 A CN 101669018A
Authority
CN
China
Prior art keywords
electrode
liner
pressure
barrier film
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880012593A
Other languages
English (en)
Other versions
CN101669018B (zh
Inventor
斯瓦潘·卡克拉博堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosemount Inc
Original Assignee
Rosemount Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount Inc filed Critical Rosemount Inc
Publication of CN101669018A publication Critical patent/CN101669018A/zh
Application granted granted Critical
Publication of CN101669018B publication Critical patent/CN101669018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/28Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0044Constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

一种传感器(10),优选地能够在大的操作范围上进行高分辨率感测,该传感器包括复合隔膜(12),所述复合隔膜(12)包含纳米管或纳米线(14)。所述纳米管或纳米线(14)优选地形成嵌入诸如高介电或绝缘薄膜等绝缘材料(16,18)中的衬垫。纳米管或纳米线(14)可以为隔膜(10)提供大于大约1000GPa的杨氏模量以及大于大约100GPa的拉伸强度。可以通过电阻、电压、电流或电容的变化来测量纳米管或纳米线(14)中的应变。

Description

具有包含碳纳米管或半导体纳米线的复合隔膜的传感器
技术领域
本发明涉及传感装置。具体地,本发明涉及使用复合隔膜的传感装置,在所述复合隔膜中将纳米管或纳米线嵌入或夹在高介电或绝缘薄膜之间。
背景技术
从技术的角度来看,纳米级材料的最近发现产生了重要意义。碳纳米管(CNT)因其机械、电、和热特性而得到了很大关注。已经提出了使用多种不同感测机制来感测压力、温度、气体以及其他参数的碳纳米管技术的许多应用。已开发了诸如硅、砷化镓、以及磷化铟等材料的半导体纳米线,并且这种半导体纳米线由于潜在感测应用而受到关注。
在以下文献中可以看到所提出的使用碳纳米管或半导体纳米线的传感器:John Liu,“Design,Fabrication,and Testing of PiezoresistivePressure Sensors Using Carbon Nanotubes”,Stanford NanofabricationFacility(2002);Takao Someya等人,“Alcohol Vapor Sensors Based OnSingle-Walled Carbon Nanotube Field Effect Transistors”Nano LettersVol.3,No.7,877-881(2003);Tsu-Wei Chou等人,“NanomechanicalSensors Based On Carbon Nanotube Arrays”,NSF Nanoscale Science andEngineering Grantess Conference,December 16-18,2003;Paolo Lugli,“Plastronics molecular,organic and biological electronics:an overview:Micro-Nano Technologies for Space”,May 2003;Jian Wu,“Computational Design Of Carbon Nanotube Electromechanical PressureSensors”,The American Physical Society(2004);Alexander Star等人,“Nanoelectronic Carbon Dioxide Sensors”,Advanced Materials 16,No.22,pages 2049-2052(2004);Randal J.Grow等人“Piezoresistance OfCarbon Nanotubes On Deformable Thin-Film Membranes”,AppliedPhysics Letters(2005);Progress Report for ITAS MSFT“NanoscaleDevices and Material Integration:Carbon Nanotube Based Materials forNDE”,April,2005;Feng Liu教授,Computational R&D for IndustrialApplications,Center for High-Performance Computing,Fall,2005;Danvers E.Johnston等人,“Electronic Devices Based on PurifiedCarbon Nanotubes Grown By High Pressure Decomposition of CarbonMonoxide”,February 7,2005;C.Stampfer等人“Fabrication ofSingle-Walled Carbon-Nanotube-Based Pressure Sensors”(2006);Dr.Christofer Hierold教授“FEM Simulations On Single-Walled CarbonNanotube Based Pressure Sensor Systems”Mikro-Und Nanostysteme(2006);Chunyu Li“Atomistic Modeling Of Carbon Nanotube-BasedMechanical Sensors”Journal of Intelligent Material Systems andStructures,Vol.17,No.3,247-254(2006);In-Mook Choi等人,“Development Of Low Pressure Sensor Based On Carbon Nanotube FieldEmission”Metrologia(2006);Sinha等人,“Carbon Nanotube-BasedSensors”,Ingentaconnect(2006);NASA,“Nanoscale Mass Transport andCarbon Nanotube Based Membranes”(2006).
在Jin的美国专利No.6,286,226和Miyajima等人的美国专利No.6,848,320、以及Chen等人的专利申请公开US 2004/0001778、Kurtz的专利申请公开US 2004/0188780、和Gokturk的专利申请公开US2005/0036905中,也描述了使用纳米管或纳米线的传感器。
发明内容
一种传感器,包括具有复合结构的可偏转部件,所述复合结构是由嵌入绝缘材料中的纳米管或纳米线所组成的衬垫形成的。纳米级管或线可以提供弹性,这允许在大的压力范围上进行高分辨率的压力感测。该复合结构可以具有大于大约1000GPa的杨氏模量以及大于大约100GPa的拉伸强度。
可以使用电极来感测可偏转部件响应于所感测的参数(如压力)的偏转,以产生传感器信号。例如,可以利用电阻、电压或电容的变化来测量部件的偏转。
附图说明
图1是压力传感器的分解图,所述压力传感器包括由嵌入介电或绝缘材料中的纳米管或纳米线组成的隔膜。
图2是示出了图1的压力传感器的操作的图示。
图3示出了使用嵌入隔膜中的纳米管/纳米线的差分压力传感器的实施例,其中利用作为所施加电压的函数的、源极与漏极之间的电阻或电压的变化来测量隔膜中的应变。
图4示出了电容性差分压力传感器的实施例,其中所嵌入的纳米线/纳米管隔膜用作两个感测电容的公共极板。
图5示出了差分压力传感器的实施例,其中作为嵌入了纳米管/纳米线的隔膜的电阻的函数,感测差分压力。
图6示出了具有纳米管/纳米线衬垫的可偏转复合结构的流量传感器。
具体实施方式
图1示出了采用压力传感器10形式的本发明实施例的分解图,压力传感器10包括:由夹在或嵌入介电层16和18之间的纳米线/纳米管衬垫14形成的隔膜12、源极电极20、漏极电极22以及栅极电极24。
衬垫14由以编织或非编织的网格或栅格形式布置的多个碳纳米管或半导体纳米线形成。纳米管/纳米线可以大致沿一个方向排列,或者可以沿两个或更多方向排列。在图1所示实施例中,纳米管或纳米线具有半导体特性,然而在碳纳米管的情况下,一些碳纳米管可以是导体而不是半导体。在衬垫14中布置纳米管/纳米线,使得有纳米管/纳米线在源极电极20与栅极电极24之间延伸。
形成衬垫14的纳米管/纳米线具有大于大约1000GPa的杨氏模量和大于大约100GPa的拉伸强度。纳米管/纳米线的这些物理特性限定了隔膜12的弹性模量和拉伸强度。在一些实施例中,衬垫14由碳纳米管形成,并且具有大约1200GPa的杨氏模量和大约150GPa的拉伸模量。
介电层16和18可以是一对薄膜,位于衬垫14的相对侧并形成层状结构,其中衬垫14夹在或嵌入层16与18之间。备选地,可以通过薄膜沉积工艺来形成围绕衬垫14的介电层。层16和18捕获衬垫14,以维持隔膜12的结构完整性以及防止隔膜12在施加流体压力时泄漏。
图2是示出了传感器10的一种感测机制的图示。隔膜12在源极电极20与漏极电极22之间延伸,并且与栅极电极24隔开。向栅极电极24施加栅极电压VG。源极20与漏极22之间的电压(VSD)将作为栅极电极24所施加的、相对于隔膜12的栅极电压VG的函数而变化。
当向隔膜12施加压力时,隔膜12与栅极电极24之间的间距发生变化。因隔膜12的偏转而导致的变化场效应改变源极电极20与漏极电极22之间的电压VSD或电阻。
根据另一实施例,图3示出了差分压力传感器30,所述差分压力传感器30包括:二分之一单元(cell halves)32和34、中央隔膜36、栅极电极38和40、源极电极42、以及漏极电极44。中央隔膜36是复合隔膜,如图1的隔膜12一样,其中由半导体纳米线/纳米管组成的衬垫夹在或嵌入介电或绝缘材料之间。
二分之一单元32和24以及中央隔膜36将传感器30的内部分成第一压力室46和第二压力室48。向室46施加流体压力P1,向室48施加流体压力P2。从而,中央隔膜36的偏转是压力差ΔP=P1-P2的函数。
向栅极电极40施加栅极电压VG1,向栅极电极38施加栅极电压V2。可以测量源极电极42与漏极电极44之间的电阻或电压,以提供对差分压力ΔP的指示。
图4示出了差分压力传感器60,所述差分压力传感器60是电容类型的差分传感器。传感器60包括二分之一单元62和64、中央隔膜66、隔膜电极68和70、以及电容器电极72和74。
中央隔膜60将二分之一单元62和64之间的空间分成了第一压力感测室76和第二压力感测室78。中央隔膜66内的纳米线或纳米管可以是半导体的或导电的。在室76中的电极72与隔膜电极68和70之间形成第一感测电容C1。在室78中的电极74与隔膜电极68和70之间形成感测电容C2。两个电容C1和C2将作为差分压力的函数而变化。利用信号处理电路将这两个电容转换成输出,以提供差分压力的指示。
图5示出了差分压力传感器80,所述差分压力传感器80包括二分之一单元82和84、隔膜86、以及隔膜电极88和90。中央隔膜88将压力传感器80的内部分成感测室92和94。
在图5所示的实施例中,使用作为隔膜86上应变的函数的电阻的变化来感测差分压力。电极88与90之间的电阻将作为隔膜86的偏转的函数来变化。所述偏转是差分压力的函数。隔膜86内的纳米线或纳米管可以是半导体的或导电的或是两者的混合。
图6示出了流量传感器100,所述流量传感器100包括流体通道102、可偏转部件104、以及电容器极板106和108。可偏转部件104是由嵌入介电层之间的纳米管/纳米线衬垫组成的复合结构。可偏转部件104的固定端104A附着到流动通道102,自由端104B基于通过通道102的流体可移动。可偏转部件104和电容器极板106形成第一电容C1,部件104和电容器极板108形成第二电容C2。C1和C2的相对值是通过通道102的流体的方向和流速的函数。
在每个实施例中,纳米管和纳米线的独特物理特性提供了独特且非常有利的传感器特性。纳米线/纳米管衬垫所提供的高杨氏模量提供了高得多的分辨率的压力感测。高屈服强度提供了可以承受更高工作压力的更高强度的传感器。因此,可以实现能感测从10psi到10,000psi范围内压力的压力传感器。
具有嵌入式纳米管/纳米线的可偏转部件提供了非常轻量的结构,同时提供了高拉伸强度。该部件可以用于感测绝对压力、差分压力、计示压力、或流速。还可以用于测量诸如温度和水平(level)之类的其他参数。
尽管参考优选实施例描述了本发明,然而本领域技术人员将意识到,在不脱离本发明的精神和范围的前提下,可以进行形式和细节上的改变。

Claims (22)

1、一种传感器,包括:
复合结构,由嵌入绝缘材料中的纳米管或纳米线所组成的衬垫形成;以及
电极,用于响应于复合结构响应于物理参数而偏转来获得传感器信号,所述电极当中的至少一个连接至所述衬垫。
2、根据权利要求1所述的传感器,其中,所述复合结构具有大于约1000GPa的杨氏模量。
3、根据权利要求2所述的传感器,其中,所述复合结构具有大于约100GPa的拉伸强度。
4、根据权利要求3所述的传感器,其中,所述复合结构具有大约1200GPa的杨氏模量和大约150GPa的拉伸强度。
5、根据权利要求1所述的传感器,还包括:
外壳,用于支撑所述复合结构,以限定压力感测室。
6、根据权利要求1所述的传感器,其中,所述电极包括:与衬垫连接的源极电极和漏极电极,以及与复合结构隔开的栅极电极。
7、根据权利要求1所述的传感器,其中,所述衬垫包括碳纳米管。
8、根据权利要求1所述的传感器,其中,所述衬垫包括半导体纳米线。
9、根据权利要求1所述的传感器,其中,所述电极包括:与衬垫连接的第一电极,以及与复合结构隔开的第二电极。
10、根据权利要求1所述的传感器,其中,所述电极包括与衬垫的相对端连接的第一电极和第二电极。
11、根据权利要求1所述的传感器,其中,所述绝缘材料包括介电层。
12、根据权利要求1所述的传感器,其中,所述传感器信号表示作为纳米线或纳米管的衬垫中的应变的函数的电阻、电压、电流、或电容。
13、根据权利要求1所述的传感器,其中,所述传感器信号表示所测量的压力、流量、温度或水平。
14、一种压力传感器,包括:
外壳;
隔膜,由所述外壳支撑并且响应于压力可偏转,所述隔膜包括具有大于约1000GPa的杨氏模量和大于约100GPa的拉伸强度的纳米级材料;以及
第一电极和第二电极,与所述隔膜连接。
15、根据权利要求14所述的压力传感器,其中,所述隔膜包括由嵌入绝缘材料中的纳米线或纳米管所组成的衬垫。
16、根据权利要求15所述的压力传感器,其中,所述衬垫包括碳纳米管和半导体纳米线当中的至少一个。
17、根据权利要求15所述的压力传感器,其中,所述衬垫夹在介电材料层之间。
18、根据权利要求12所述的压力传感器,还包括:
栅极电极,由所述外壳支撑并且与所述隔膜隔开,所隔开的距离作为施加到所述隔膜的压力的函数而变化。
19、根据权利要求14所述的压力传感器,其中,所述隔膜以及所述外壳的第一部分限定第一压力感测室。
20、根据权利要求19所述的压力传感器,其中,所述隔膜和所述外壳的第二部分在所述隔膜与所述第一压力感测室相对的一侧限定第二压力感测室。
21、根据权利要求14所述的压力传感器,其中,所述纳米级材料具有大约1200GPa的杨氏模量。
22、根据权利要求14所述的压力传感器,其中,所述纳米级材料具有大约150GPa的拉伸强度。
CN2008800125936A 2007-03-21 2008-02-04 具有包含碳纳米管或半导体纳米线的复合隔膜的传感器 Active CN101669018B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/726,128 US7437938B2 (en) 2007-03-21 2007-03-21 Sensor with composite diaphragm containing carbon nanotubes or semiconducting nanowires
US11/726,128 2007-03-21
PCT/US2008/001472 WO2008143720A2 (en) 2007-03-21 2008-02-04 Sensor with composite diaphragm containing carbon nanotubes or semiconducting nanowires

Publications (2)

Publication Number Publication Date
CN101669018A true CN101669018A (zh) 2010-03-10
CN101669018B CN101669018B (zh) 2012-03-28

Family

ID=39773386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800125936A Active CN101669018B (zh) 2007-03-21 2008-02-04 具有包含碳纳米管或半导体纳米线的复合隔膜的传感器

Country Status (5)

Country Link
US (1) US7437938B2 (zh)
EP (1) EP2130017B1 (zh)
JP (1) JP5662140B2 (zh)
CN (1) CN101669018B (zh)
WO (1) WO2008143720A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229034A (zh) * 2010-11-24 2013-07-31 纳米制造概念公司 微型压力传感器
CN103808247A (zh) * 2012-11-06 2014-05-21 沈阳航空航天大学 一种基于碳纳米管三维网络薄膜的应变传感器制备方法
CN104737009A (zh) * 2012-10-16 2015-06-24 皇家飞利浦有限公司 基于纳米线平台的宽动态范围流体传感器
CN105547138A (zh) * 2015-12-07 2016-05-04 大连理工大学 用宏观网状结构碳纳米线圈制成的柔性应变传感器的制备方法
CN106168514A (zh) * 2016-08-28 2016-11-30 桂林市晶准测控技术有限公司 一种压力传感装置
CN110063817A (zh) * 2012-04-23 2019-07-30 E-视觉智能光学公司 用于管理可植入的装置的系统、装置和/或方法
CN113670187A (zh) * 2021-09-06 2021-11-19 宁波韧和科技有限公司 兼具高安全性与高探测量程的电容式弹性应变传感器及其制备方法

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005230961B2 (en) * 2004-01-15 2010-11-11 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
US20100104849A1 (en) * 2005-05-03 2010-04-29 Lashmore David S Carbon composite materials and methods of manufacturing same
EP2112249A1 (en) * 2005-05-26 2009-10-28 Nanocomp Technologies, Inc. Systems and methods for thermal management of electronic components
EP2365117B1 (en) 2005-07-28 2014-12-31 Nanocomp Technologies, Inc. Apparatus and method for formation and collection of nanofibrous non-woven sheet
US7774951B2 (en) * 2006-10-04 2010-08-17 Northwestern University Sensing device with whisker elements
EP2962986B1 (en) * 2007-02-27 2017-04-05 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
US8079269B2 (en) * 2007-05-16 2011-12-20 Rosemount Inc. Electrostatic pressure sensor with porous dielectric diaphragm
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
US20100243020A1 (en) * 2007-06-22 2010-09-30 Washington State University Research Foundation Hybrid structures for solar energy capture
CA2693403A1 (en) * 2007-07-09 2009-03-05 Nanocomp Technologies, Inc. Chemically-assisted alignment of nanotubes within extensible structures
AU2008311234A1 (en) * 2007-07-25 2009-04-16 Nanocomp Technologies, Inc. Systems and methods for controlling chirality of nanotubes
JP2011508364A (ja) * 2007-08-07 2011-03-10 ナノコンプ テクノロジーズ インコーポレイテッド 非金属電気伝導性および熱伝導性ナノ構造体ベースアダプター
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
ES2753901T3 (es) 2008-05-07 2020-04-14 Nanocomp Technologies Inc Mazo de cables y cables eléctricos coaxiales basados en nanotubos de carbón
US8020456B2 (en) * 2008-05-30 2011-09-20 Florida State University Research Foundation Sensor and a method of making a sensor
US8039909B2 (en) * 2008-11-26 2011-10-18 International Business Machines Corporation Semiconductor nanowires charge sensor
CN101931842B (zh) * 2009-06-26 2013-07-03 清华大学 音圈骨架及扬声器
CN101931841A (zh) * 2009-06-26 2010-12-29 清华大学 音圈骨架及扬声器
US8354593B2 (en) * 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
CN101990148B (zh) * 2009-07-31 2013-08-21 清华大学 振动膜及应用该振动膜的扬声器
CN101990142B (zh) * 2009-08-05 2013-12-11 清华大学 音圈引线及采用该音圈引线的扬声器
TWI403182B (zh) * 2009-08-05 2013-07-21 Hon Hai Prec Ind Co Ltd 振動膜及應用該振動膜的揚聲器
TWI403183B (zh) * 2009-08-05 2013-07-21 Hon Hai Prec Ind Co Ltd 振動膜及應用該振動膜的揚聲器
CN101990150A (zh) * 2009-08-05 2011-03-23 鸿富锦精密工业(深圳)有限公司 扬声器
CN101998209A (zh) * 2009-08-11 2011-03-30 清华大学 定心支片及使用该定心支片的扬声器
CN101998210A (zh) * 2009-08-11 2011-03-30 鸿富锦精密工业(深圳)有限公司 音圈骨架及使用该音圈骨架的扬声器
TWI455610B (zh) * 2009-08-17 2014-10-01 Hon Hai Prec Ind Co Ltd 定心支片及使用該定心支片的揚聲器
CN102026065A (zh) * 2009-09-15 2011-04-20 清华大学 定心支片及使用该定心支片的扬声器
CN102026068B (zh) * 2009-09-17 2016-06-08 清华大学 音圈及使用该音圈的扬声器
CN102026066B (zh) * 2009-09-18 2013-10-09 清华大学 定心支片及使用该定心支片的扬声器
TWI403184B (zh) * 2009-09-22 2013-07-21 Hon Hai Prec Ind Co Ltd 定心支片及使用該定心支片之揚聲器
CN102036146A (zh) * 2009-09-30 2011-04-27 清华大学 振动膜及应用该振动膜的扬声器
CN102036149A (zh) * 2009-09-30 2011-04-27 清华大学 音圈骨架及具有该音圈骨架的扬声器
TWI420916B (zh) * 2009-09-30 2013-12-21 Hon Hai Prec Ind Co Ltd 振動膜及應用該振動膜的揚聲器
TWI448168B (zh) * 2009-09-30 2014-08-01 Hon Hai Prec Ind Co Ltd 定心支片及使用該定心支片的揚聲器
CN102045623B (zh) * 2009-10-23 2014-12-10 清华大学 振动膜、振动膜的制备方法及具有该振动膜的扬声器
CN102045624B (zh) * 2009-10-23 2014-12-10 清华大学 定心支片及具有该定心支片的扬声器
CN102065353B (zh) * 2009-11-17 2014-01-22 清华大学 振动膜及使用该振动膜的扬声器
CN102130676A (zh) * 2010-01-14 2011-07-20 鸿富锦精密工业(深圳)有限公司 键盘
TWI501660B (zh) * 2010-01-15 2015-09-21 Hon Hai Prec Ind Co Ltd 振動膜及使用該振動膜之揚聲器
US9180979B2 (en) * 2010-02-04 2015-11-10 Saab Ab Smooth surface forming tool and manufacture thereof
US8824722B2 (en) 2010-06-28 2014-09-02 Tsinghua University Loudspeaker incorporating carbon nanotubes
US8635024B2 (en) * 2010-08-02 2014-01-21 International Business Machines Corporation Sensing device for determining weather event attributes
US8604574B2 (en) 2011-05-03 2013-12-10 International Business Machines Corporation Transparent photodetector
US8997588B2 (en) 2012-09-29 2015-04-07 Stryker Corporation Force detecting mat with multiple sensor types
US8904876B2 (en) 2012-09-29 2014-12-09 Stryker Corporation Flexible piezocapacitive and piezoresistive force and pressure sensors
US10766232B2 (en) 2012-10-23 2020-09-08 Saab Ab Smooth surface forming tool and manufacture thereof
JP6404916B2 (ja) 2013-06-17 2018-10-17 ナノコンプ テクノロジーズ インコーポレイテッド ナノチューブ、束および繊維のための剥離剤および分散剤
CN104729579B (zh) * 2014-11-24 2017-05-31 清华大学 基于微纳米纤维阵列的流体传感器及其测量方法
WO2016126818A1 (en) 2015-02-03 2016-08-11 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
DE102015114197A1 (de) * 2015-08-26 2017-03-02 Bürkert Werke GmbH Strömungsmesser
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
US11371899B2 (en) 2018-05-17 2022-06-28 Rosemount Inc. Measuring element with an extended permeation resistant layer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005A (en) * 1849-01-09 Machine for hook-heading spikes by one motion
US6809462B2 (en) * 2000-04-05 2004-10-26 Sri International Electroactive polymer sensors
US6286226B1 (en) * 1999-09-24 2001-09-11 Agere Systems Guardian Corp. Tactile sensor comprising nanowires and method for making the same
DE10117142A1 (de) * 2001-04-05 2002-10-10 Endress & Hauser Gmbh & Co Kg Kapazitiver Differenz-Drucksensor
US7522040B2 (en) * 2004-04-20 2009-04-21 Nanomix, Inc. Remotely communicating, battery-powered nanostructure sensor devices
US7186380B2 (en) * 2002-07-01 2007-03-06 Hewlett-Packard Development Company, L.P. Transistor and sensors made from molecular materials with electric dipoles
JP3969228B2 (ja) * 2002-07-19 2007-09-05 松下電工株式会社 機械的変形量検出センサ及びそれを用いた加速度センサ、圧力センサ
EP1595123A1 (en) * 2003-01-23 2005-11-16 William Marsh Rice University Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices
US20040188780A1 (en) * 2003-03-25 2004-09-30 Kurtz Anthony D. Nanotube semiconductor structures with varying electrical properties
US20050036905A1 (en) * 2003-08-12 2005-02-17 Matsushita Electric Works, Ltd. Defect controlled nanotube sensor and method of production
CN100554904C (zh) * 2004-03-13 2009-10-28 清华大学 碳纳米管压力传感器及其压力感测方法
US7272976B2 (en) * 2004-03-30 2007-09-25 Asml Holdings N.V. Pressure sensor
US7401522B2 (en) * 2005-05-26 2008-07-22 Rosemount Inc. Pressure sensor using compressible sensor body
US7334484B2 (en) * 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor
US7637149B2 (en) * 2005-06-17 2009-12-29 Georgia Tech Research Corporation Integrated displacement sensors for probe microscopy and force spectroscopy
EP2365117B1 (en) * 2005-07-28 2014-12-31 Nanocomp Technologies, Inc. Apparatus and method for formation and collection of nanofibrous non-woven sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229034A (zh) * 2010-11-24 2013-07-31 纳米制造概念公司 微型压力传感器
CN103229034B (zh) * 2010-11-24 2015-05-20 纳米制造概念公司 微型压力传感器
CN110063817A (zh) * 2012-04-23 2019-07-30 E-视觉智能光学公司 用于管理可植入的装置的系统、装置和/或方法
CN104737009A (zh) * 2012-10-16 2015-06-24 皇家飞利浦有限公司 基于纳米线平台的宽动态范围流体传感器
CN104737009B (zh) * 2012-10-16 2018-07-13 皇家飞利浦有限公司 基于纳米线平台的宽动态范围流体传感器
CN103808247A (zh) * 2012-11-06 2014-05-21 沈阳航空航天大学 一种基于碳纳米管三维网络薄膜的应变传感器制备方法
CN103808247B (zh) * 2012-11-06 2016-05-25 沈阳航空航天大学 一种基于碳纳米管三维网络薄膜的应变传感器制备方法
CN105547138A (zh) * 2015-12-07 2016-05-04 大连理工大学 用宏观网状结构碳纳米线圈制成的柔性应变传感器的制备方法
CN106168514A (zh) * 2016-08-28 2016-11-30 桂林市晶准测控技术有限公司 一种压力传感装置
CN113670187A (zh) * 2021-09-06 2021-11-19 宁波韧和科技有限公司 兼具高安全性与高探测量程的电容式弹性应变传感器及其制备方法
CN113670187B (zh) * 2021-09-06 2022-09-20 宁波韧和科技有限公司 兼具高安全性与高探测量程的电容式弹性应变传感器及其制备方法

Also Published As

Publication number Publication date
EP2130017A2 (en) 2009-12-09
US20080229839A1 (en) 2008-09-25
EP2130017A4 (en) 2013-12-25
JP5662140B2 (ja) 2015-01-28
JP2010522443A (ja) 2010-07-01
WO2008143720A3 (en) 2009-01-08
CN101669018B (zh) 2012-03-28
WO2008143720A2 (en) 2008-11-27
US7437938B2 (en) 2008-10-21
EP2130017B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
CN101669018B (zh) 具有包含碳纳米管或半导体纳米线的复合隔膜的传感器
Yao et al. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure
Wan et al. Graphene oxide as high-performance dielectric materials for capacitive pressure sensors
Niu et al. Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection
Rasel et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications
Fu et al. Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance
Ma et al. Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks
Obitayo et al. A review: Carbon nanotube‐based piezoresistive strain sensors
US9347840B2 (en) Two dimensional material-based pressure sensor
Smith et al. Electromechanical piezoresistive sensing in suspended graphene membranes
Wang et al. Ultrasensitive vertical piezotronic transistor based on ZnO twin nanoplatelet
TWI334404B (en) Micro-electro-mechanical sensor
Park et al. Fabrication of graphene/free-standing nanofibrillar PEDOT/P (VDF-HFP) hybrid device for wearable and sensitive electronic skin application
Karimov et al. Carbon nanotubes based strain sensors
Habibi et al. Fabrication of a graphene-based pressure sensor by utilising field emission behavior of carbon nanotubes
CN107934908A (zh) 合成纳米材料及其制备方法
Katageri et al. Carbon nanotube based piezoresistive pressure sensor for wide range pressure sensing applications-a review
Nguyen et al. Piezoresistive effect with a gauge factor of 18 000 in a semiconductor heterojunction modulated by bonded light-emitting diodes
Cheng et al. Carbon nanotubes field-effect transistor pressure sensor based on three-dimensional conformal force-sensitive gate modulation
Lu et al. Vibration of a multilayer graphene sheet under layerwise tension forces
Rahman et al. Analysis of MEMS diaphragm of piezoresistive intracranial pressure sensor
Rahman et al. Load deflection analysis of rectangular graphene diaphragm for MEMS intracranial pressure sensor applications
US11204292B1 (en) Deformable pressure sensor and methods of use thereof
Kurian et al. Printing of CNT/silicone rubber for a wearable flexible stretch sensor
Shazni et al. Highly-sensitive graphene-based flexible pressure sensor platform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant