CN101662280A - 集成电路及锁相环电路 - Google Patents

集成电路及锁相环电路 Download PDF

Info

Publication number
CN101662280A
CN101662280A CN200910169244.1A CN200910169244A CN101662280A CN 101662280 A CN101662280 A CN 101662280A CN 200910169244 A CN200910169244 A CN 200910169244A CN 101662280 A CN101662280 A CN 101662280A
Authority
CN
China
Prior art keywords
mentioned
transistor
bias
frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910169244.1A
Other languages
English (en)
Other versions
CN101662280B (zh
Inventor
王明辉
吴敏洁
连伟量
郭仓甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Singapore Pte Ltd
Original Assignee
MediaTek Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Singapore Pte Ltd filed Critical MediaTek Singapore Pte Ltd
Publication of CN101662280A publication Critical patent/CN101662280A/zh
Application granted granted Critical
Publication of CN101662280B publication Critical patent/CN101662280B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes

Abstract

本发明提供一种集成电路与锁相环电路,上述集成电路包含:偏压电路,产生第一偏压电压与第二偏压电压;LC共振电路,产生具有振荡频率的振荡信号;以及电流模式逻辑分频器,接至偏压电路与LC共振电路,由第一偏压电压与第二偏压电压偏压,接收振荡信号,以产生具有输出频率的输出信号,输出频率具有振荡频率的比率,其中振荡信号包含AC与DC成分,电流模式逻辑分频器接收AC成分以决定注入频率并重新使用DC成分,来提供末端电流以决定电流模式逻辑分频器的固有频率,且输出频率由注入频率与固有频率决定。本发明的集成电路因需要较少电容,能够占据较少电路面积并降低制造成本。

Description

集成电路及锁相环电路
技术领域
本发明大体是有关于高速通信,更具体地,是关于一种高速通信中使用的压控振荡器(voltage controlled oscillator)与锁相环电路。
背景技术
对于例如电脑、通信装置、RF IC技术以及高频时钟的应用来说,近年来高速数据传送的需要逐渐增长。高速压控振荡器与分频器(frequency divider)是电脑与通信应用普遍采用以进行例如频率合成,升频及降频操作的必要构造模块。举例来说,由分频器所实施的预分频器(prescaler)是锁相环电路(Phase-Locked Loop,PLL)内的重要组件之一(如图1所示),其广泛被作为无线接收器的频率合成器来应用。RF/微波的PLL中普遍使用静态或动态数字分频器。它们具有架构简单、带宽大与较佳的过程变化(process variations)稳定性。可是,随着无线操作的频率超过了低GHz范围,数字分频器的功率消耗成为一个问题。换句话说,数字分频器要达到功率要求越来越难,特别是对低功耗的移动应用更具挑战。而且,由于大量功率消耗,高速数字分频器还可能引起显著的噪音损害。
压控振荡器一般利用电感与电容库(inductors and capacitor bank)来形成共振网络(resonance network),并产生高频振荡信号。一般地,IC中电感与电容库占据比其它电路更大的电路面积,导致IC电路尺寸更大,因此提高了制造成本。
因此,需要更高功效且更小电路尺寸的压控振荡器与分频器。
发明内容
因此,本发明提供一种新的集成电路与锁相环电路。
本发明提供一种集成电路,包含:偏压电路,产生第一偏压电压与第二偏压电压;LC共振电路,产生具有振荡频率的振荡信号;以及电流模式逻辑分频器,接至偏压电路与LC共振电路,由第一偏压电压与第二偏压电压偏压,接收振荡信号,以产生具有输出频率的输出信号,输出频率具有振荡频率的比率,其中振荡信号包含AC与DC成分,电流模式逻辑分频器接收AC成分以决定注入频率并重复使用DC成分,来提供末端电流以决定电流模式逻辑分频器的固有频率,且输出频率由注入频率与固有频率决定。
本发明另提供一种锁相环电路,包含:鉴相器,侦测参考信号与输出信号的相位差信号;LC共振电路,耦接至上述鉴相器,接收上述相位差信号以产生具有振荡频率的振荡信号;偏压电路,产生第一偏压电压与第二偏压电压;以及电流模式逻辑分频器,耦接至偏压电路与LC共振电路,由第一偏压电压与第二偏压电压偏压,接收振荡信号以产生具有振荡频率的比率的输出频率的输出信号,其中振荡信号包含AC与DC成分,电流模式逻辑分频器接收AC成分以决定注入频率并重复使用DC成分,来提供末端电流以决定电流模式逻辑分频器的固有频率,且输出频率由注入频率与固有频率决定。
本发明的集成电路因需要较少电容,能够占据较少电路面积并降低制造成本。
附图说明
图1显示锁相环电路的示例方框示意图。
图2显示根据本发明的示例压控振荡器与CML分频器的方框示意图。
具体实施方式
在说明书及权利要求书当中使用了某些词汇来称呼特定的元件。本领域的技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个元件。本说明书及权利要求书并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准则。在通篇说明书及权利要求书当中所提及的“包含”是开放式的用语,故应解释成“包含但不限定于”。此外,“耦接”一词在此是包含任何直接及间接的电气连接手段。因此,若文中描述第一装置耦接于第二装置,则代表第一装置可直接电气连接于第二装置,或通过其它装置或连接手段间接地电气连接到第二装置。
图1显示锁相环电路的示例方框示意图,其包含在回路中耦接的鉴相器100,环路滤波器102,压控振荡器104,以及分频器106。
压控振荡器104可为LC共振器(LC resonator),其产生振荡信号SVCO。分频器106将振荡信号SVCO的频率除一个因子(例如除2),来产生输出信号SOUT。分频器106可为利用差分架构的电流模式逻辑(Current Mode Logic,CML)分频器。如图1所应用的电路的压控振荡器104需要较少的电容,于是减少了LC共振器内的电容库的电路面积与制造成本。
图2显示根据本发明的示例压控振荡器与CML分频器的方框示意图,其包含偏压电路20,LC共振器22,CML分频器24,CML缓冲器26与去耦电路28。偏压电路20耦接至LC共振器22与CML分频器24,且两者都耦接至CML缓冲器26,接着耦接至去耦电路28。
偏压电路20包含电流源Ibias,晶体管M200,以及偏压电阻R200至R204,用于提供偏压电流给CML分频器24。电流源Ibias与晶体管M200提供电流镜偏压,以建立R200至R204的偏压电压。偏压电压依据电流要求可为相同或不同。
LC共振器22是LC库振荡器(LC tank resonator),其于振荡频率产生振荡信号。LC共振器22包含PMOS交叉耦接的晶体管对M220,电容C220与C222,变容二极管V220与V222,电容库C224以及电感L220。PMOS交叉耦接的晶体管对M220提供负的gm来消除LC共振器22内的阻性能量消耗。LC共振器22可更包含NMOS交叉耦接的晶体管对(图未示),以作为PMOS交叉耦接晶体管的替换。实际上,PMOS交叉耦接的晶体管对提供比NMOS交叉耦接的晶体管对更佳的闪烁噪音性能(flicker noise performance)。振荡信号的振荡频率可由控制电压Vtune来细调。振荡信号包含差分信号对CLK+与CLK-。振荡信号包含AC与DC成分,CML分频器24接收AC成分来决定注入频率(injected frequency),并重复利用DC成分来提供末端电流(tailcurrent),以决定CML分频器的固有频率(natural frequency),以及CML分频器24的输出频率由注入频率与固有频率决定。电感L220的中间抽头(center tap)通过电容对C280耦接至CML分频器24,如此其中所有DC电流经过CML分频器24流向接地端。因为偏压电路20控制由晶体管M241至M247产生偏压电流,CML分频器24内的DC总量与LC共振器22内的DC总量相等,都由偏压电路20限制。其中晶体管M241、M243、M245及M247可被称作末端晶体管,其接收偏压电压及振荡信号,以产生末端电流给差分晶体管对M240、M242、M244及M246来产生差分输出信号VVCO1与VVCO2
CML分频器24AC耦接至LC共振器22,以通过电容C240与C242接收差分振荡信号CLK+与CLK-。CML分频器24是由CML电路将差分输出信号VVCO1与VVCO2反馈给输入端构成的两个D触发器。CML分频器24操作于由振荡信号对CLK+与CLK-决定的跟踪与锁存模式(track and latch mode)。于跟踪模式中,信号CLK+为“高”,而信号CLK-为“低”,晶体管M24 1开启且晶体管M243关闭,使得晶体管对M240的漏电流跟踪输出电压对VVCO1及VVCO2,如此通过电阻R240与R242来建立输出漏极电压。于锁存模式中,信号CLK+为“低”,而信号CLK-为“高”,晶体管M241关闭而晶体管M243开启,使得锁存晶体管对M242锁存之前晶体管级M240的输出漏极电压。同样,当信号CLK+为“低”且信号CLK-为“高”时,晶体管M245开启而晶体管M247关闭,使得晶体管对M244跟踪晶体管对M240的输出漏极电压,并通过电阻R244及R246建立输出漏极电压。当CLK+信号为“高”且CLK-信号为“低”时,晶体管M245关闭而晶体管M247开启,使得晶体管对M246锁存之前晶体管级M244的输出漏极电压并输出输出电压对。电阻R240至R246不仅用来决定输出信号对的固有频率,也用来隔离输出信号对与LC共振器22。
当振荡信号具有零振幅时,CML分频器24产生输出信号对,其具有由负载电阻R240至R246、小信号跨导gm,以及栅极与接线电容(gate and wire capacitance)决定的固有频率,即所谓的自振荡(self-oscillation)。当振荡信号的幅度增加时,CML分频器24会经历“注入锁相效应(injection locking effect)”。因为输入振荡信号CLK+与CLK-的注入,CML分频器24表现为具有从固有频率获得的输出信号的输出时钟频率的振荡器,以于输入振荡信号CLK+与CLK-的半速率频率振荡,表现为除2的分频器。
CML缓冲器26操作时有小幅电压摆动(small voltage swings),2VTHN的峰-峰差分模式,其中电压VTHN为NMOS晶体管260至266的阈值电压,如此提供高速振荡输出SOUT1与SOUT2。去耦电路2 8耦接至电感L220的中间抽头,从LC共振器22提供AC信号的虚拟接地端。
本发明虽用较佳实施方式说明如上,然而其并非用来限定本发明的范围,任何本领域中技术人员,在不脱离本发明的精神和范围内,做的任何更动与改变,都在本发明的保护范围内,具体以权利要求界定的范围为准。

Claims (17)

1.一种集成电路,包含:
偏压电路,产生第一偏压电压与第二偏压电压;
LC共振电路,产生具有振荡频率的振荡信号;以及
电流模式逻辑分频器,耦接至上述偏压电路与上述LC共振电路,由上述第一偏压电压与上述第二偏压电压偏压,并接收上述振荡信号,以产生具有输出频率的输出信号,上述输出频率是上述振荡频率的一比值,
其中上述振荡信号包含AC与DC成分,上述电流模式逻辑分频器接收上述AC成分以决定注入频率并重复使用上述DC成分,来提供末端电流以决定上述电流模式逻辑分频器的固有频率,且上述输出频率由上述注入频率与上述固有频率决定。
2.如权利要求1所述的集成电路,其特征在于,更包含去耦电容,耦接至上述电感的中间,提供AC信号一个虚拟接地。
3.如权利要求1所述的集成电路,其特征在于,上述偏压电路包含:
电流源,提供偏压电流;
偏压晶体管,耦接至上述电流源与上述电流模式逻辑分频器,配置为电流镜,以接收上述偏压电流并产生镜像电流;以及
第一偏压电阻与第二偏压电阻,耦接至上述偏压晶体管与上述电流模式逻辑分频器,接收上述镜像电流来建立上述第一偏压电压与上述第二偏压电压。
4.如权利要求1所述的集成电路,其特征在于,上述电流模式逻辑分频器包含第一电容与第二电容,耦接来自LC共振电路的上述振荡信号至上述电流模式逻辑分频器。
5.如权利要求1所述的集成电路,其特征在于,上述电流模式逻辑分频器包含:
第一末端晶体管,接收上述第一偏压电压与上述振荡信号,以产生第一末端电流;
第二末端晶体管,接收上述第二偏压电压与上述振荡信号,以产生第二末端电流;以及
第一差分晶体管对与第二差分晶体管对,分别耦接至上述LC共振电路与上述第一末端晶体管之间及上述LC共振电路与上述第二末端晶体管之间,接收上述第一末端电流与上述第二末端电流以产生上述输出信号。
6.如权利要求5所述的集成电路,其特征在于,当上述第一末端晶体管开启而上述第二末端晶体管关闭时,上述第一差分晶体管对跟踪上述输出信号,并建立输出漏极电压;当上述第一末端晶体管关闭而上述第二末端晶体管开启时,上述第二差分晶体管对锁存上述第一差分晶体管对的上述输出漏极电压。
7.如权利要求5所述的集成电路,其特征在于,上述电流模式逻辑分频器更包含:
第三末端晶体管,接收上述第一偏压电压与上述振荡信号;
第四末端晶体管,接收上述第二偏压电压与上述振荡信号;以及
第三差分晶体管对与第四差分晶体管对,分别耦接至上述LC共振电路与上述第三末端晶体管之间及上述LC共振电路与上述第四末端晶体管之间,
其中当上述第三末端晶体管开启而上述第四末端晶体管关闭时,上述第三差分晶体管对跟踪上述第一差分晶体管对的输出漏极电压;当上述第三末端晶体管关闭而上述第四末端晶体管开启时,上述第四差分晶体管对锁存上述第三差分晶体管对的上述输出漏极电压。
8.如权利要求1所述的集成电路,其特征在于,更包含电流模式逻辑缓冲器,耦接至上述电流模式逻辑分频器。
9.如权利要求1所述的集成电路,其特征在于,上述振荡信号与上述输出信号为差分信号。
10.一种锁相环电路,包含:
鉴相器,侦测参考信号与输出信号的相位差信号;
LC共振电路,耦接至上述鉴相器,接收上述相位差信号以产生具有振荡频率的振荡信号;
偏压电路,产生第一偏压电压与第二偏压电压;以及
电流模式逻辑分频器,耦接至上述偏压电路与上述LC共振电路,由上述第一偏压电压与上述第二偏压电压偏压,接收上述振荡信号以产生具有上述振荡频率的比率的输出频率的上述输出信号,
其中上述振荡信号包含AC与DC成分,上述电流模式逻辑分频器接收上述AC成分以决定注入频率并重复使用上述DC成分,来提供末端电流以决定上述电流模式逻辑分频器的固有频率,且上述输出频率由上述注入频率与上述固有频率决定。
11.如权利要求10所述的锁相环电路,其特征在于,更包含去耦电容,耦接至上述电感的中间,给AC信号提供一个虚拟接地。
12.如权利要求10所述的锁相环电路,其特征在于,上述偏压电路包含:
电流源,提供偏压电流;
偏压晶体管,耦接至上述电流源与上述电流模式逻辑分频器,被配置为电流镜,以接收上述偏压电流并产生镜像电流;以及
第一偏压电阻与第二偏压电阻,耦接至上述偏压晶体管与上述电流模式逻辑分频器,接收上述镜像电流来建立上述第一偏压电压与上述第二偏压电压。
13.如权利要求10所述的锁相环电路,其特征在于,上述电流模式逻辑分频器包含第一电容与第二电容,耦接来自LC共振电路的上述振荡信号至上述电流模式逻辑分频器。
14.如权利要求10所述的锁相环电路,其特征在于,上述电流模式逻辑分频器包含:
第一末端晶体管,接收上述第一偏压电压与上述振荡信号,以产生第一末端电流;
第二末端晶体管,接收上述第二偏压电压与上述振荡信号,以产生第二末端电流;以及
第一差分晶体管对与第二差分晶体管对,分别耦接至上述LC共振电路与上述第一末段晶体管之间及上述LC共振电路与上述第二末端晶体管之间,接收上述第一末端电流与上述第二末端电流以产生上述输出信号。
15.如权利要求14所述的锁相环电路,其特征在于,当上述第一末端晶体管开启而上述第二末端晶体管关闭时,上述第一差分晶体管对跟踪上述输出信号,并建立输出漏极电压;当上述第一末端晶体管关闭而上述第二末端晶体管开启时,上述第二差分晶体管对锁存上述第一差分晶体管对的上述输出漏极电压。
16.如权利要求14所述的锁相环电路,其特征在于,上述电流模式逻辑分频器更包含:
第三末端晶体管,接收上述第一偏压电压与上述振荡信号;
第四末端晶体管,接收上述第二偏压电压与上述振荡信号;以及
第三差分晶体管对与第四差分晶体管对,分别耦接至上述LC共振电路与上述第三末端晶体管之间及上述LC共振电路与上述第四末端晶体管之间,
其中当上述第三末端晶体管开启而上述第四末端晶体管关闭时,上述第三差分晶体管对跟踪上述第一差分晶体管对的输出漏极电压;当上述第三末端晶体管关闭而上述第四末端晶体管开启时,上述第四差分晶体管对锁存上述第三差分晶体管对的上述输出漏极电压。
17.如权利要求10所述的锁相环电路,其特征在于,更包含电流模式逻辑缓冲器,耦接至上述电流模式逻辑分频器。
CN200910169244.1A 2008-08-28 2009-08-24 集成电路及锁相环电路 Expired - Fee Related CN101662280B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/200,009 2008-08-28
US12/200,009 US7961057B2 (en) 2008-08-28 2008-08-28 Voltage controlled oscillator

Publications (2)

Publication Number Publication Date
CN101662280A true CN101662280A (zh) 2010-03-03
CN101662280B CN101662280B (zh) 2012-04-18

Family

ID=41724452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910169244.1A Expired - Fee Related CN101662280B (zh) 2008-08-28 2009-08-24 集成电路及锁相环电路

Country Status (3)

Country Link
US (1) US7961057B2 (zh)
CN (1) CN101662280B (zh)
TW (1) TW201010269A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843130A (zh) * 2012-09-18 2012-12-26 北京大学 基于cml逻辑的相位检测器
CN104105293A (zh) * 2013-04-15 2014-10-15 阮树成 直流低压电源四推挽注锁功率合成无极灯组
CN104641560A (zh) * 2012-09-12 2015-05-20 德克萨斯仪器股份有限公司 Rf逻辑分频器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139228A (ja) * 2009-12-28 2011-07-14 Renesas Electronics Corp 発振器複合回路と半導体装置並びに電流再利用方法
JP5174055B2 (ja) * 2010-02-02 2013-04-03 株式会社半導体理工学研究センター 広帯域発振回路
TW201136147A (en) * 2010-04-01 2011-10-16 Nat Univ Tsing Hua Integrated circuit capable of repeatedly using currents
US8203374B2 (en) * 2010-05-06 2012-06-19 Aeroflex Colorado Springs Inc. Electrically tunable continuous-time circuit and method for compensating a polynomial voltage-dependent characteristic of capacitance
WO2013141837A1 (en) * 2012-03-19 2013-09-26 Taner Sumesaglam Self-biased oscillator
ITRM20130467A1 (it) * 2013-08-08 2015-02-06 Stefano Perticaroli Ota based differential harmonic class c vco
US10020777B2 (en) * 2015-10-22 2018-07-10 Mediatek Inc. Voltage controlled oscillator and control method thereof
US9800249B2 (en) * 2016-02-23 2017-10-24 Qualcomm Incorporated Current steering phase control for CML circuits

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488180B2 (ja) * 2000-05-30 2004-01-19 松下電器産業株式会社 周波数シンセサイザ
US6762624B2 (en) * 2002-09-03 2004-07-13 Agilent Technologies, Inc. Current mode logic family with bias current compensation
US6765448B2 (en) * 2002-10-30 2004-07-20 Qualcomm Incorporated Self-biased VCO
US7196551B2 (en) * 2004-05-28 2007-03-27 Lattice Semiconductor Corporation Current mode logic buffer
KR100810501B1 (ko) * 2005-12-08 2008-03-07 한국전자통신연구원 광대역 다중모드 주파수 합성기 및 가변 분주기
US7605667B2 (en) * 2007-04-26 2009-10-20 Mediatek Inc. Frequency synthesizer with a harmonic locked phase/frequency detector
TW200906066A (en) * 2007-07-19 2009-02-01 Uniband Electronic Corp CMOS cross-coupled differential voltage controlled oscillator
US8970272B2 (en) * 2008-05-15 2015-03-03 Qualcomm Incorporated High-speed low-power latches

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641560A (zh) * 2012-09-12 2015-05-20 德克萨斯仪器股份有限公司 Rf逻辑分频器
CN104641560B (zh) * 2012-09-12 2017-12-12 德克萨斯仪器股份有限公司 Rf逻辑分频器
CN102843130A (zh) * 2012-09-18 2012-12-26 北京大学 基于cml逻辑的相位检测器
CN102843130B (zh) * 2012-09-18 2014-10-08 北京大学 基于cml逻辑的相位检测器
CN104105293A (zh) * 2013-04-15 2014-10-15 阮树成 直流低压电源四推挽注锁功率合成无极灯组

Also Published As

Publication number Publication date
US7961057B2 (en) 2011-06-14
US20100052803A1 (en) 2010-03-04
CN101662280B (zh) 2012-04-18
TW201010269A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
CN101662280B (zh) 集成电路及锁相环电路
US9374100B2 (en) Low power LO distribution using a frequency-multiplying subharmonically injection-locked oscillator
EP2474093B1 (en) Divide-by-two injection-locked ring oscillator circuit
US7522008B2 (en) Injection locker frequency divider
US7965108B2 (en) Frequency synthesizer
US6867656B2 (en) Self-dividing oscillators
Betancourt-Zamora et al. 1-GHz and 2.8-GHz CMOS injection-locked ring oscillator prescalers
JP6092286B2 (ja) 低位相ノイズvcoにおける粗同調バンクスイッチおよび温度補償回路
Moghavvemi et al. Recent advances in delay cell VCOs [application notes]
US6608529B2 (en) Frequency synthesis apparatus, systems, and methods
Tong et al. An injection-locked frequency divider with multiple highly nonlinear injection stages and large division ratios
Gupta et al. High speed CMOS charge pump circuit for PLL applications using 90nm CMOS technology
Singh et al. Fully integrated CMOS frequency synthesizer for ZigBee applications
Khan et al. A low power frequency synthesizer for 60-GHz wireless personal area networks
Bagheri et al. An ultra‐low power and low jitter frequency synthesizer for 5G wireless communication and IoE applications
US8971718B2 (en) Down-sampling clock and data recovery circuit having selectable rate and phase output and method of operation thereof
JP2020195059A (ja) サブサンプリング位相同期回路
JP2020195058A (ja) 電圧制御発振器
Zhang et al. A 2.9 GHz CMOS Phase-Locked Loop with Improved Ring Oscillator
Nouri et al. A900MHz-2GHz low-swing low-power 0.18/spl mu/m CMOS PLL
Mahalingam et al. Frequency Synthesizer
Asadian et al. A low power 9GHz divide-by-3 injection locked frequency divider in 0.18 μm CMOS with 15% locking range
Zheng et al. Compact CMOS VCO using a transistor for frequency control
Jafarbeiki et al. A super harmonic injection-locked oscillator in 0.18 μm CMOS technology
Liu CMOS building blocks for 10+ Gb/s clock data recovery circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120418

Termination date: 20160824