CN101631395B - 无线传感器网络中运动目标定位的干扰噪声去噪方法 - Google Patents

无线传感器网络中运动目标定位的干扰噪声去噪方法 Download PDF

Info

Publication number
CN101631395B
CN101631395B CN2009101843795A CN200910184379A CN101631395B CN 101631395 B CN101631395 B CN 101631395B CN 2009101843795 A CN2009101843795 A CN 2009101843795A CN 200910184379 A CN200910184379 A CN 200910184379A CN 101631395 B CN101631395 B CN 101631395B
Authority
CN
China
Prior art keywords
particle
algorithm
current
sampling
wireless sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101843795A
Other languages
English (en)
Other versions
CN101631395A (zh
Inventor
陈昊
邱晓晖
褚家美
赵阳
王星
徐炀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN2009101843795A priority Critical patent/CN101631395B/zh
Publication of CN101631395A publication Critical patent/CN101631395A/zh
Application granted granted Critical
Publication of CN101631395B publication Critical patent/CN101631395B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

无线传感器网络中运动目标定位的干扰噪声去噪方法涉及的是在无线传感器网络(WSN)中运动目标定位的干扰噪声去噪方法,为无线传感器网络在受到噪声干扰的环境下能够准确而快速的定位出运动目标的实际位置所采用的滤波器的设计提供前提基础,根据无线传感器网络对运动目标定位精度的要求而选择对UPF算法中的一部分粒子应用UKF滤波算法以获得更好的重要性函数。对于精度要求高的场合应用UKF滤波算法的粒子数较多,而对于精度要求相对较底的场合应用UKF滤波算法的粒子数较少,为无线传感器网络在受到噪声干扰的环境下能够准确而快速的定位出运动目标的实际位置所采用的滤波器的设计提供前提基础。

Description

无线传感器网络中运动目标定位的干扰噪声去噪方法
技术领域
本发明涉及的是在无线传感器网络(WSN)中运动目标定位的干扰噪声去噪方法,为无线传感器网络在受到噪声干扰的环境下能够准确而快速的定位出运动目标的实际位置所采用的滤波器的设计提供前提基础,属于数字信号处理在无线传感器网络中应用的技术领域。
背景技术
粒子滤波(PF)算法和无迹卡尔曼滤波(UKF)算法是在受到噪声干扰的信号中恢复原始信号的有效措施。PF算法的关键是选择合理的重要性抽样函数,常见的选取办法是用状态的先验概率分布作为重要性抽样函数,这种选取方法不能利用当前时刻的测量值,使得重要性抽样函数在很大程度上依赖于系统模型如果模型不准确,或者量测噪声突然增大,则这种重要性抽样函数不能有效表示真实分布,对当前时刻运动目标的真实状态的估计会产生较大的误差。UKF算法采用了一种特殊的采样策略,对非线性函数的概率密度分布进行近似,使得非线性函数统计量的精度至少达到二阶,而UKF算法对干扰噪声特性的要求较高,对滤波精度要求精度更高的场合并不适用。UPF算法是在PF算法的基础上利用UKF算法以获得更好的重要性函数。UPF算法能够将最新观测量引入状态估计,从而大大降低了粒子滤波采样的盲目性,与PF和UKF算法相比滤波精度有了很大的提高。UPF算法对PF算法的每一个抽样粒子采用UKF算法以获得更好的重要性函数,在提高滤波精度的同时大大的增加了算法的运算量,从而降低了算法的实时性。因此,设计一种精度高而且运算简单的滤波算法有着重要意义。
发明内容
技术问题:为了既考虑当前量测值和先验概率对后验概率分布的影响,又减少计算量,本发明提出了一种无线传感器网络中运动目标定位的干扰噪声去噪方法,在保证滤波精度的同时又减少了计算量,从而提高了滤波过程的实时性。
技术方案:由于不同的场合对目标跟踪的精度要求有所不同,因此本发明根据对目标跟踪精度的要求而选择对UPF算法中的一部分粒子应用以获得更好的重要性函数。UKF算法是目前常用的粒子滤波算法,该算法用二阶函数对非线性概率密度分布进行近似,其滤波精度和运算量与粒子数之间的关系是矛盾的。本发明提出的改进UPF算法结合网络中不同场合的精度要求选取UKF算法的粒子数,对于精度要求高的场合应用UKF滤波算法的粒子数较多,而对于精度要求相对较低的场合应用UKF滤波算法的粒子数较少,这样既减少了计算量,又保证了跟踪精度。无线传感器网络中运动目标定位的干扰噪声去噪方法即改进的UPF算法具体步骤如下:
1)设向量x0是运动目标的状态初值,是由目标的初始位置坐标和初始速度构成的一维向量。根据状态初值x0的概率分布密度函数p(x0)抽样得到N个粒子
Figure GSB00000236827000021
并令每个粒子的滤波权值为
Figure GSB00000236827000022
其中i=1,…,N;
2)根据当前时刻的观测值对上一时刻所产生N个粒子中的l·N个重要粒子采用UKF算法,得出对当前状态估计的后验概率分布函数,并对所得出每个后验概率分布函数抽样,产生当前时刻的l·N个粒子,其中0<l<1。同时,对上一时刻所产生N个粒子中其余的(1-l)·N个粒子从对当前状态估计的先验概率分布中产生(1-l)·N个粒子;
3)对步骤2)所产生的l·N和(1-l)·N个粒子分别利用公式
Figure GSB00000236827000023
i=1,2,…,l·N和
Figure GSB00000236827000024
i=l·N+1,l·N+2,…,N对当前权值进行更新,并根据
Figure GSB00000236827000025
对当前权值进行归一化。其中k+1为当前时刻,k为上一时刻,zk+1为当前时刻的测量向量,z0:k+1为初始到当前时刻的测量向量,
Figure GSB00000236827000026
Figure GSB00000236827000027
为先验概率分布,
Figure GSB00000236827000028
为UPF算法中的重要性分布函数;
4)计算
Figure GSB00000236827000029
Neff为有效采样粒子数,以判断是否要进行重抽样,如果Neff<Nthreshold,则对采样粒子样本集
Figure GSB000002368270000210
重抽样,其中Nthreshold为根据需要设定的阈值,通常取Nthreshold=N/2;
5)对当前状态进行更新
Figure GSB000002368270000211
其中
Figure GSB000002368270000212
是当前的第i个粒子状态,
Figure GSB000002368270000213
是该粒子对应的权值,xk+1是对当前状态的估计值。
有益效果:本发明是对已有的UPF算法进行了改进而提出的一种改进的UPF算法。改进的UPF算法不必对UPF算法中所有的抽样粒子应用UKF算法,而只对其中的一部分粒子应用UKF算法,从而在保证了滤波精度的同时又减少了计算量,提高了滤波过程的实时性。
本发明利用改进的UPF算法在无线传感器网络(WSN)中对运动目标定位过程中的干扰噪声去噪。本发明根据无线传感器网络对运动目标定位精度和定位实时性的不同要求而选择对UPF算法中的部分抽样粒子应用UKF算法以获得更好的重要性函数。对于精度要求高的场合应用UKF滤波算法的粒子数较多,而对于精度要求相对较底的场合应用UKF滤波算法的粒子数较少,从而保证了定位精度又减少的计算量,提高了系统的实时性。为无线传感器网络在受到噪声干扰的环境下能够准确而快速的定位出运动目标的实际位置所采用的滤波器的设计提供前提基础。
附图说明
图1是无线传感器网络中运动目标模拟轨迹的生成。其中,虚线(- - -)表示无线传感器网络中运动目标模拟实际轨迹,星号点(*)表示轨迹观测值,菱形点(◆)代表传感器的节点。
具体实施方式
本发明的无线传感器网络中运动目标定位的干扰噪声去噪方法具体实施步骤如下:
1)设向量x0是运动目标的状态初值,是由目标的初始位置坐标和初始速度构成的一维向量。根据状态初值x0的概率分布密度函数p(x0)抽样得到N个粒子状态
Figure GSB00000236827000031
i=1,…,N,并令每个粒子的滤波权值为
Figure GSB00000236827000032
i=1,…,N;
2)根据当前时刻的观测值对上一时刻所产生N个粒子中的l·N个重要粒子采用UKF算法,得出对当前状态估计的后验概率分布函数,并对所得出每个后验概率分布函数抽样,产生当前时刻的l·N个粒子,其中0<l<1。同时,对上一时刻所产生N个粒子中其余的(1-l)·N个粒子从对当前状态估计的先验概率分布中产生(1-l)·N个粒子;
3)对步骤2)所产生的l·N和(1-l)·N个粒子分别利用公式
Figure GSB00000236827000033
i=1,2,…,l·N和
Figure GSB00000236827000041
i=l·N+1,l·N+2,…,N对当前权值进行更新,并根据
Figure GSB00000236827000042
对当前权值进行归一化。其中k+1为当前时刻,k为上一时刻,zk+1为当前时刻的测量向量,z0:k+1为初始到当前时刻的测量向量,
Figure GSB00000236827000043
Figure GSB00000236827000044
为先验概率分布,为UKF算法中的重要性分布函数;
4)计算Neff为有效采样粒子数,以判断是否要进行重抽样,如果Neff<Nthreshold,则对采样粒子样本集
Figure GSB00000236827000047
重抽样,其中Nthreshold为根据需要设定的阈值,通常取Nthreshold=N/2;
5)对当前状态进行更新其中是当前的第i个粒子状态,
Figure GSB000002368270000410
是该粒子对应的权值,xk+1是对当前状态的估计值。
下面结合具体实施例和附图,对本发明作进一步详细说明。
首先在一个大小为200×100m2的平面区域内模拟目标的运动轨迹。图1是坐标系统中的模拟轨迹,通过状态方程和测量方程模拟生成的目标轨迹,在传感器距目标的实际物理距离的基础上,加上一个服从正态分布规律的随机数来模拟传感器对目标实施测距后获得的数据。图中虚线(- - -)是模拟生成轨迹的实际位置,星号点(*)是对采样点位置的测量值,菱形点(◆)是传感器节点。利用图1中采样点位置的的测量值分别采用PF算法、UPF算法和改进后的UPF算法(l=0.3)对原始运动轨迹进行还原滤波,滤波的误差及均方误差(RMS)情况如表1所示。比较三种滤波算法的滤波效果后可以看出,改进后的UPF算法的滤波误差介于PF和UPF算法之间,其性能优于PF算法、与UPF算法相接近。
         表1 三种滤波算法的滤波误差RMS比较
Figure GSB00000236827000051
在实验中,我们除计算比较了PF、UPF和改进后UPF算法的滤波还原性能外,还计算了各算法完成单目标跟踪的仿真时间,实验统计结果如表2所示。
           表2 UPF和改进的UPF跟踪精度与实时性比较
滤波方法           RMS          一次滤波所需时间/s
UPF                1.1197       2.5828
改进的UPF          1.5061       1.2137
由表2可以看出,相同实验条件下,UPF与改进的UPF跟踪精度相当,但后者的运算时间大大减少。这是由于改进的UPF算法只对其中的一部分粒子进行UKF算法,从而大大的提高了算法的运算时间。通过仿真可以得知,改进的UPF算法在保证运算数值稳定性的同时,提高了算法的运算速度。

Claims (1)

1.一种无线传感器网络中运动目标定位的干扰噪声去噪方法,其特征在于该方法具体步骤如下:
1)设向量x0是运动目标的状态初值,是由目标的初始位置坐标和初始速度构成的一维向量,根据状态初值x0的概率分布密度函数p(x0)抽样得到N个粒子并令每个粒子的滤波权值为
Figure FSB00000236826900012
其中i=1,…,N;
2)根据当前时刻的观测值对上一时刻所产生N个粒子中的l·N个重要粒子采用无迹卡尔曼滤波算法,得出对当前状态估计的后验概率分布函数,并对所得出每个后验概率分布函数抽样,产生当前时刻的l·N个粒子,其中0<l<1;同时,对上一时刻所产生N个粒子中其余的(1-l)·N个粒子从对当前状态估计的先验概率分布中产生(1-l)·N个粒子;
3)对步骤2)所产生的l·N和(1-l)·N个粒子分别利用公式
Figure FSB00000236826900013
i=1,2,…,l·N和
Figure FSB00000236826900014
i=l·N+1,l·N+2,…,N对当前权值进行更新,并根据
Figure FSB00000236826900015
对当前权值进行归一化;其中k+1为当前时刻,k为上一时刻,zk+1为当前时刻的测量向量,z0:k+1为初始到当前时刻的测量向量,
Figure FSB00000236826900016
Figure FSB00000236826900017
为先验概率分布,
Figure FSB00000236826900018
为UKF算法中的重要性分布函数;
4)计算
Figure FSB00000236826900019
Neff为有效采样粒子数,以判断是否要进行重抽样,如果Neff<Nthreshold,则对采样粒子样本集
Figure FSB000002368269000110
重抽样,其中Nthreshold为根据需要设定的阈值,取Nthreshold=N/2;
5)对当前状态进行更新
Figure FSB000002368269000111
其中
Figure FSB000002368269000112
是当前的第i个粒子状态,
Figure FSB000002368269000113
是该粒子对应的权值,xk+1是对当前状态的估计值。
CN2009101843795A 2009-08-19 2009-08-19 无线传感器网络中运动目标定位的干扰噪声去噪方法 Expired - Fee Related CN101631395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101843795A CN101631395B (zh) 2009-08-19 2009-08-19 无线传感器网络中运动目标定位的干扰噪声去噪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101843795A CN101631395B (zh) 2009-08-19 2009-08-19 无线传感器网络中运动目标定位的干扰噪声去噪方法

Publications (2)

Publication Number Publication Date
CN101631395A CN101631395A (zh) 2010-01-20
CN101631395B true CN101631395B (zh) 2011-01-05

Family

ID=41576279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101843795A Expired - Fee Related CN101631395B (zh) 2009-08-19 2009-08-19 无线传感器网络中运动目标定位的干扰噪声去噪方法

Country Status (1)

Country Link
CN (1) CN101631395B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075268B (zh) * 2010-12-31 2013-10-23 哈尔滨工业大学深圳研究生院 基于粒子群优化方法的噪声增强分布检测方法及系统
CN102752785B (zh) * 2012-07-06 2015-05-27 上海交通大学 一种无线传感网中干扰模型测量方法及装置
CN105517147B (zh) * 2015-12-02 2019-01-01 浙江大学 基于分块迭代的分布式目标定位方法
CN108834072B (zh) * 2017-05-03 2020-08-11 腾讯科技(深圳)有限公司 移动轨迹的获取方法及装置
WO2021184320A1 (zh) * 2020-03-19 2021-09-23 华为技术有限公司 车辆定位方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055563A (zh) * 2007-05-21 2007-10-17 北京理工大学 基于多建议分布的粒子滤波方法
CN101059349A (zh) * 2007-05-18 2007-10-24 南京航空航天大学 微型组合导航系统及自适应滤波方法
CN101082494A (zh) * 2007-06-19 2007-12-05 北京航空航天大学 一种基于预测滤波和upf航天器自标定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059349A (zh) * 2007-05-18 2007-10-24 南京航空航天大学 微型组合导航系统及自适应滤波方法
CN101055563A (zh) * 2007-05-21 2007-10-17 北京理工大学 基于多建议分布的粒子滤波方法
CN101082494A (zh) * 2007-06-19 2007-12-05 北京航空航天大学 一种基于预测滤波和upf航天器自标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曾凡仔等.一种能量有效的无线传感网络节点跟踪算法.《湖南大学学报(自然科学版)》.2009,第36卷(第1期),第81-84页. *
李景熹等.UPF 算法及其在目标跟踪问题中的应用.《系统仿真学报》.2007,第19卷(第3期),第675-677页. *

Also Published As

Publication number Publication date
CN101631395A (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
Chen et al. An improved DV-Hop localization algorithm for wireless sensor networks
CN101631395B (zh) 无线传感器网络中运动目标定位的干扰噪声去噪方法
CN103310115B (zh) 一种多目标跟踪的杂波估计方法
CN104375117B (zh) 目标定位方法及系统
CN103383261A (zh) 一种改进型无损卡尔曼滤波室内动目标定位方法
US20190049231A1 (en) Device and method for generating geomagnetic sensor based location estimation model using artificial neural networks
CN107703480A (zh) 基于机器学习的混合核函数室内定位方法
CN104793182A (zh) 非高斯噪声条件下基于粒子滤波的室内定位方法
CN109142896A (zh) 基于三维大气电场和memd的雷电预警方法
CN111711432B (zh) 一种基于ukf和pf混合滤波的目标跟踪算法
WO2021243869A1 (zh) 雷达目标跟踪方法、装置、电子设备及存储介质
CN110702093B (zh) 基于粒子滤波的定位方法、装置、存储介质及机器人
CN114236480A (zh) 一种机载平台传感器系统误差配准算法
CN110233608A (zh) 一种基于权值自适应的粒子滤波方法和雷达系统
CN103544328A (zh) 一种基于Hadoop的并行k均值聚类方法
CN108469609A (zh) 一种用于雷达目标跟踪的检测信息滤波方法
CN115494450B (zh) 一种高精度的超宽带室内定位跟踪与控制方法及装置
CN111385757B (zh) 一种用于室内定位WiFi指纹库设备异构性的消除技术
Wang et al. Adaptive unscented particle filter based on predicted residual
CN114051207A (zh) 信号干扰下超宽带精确定位方法、装置及电子设备
CN104572576A (zh) 物体接近中碰撞分析的快速解析方法
CN105938623B (zh) 一种基于双向反馈粒子滤波算法的实时二维目标跟踪方法
CN118011400A (zh) 基于自适应平方根容积卡尔曼的单矢量水听器目标跟踪方法及系统
Li et al. Weighted measurement fusion Fitting Kalman Filter for Multi-sensor Nonlinear Systems
Mazomenos et al. A range-only tracking algorithm for wireless sensor networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110105

Termination date: 20170819

CF01 Termination of patent right due to non-payment of annual fee