CN101609890A - 具有核-壳结构的材料 - Google Patents

具有核-壳结构的材料 Download PDF

Info

Publication number
CN101609890A
CN101609890A CNA2009101342927A CN200910134292A CN101609890A CN 101609890 A CN101609890 A CN 101609890A CN A2009101342927 A CNA2009101342927 A CN A2009101342927A CN 200910134292 A CN200910134292 A CN 200910134292A CN 101609890 A CN101609890 A CN 101609890A
Authority
CN
China
Prior art keywords
tin
composite particles
shell
anode
kernel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009101342927A
Other languages
English (en)
Inventor
C·鲁尔斯
J·菲利普斯
M·N·理查德
K·L·斯塔姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of New Mexico UNM
Toyota Motor Engineering and Manufacturing North America Inc
Original Assignee
University of New Mexico UNM
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of New Mexico UNM, Toyota Engineering and Manufacturing North America Inc filed Critical University of New Mexico UNM
Priority to CN201510044766.4A priority Critical patent/CN104638239B/zh
Publication of CN101609890A publication Critical patent/CN101609890A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

公开了一种具有复合颗粒的材料。该复合颗粒包括外壳和内核,所述外壳含有如碳、氮、氧和硫的元素,所述内核由锂合金化材料如锡、硅、铝和/或锗制成。如果外壳由碳制成,则复合颗粒的外壳具有小于20nm的平均厚度,且复合颗粒具有小于100nm的外部平均直径。在一些情形中,内核由锡、锡二元合金、锡三元合金和锡四元合金制成。

Description

具有核-壳结构的材料
政府权利
本发明是在由美国能源部签署的No.DE-AC52-06NA25396合同利用美国政府的支持而完成的。在本发明中,美国政府具有一定的权利。
技术领域
本发明涉及一种材料,特别是具有核-壳结构的材料。
背景技术
对电池的能量要求持续增长,而在体积和质量方面的限制却持续存在。此外,对安全、低成本和环境友好材料的需求也在增长。使用常规锂离子电池化学物质不能满足这些需求和电池的技术要求。尽管锂离子电池已经得到优化且显示了稳定的能量,这些系统受到了锂的量的限制,所述锂可以可逆地嵌入电池的活性材料结构中和从其中移出。
对于更高性能、安全、低成本和环境友好材料的需求只能通过开发新的电池材料来实现。研究人员已提出了用锡取代碳基阳极。在电池的充电期间,锡与锂合金化。锂锡合金形成了每1个锡原子4.4个锂原子的最大浓度,该浓度相当于993mAh/g的容量。常规碳基阳极具有372mAh/g的理论容量。因此,用锡基阳极电池取代常规碳基阳极电池能够产生更高的能量容量。
研究显示,使用锡基阳极存在两个主要问题。第一为差的循环寿命,而第二为差的锡利用率。差的循环寿命定义为作为充电-放电循环次数的函数的不良的电池能量保持率。研究人员已采用两种方法解决这些问题。首先,通过形成锡和至少一种其它金属的金属间化合物,其次,通过向阳极复合物添加非电化学活性材料。然而,现有的研究不能解决锂锡电池的不良性能的基本原因,所述原因为:1)充电时锂与锡的合金化所产生的锡锂颗粒的大的体积膨胀;及2)在上述体积膨胀期间锡团聚物的破碎。体积膨胀在后续循环期间导致了锡颗粒从基质中分离,而锡团聚物的破碎导致具有暴露的新表面区域的细颗粒。该新表面区域与基质不接触,因此如锡颗粒从基质中分离一样,导致了电池容量的降低。因此,需要具有足够循环寿命和适当的锡利用率的锂锡电池。
发明内容
所公开的是具有复合颗粒的材料。该复合颗粒包括含有例如碳、氮、氧或硫元素的外壳和由锂合金化材料如锡、硅、铝和/或锗制成的内核。如果外壳由碳制成,则复合颗粒的外壳具有小于20nm的平均厚度,且复合颗粒具有小于100nm的外部平均直径。在一些情形中,内核由锡、锡二元合金、锡三元合金或锡四元合金制成。
附图说明
图1是依据本发明实施方案的材料的截面示意图;
图2是用于本发明实施方案的制备方法的流程图;
图3是具有锡核的碳外壳的透射电子显微图像。
具体实施方式
本发明包括由复合颗粒制成的材料,所述复合颗粒具有外壳和内核。该内核由锂合金化材料制成,而外壳是电子导体、离子导体和/或混合导体。在电池工作期间,壳可以与锂可逆地反应或者可以不与锂可逆地反应,以提供额外的能量。应理解,如果壳与锂可逆地反应,则其能够通过抑制锂在阳极表面的镀覆而在过充电方面提供安全缓冲。因此,该材料可用于电化学装置。
在一些情形中,在使用该材料期间,核是实心的。例如,内核可以由锂合金化材料制成,示例性地包括锡、二元锡合金、三元锡合金等。应理解,可组合多个复合颗粒以制备电极,该电极是电化学装置的一部分。
还公开了制备复合颗粒的方法。该方法包括提供具有外壳和内核成分(component)的前体粉末。在气体中悬浮该前体材料粉末以形成气溶胶,然后使气溶胶通过等离子炬的热区。使前体粉末通过等离子炬会产生核-壳复合颗粒,其中核通常占据外壳内部容积的100%。
现在转向图1,以标记10总体表示由依据本发明实施方案的复合颗粒制成的材料。材料10包括复合颗粒100,该颗粒100具有外壳110和内核120。应理解,内核120可以包括2个独立容积,芯核材料的第一容积和孔隙空间的第二容积。在替代方案中,内核120可以仅包括芯核材料的一个容积。
内核120可以由锂合金化材料制成,示例性地包括锡、硅、铝、锗、及其组合和合金。外壳110还可以由各种材料制成。例如,如氧化物、碳酸盐、卤化物、碳化物、石墨、石墨烯(graphene)、蒽和无定形碳的材料可用于形成复合颗粒的外壳,只要所获的外壳是电子导体、离子导体和/或混合导体即可。
复合颗粒100的外部平均直径小于1000nm,在一些情形中可以小于500nm,或者在替代方案中小于100nm。如果外壳110由碳制成,则外部直径小于100nm。在其它情形中,复合颗粒100的外部平均直径小于70nm,而在另外情形中,外部平均直径小于50nm。外壳110的平均壁厚小于200nm,在一些情形中,可以小于100nm,或者在替代方案中,小于20nm。如果外壳110由碳制成,则外部直径小于20nm。
在图2中示例性地显示了制备本文公开的材料的方法。该方法包括在步骤200中提供含有所述材料的前体粉末,所述材料至少部分构成外壳和内核,且在步骤210中使前体粉末通过等离子炬。在步骤210中使前体粉末通过等离子炬时,在步骤220中制备核-壳粉末,例如图1所示的多个复合颗粒100。如果需要这样,可以在步骤230中由在步骤220中制备的复合颗粒制成电极。应理解,可以这样制备复合颗粒100,使得内核120是预锂化(prelithiated)的锂合金化材料,即内核120由在形成复合颗粒100时已经与锂合金化的材料制成。
为了更好理解上述实施方案,提供了复合颗粒及其制备方法的实施例。
实施例
为制备碳壳-锡核复合颗粒,制备了锡与蒽比为50∶1的干燥的前体粉末。应理解,其它芳族焦炭形成化合物如萘或苊(acenaphthalene)可用于提供碳材料。在氩气中悬浮前体粉末,由此制备具有蒽和锡的氩气气溶胶气体。使该气溶胶气体穿过具有集中于耦合器中的微波能量的低功率大气压或近大气压等离子。应理解,还可以使用其它方法产生的等离子。除了气溶胶气体,使二次供给的氩气穿过等离子区域。
不受理论束缚,本发明人认为穿过等离子热区时,前体粉末中的碳经历了形成碳碎片的碳化机制。此外,前体粉末中的锡熔化并当冷却时通过成核过程形成颗粒。碳碎片聚集于相同的核(锡)上,并基于相对混溶性偏析到核的表面。成核颗粒从热区离开进入余辉区,在该区中不发生进一步的生长。
图3显示了透射电子显微图像,其中使用蒽锡前体粉末制备了具有碳外壳和锡核的复合颗粒,氩气气溶胶气流流量为300立方厘米每分钟(cc/min),氩等离子气流流量为200cc/min,且发送的微波功率为900瓦。如该图所示,采用碳外壳和锡核制备了外部平均直径为50-100nm的复合颗粒。在该方法的这一步骤,锡核基本占据了碳外壳中的所有内部容积。
应理解,以上给出的实施例仅用于说明目的,本发明还包括其它制备具有外壳和核的复合颗粒的方法,所述核具有减小的尺寸,使得核可以在外壳中发生膨胀而所述外壳不破坏。
以上的附图、讨论和描述是对本发明特定实施方案的说明,但其并不意在对本发明的实施的限制。鉴于本文给出的教导,对本领域技术人员来说,本发明的多种修改和变体是显而易见的。在以下权利要求书(包括所有等价物)中界定了本发明的范围。

Claims (19)

1.一种材料,包含:
具有外壳和内核的复合颗粒,所述外壳含有选自氮、氧和硫的元素,所述内核由锂合金化材料制成,所述锂合金化材料含有选自锡、硅、铝和锗的元素;
所述复合颗粒具有小于1000nm的外部平均直径。
2.权利要求1的材料,还包含由碳制成的外壳,所述复合颗粒具有小于100nm的外部直径。
3.权利要求2的材料,其中所述外壳具有小于20nm的平均厚度。
4.权利要求3的材料,其中所述复合颗粒具有小于70nm的外部平均直径。
5.权利要求3的材料,其中所述复合颗粒具有小于50nm的外部平均直径。
6.权利要求1的材料,其中所述内核由锂合金化材料制成,所述锂合金化材料选自锡、锡二元合金、锡三元合金和锡四元合金。
7.用于锂电池的阳极,所述阳极包含:
具有外壳和内核的复合颗粒,所述外壳含有选自氮、氧和硫的元素,所述内核由锂合金化材料制成,所述锂合金化材料含有选自锡、硅、铝和锗的元素;
所述复合颗粒具有小于1000nm的外部平均直径。
8.权利要求7的材料,还包含由碳制成的外壳,所述复合颗粒具有小于100nm的外部直径。
9.权利要求8的阳极,其中所述复合颗粒的所述外壳具有小于20nm的平均厚度。
10.权利要求9的阳极,其中所述复合颗粒具有小于70nm的外部平均直径。
11.权利要求10的阳极,其中所述复合颗粒具有小于50nm的外部平均直径。
12.权利要求7的阳极,其中所述内核由锂合金化材料制成,所述锂合金化材料选自锡、锡二元合金、锡三元合金和锡四元合金。
13.权利要求7的阳极,还包含粘结剂。
14.用于锂电池的阳极,所述阳极包含:
具有外壳和内核的复合颗粒,所述外壳含有选自碳、氮、氧和硫的元素,所述内核由锂合金化材料制成,所述锂合金化材料含有选自锡、硅、铝和锗的元素;
所述复合颗粒具有小于100nm的外部平均直径,且所述外壳具有小于20nm的平均厚度。
15.权利要求14的阳极,其中所述复合颗粒具有小于70nm的外部平均直径。
16.权利要求15的阳极,其中所述复合颗粒具有小于50nm的外部平均直径。
17.权利要求14的阳极,其中所述外壳是碳。
18.权利要求14的阳极,其中所述内核由锂合金化材料制成,所述锂合金化材料选自锡、锡二元合金、锡三元合金和锡四元合金。
19.权利要求14的阳极,还包含粘结剂。
CNA2009101342927A 2008-06-20 2009-04-16 具有核-壳结构的材料 Pending CN101609890A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510044766.4A CN104638239B (zh) 2008-06-20 2009-04-16 具有核‑壳结构的材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/142,933 US20090317719A1 (en) 2008-06-20 2008-06-20 Material With Core-Shell Structure
US12/142,933 2008-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510044766.4A Division CN104638239B (zh) 2008-06-20 2009-04-16 具有核‑壳结构的材料

Publications (1)

Publication Number Publication Date
CN101609890A true CN101609890A (zh) 2009-12-23

Family

ID=41431609

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510044766.4A Expired - Fee Related CN104638239B (zh) 2008-06-20 2009-04-16 具有核‑壳结构的材料
CNA2009101342927A Pending CN101609890A (zh) 2008-06-20 2009-04-16 具有核-壳结构的材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510044766.4A Expired - Fee Related CN104638239B (zh) 2008-06-20 2009-04-16 具有核‑壳结构的材料

Country Status (3)

Country Link
US (1) US20090317719A1 (zh)
JP (1) JP2010003676A (zh)
CN (2) CN104638239B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855368A (zh) * 2012-11-29 2014-06-11 华为技术有限公司 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN104979536A (zh) * 2014-04-10 2015-10-14 宁德新能源科技有限公司 锂离子电池阳极活性材料及其制备方法
CN110842192A (zh) * 2019-11-13 2020-02-28 四川大学 一种氮掺杂多孔碳包覆储氢合金粉末及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE054466T2 (hu) * 2009-05-19 2021-09-28 Oned Mat Inc Nanoszerkezetû anyagok akkumulátor alkalmazásokhoz
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
GB2500611A (en) * 2012-03-26 2013-10-02 Cambridge Entpr Ltd Powder comprising carbon nanostructures and method of preparation
KR101425437B1 (ko) 2012-08-03 2014-07-31 (주)오렌지파워 음극 재료, 이의 제조 방법 및 이를 이용한 이차 전지

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109979C2 (de) * 1990-03-28 2000-03-30 Nisshin Flour Milling Co Verfahren zur Herstellung beschichteter Teilchen aus anorganischen oder metallischen Materialien
JP2991884B2 (ja) * 1993-02-16 1999-12-20 シャープ株式会社 非水系二次電池
US5456986A (en) * 1993-06-30 1995-10-10 Carnegie Mellon University Magnetic metal or metal carbide nanoparticles and a process for forming same
EP0706709A1 (en) * 1993-06-30 1996-04-17 Carnegie Mellon University Metal, alloy, or metal carbide nanoparticles and a process for forming same
US5547748A (en) * 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5989648A (en) * 1997-05-06 1999-11-23 The Penn State Research Foundation Plasma generation of supported metal catalysts
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US7517606B2 (en) * 1998-02-24 2009-04-14 Cabot Corporation Fuel cells and batteries including metal-carbon composite powders
US6689192B1 (en) * 2001-12-13 2004-02-10 The Regents Of The University Of California Method for producing metallic nanoparticles
US7357910B2 (en) * 2002-07-15 2008-04-15 Los Alamos National Security, Llc Method for producing metal oxide nanoparticles
JP4188156B2 (ja) * 2003-06-24 2008-11-26 株式会社東芝 粒子形成方法及び粒子形成装置
RU2242532C1 (ru) * 2003-09-09 2004-12-20 Гуревич Сергей Александрович Способ получения наночастиц
CN100367543C (zh) * 2004-08-17 2008-02-06 比亚迪股份有限公司 一种锂合金复合材料及其制备方法、负极材料、负极结构体及锂二次电池
KR100814617B1 (ko) * 2005-10-27 2008-03-18 주식회사 엘지화학 이차 전지용 전극활물질
CN100422076C (zh) * 2005-11-17 2008-10-01 复旦大学 硅/炭核壳结构纳米复合材料及其制备方法和用途
KR100728160B1 (ko) * 2005-11-30 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
US20070160899A1 (en) * 2006-01-10 2007-07-12 Cabot Corporation Alloy catalyst compositions and processes for making and using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855368A (zh) * 2012-11-29 2014-06-11 华为技术有限公司 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN103855368B (zh) * 2012-11-29 2016-03-30 华为技术有限公司 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN104979536A (zh) * 2014-04-10 2015-10-14 宁德新能源科技有限公司 锂离子电池阳极活性材料及其制备方法
CN104979536B (zh) * 2014-04-10 2018-05-29 宁德新能源科技有限公司 锂离子电池及其阳极片、阳极活性材料的制备方法
CN110842192A (zh) * 2019-11-13 2020-02-28 四川大学 一种氮掺杂多孔碳包覆储氢合金粉末及其制备方法

Also Published As

Publication number Publication date
US20090317719A1 (en) 2009-12-24
CN104638239B (zh) 2017-07-21
CN104638239A (zh) 2015-05-20
JP2010003676A (ja) 2010-01-07

Similar Documents

Publication Publication Date Title
Liang et al. Bowl‐like SnO2@ carbon hollow particles as an advanced anode material for lithium‐ion batteries
US8057900B2 (en) Material with core-shell structure
CN110556529A (zh) 具有多层核壳结构的负极复合材料及其制备方法和应用
JP2022518585A (ja) シリコン複合物負極材料、その調製方法及びリチウムイオン電池
WO2022016951A1 (zh) 硅基负极材料、负极和锂离子电池及其制备方法
CN101609890A (zh) 具有核-壳结构的材料
Liang et al. Cobalt chalcogenides/cobalt phosphides/cobaltates with hierarchical nanostructures for anode materials of lithium‐ion batteries: improving the lithiation environment
Liu et al. Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications
Jiang et al. A tin disulfide nanosheet wrapped with interconnected carbon nanotube networks for application of lithium sulfur batteries
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
CN109461890A (zh) 硅碳负极材料、其制备方法及锂离子电池
Chen et al. Synthesis and characterization of silicon nanoparticles inserted into graphene sheets as high performance anode material for lithium ion batteries
Zhang et al. Double-shelled nanoporous NiO nanocrystal doped MnO/Ni network for high performance lithium-ion battery
CN109148851B (zh) 一种双碳结构修饰的硅碳复合负极材料及其制备方法
Tan et al. Stable Lithium Storage at Subzero Temperatures for High‐capacity Co3O4@ graphene Composite Anodes
Li et al. Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: The roles of prelithiation and working mechanism
Chen et al. Pb-sandwiched nanoparticles as anode material for lithium-ion batteries
Zhou et al. A 3D stable and highly conductive scaffold with carbon nanotubes/carbon fiber as electrode for lithium sulfur batteries
CN110550635B (zh) 一种新型的碳包覆硅氧负极材料的制备方法
Gu et al. A Typha Angustifolia-like MoS2/carbon nanofiber composite for high performance Li-S batteries
Li et al. Constructing triple-protected Si/SiOx@ ZnO@ C anode derived from volatile silicon waste for enhanced lithium storage capacity
TWI331817B (en) Cathode of lithium ion battery, method for manufacturing the same and lithium ion battery using the cathode
CN109638231B (zh) 氧化亚硅复合负极材料及其制备方法和锂离子电池
Chai et al. Fluidic Ga–In liquid metal-modified cathode with improved cyclic performance and capacity of Li–O2 batteries
CN110649237B (zh) 一种铁氧化物@碳纳米复合材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20091223