CN101608170B - Hydrogen-producing engineering bacteria and its application - Google Patents

Hydrogen-producing engineering bacteria and its application Download PDF

Info

Publication number
CN101608170B
CN101608170B CN2008101152311A CN200810115231A CN101608170B CN 101608170 B CN101608170 B CN 101608170B CN 2008101152311 A CN2008101152311 A CN 2008101152311A CN 200810115231 A CN200810115231 A CN 200810115231A CN 101608170 B CN101608170 B CN 101608170B
Authority
CN
China
Prior art keywords
sequence
protein
dna fragment
δhybo
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101152311A
Other languages
Chinese (zh)
Other versions
CN101608170A (en
Inventor
邢新会
赵洪新
马堃
卢元
王立言
张翀
施瑢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2008101152311A priority Critical patent/CN101608170B/en
Publication of CN101608170A publication Critical patent/CN101608170A/en
Application granted granted Critical
Publication of CN101608170B publication Critical patent/CN101608170B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses hydrogen-producing engineering bacteria and application thereof. The hydrogen-producing engineering bacteria are a) engineering bacteria obtained by inactivating delta hybO protein in E.aerogenes IAM1183 or b) engineering bacteria obtained by inactivating delta hybO protein and delta hycA protein in E.aerogenes IAM1183, wherein the amino acid sequence of the delta hybO protein is sequence 1 in a sequence list; and the amino acid sequence of the delta hycA protein is sequence 4 in the sequence list. The hydrogen-producing engineering bacteria can be applied to biological hydrogen production and are of great directive significance to biological hydrogen production. Moreover, the hydrogen-producing engineering bacteria have the advantages of strong environmental adaptability, wide substrate utilization range, strong substrate utilization capability and high hydrogen-producing efficiency.

Description

产氢工程菌及其应用Hydrogen-producing engineering bacteria and its application

技术领域technical field

本发明涉及产氢工程菌及其应用。The invention relates to hydrogen-producing engineering bacteria and applications thereof.

背景技术Background technique

十八世纪世界工业革命以来建立的化石能源体系如今正面临着两大挑战:1)化石能源储量日益减小,面临着枯竭的危险;2)化石燃料的燃烧产生了大量污染物质,特别是CO2等温室气体的排放引起的温室效应,给人类赖以生存的环境带来巨大的威胁。因此,开发可持续发展的可再生清洁能源,逐步替代化石能源是关系国家能源安全、环境安全及社会稳定和平发展的重要战略课题。The fossil energy system established since the world industrial revolution in the 18th century is now facing two major challenges: 1) The reserves of fossil energy are decreasing day by day, facing the danger of depletion; 2) The combustion of fossil fuels produces a large amount of pollutants, especially CO The greenhouse effect caused by the emission of second- class greenhouse gases poses a huge threat to the environment on which human beings depend. Therefore, developing sustainable renewable clean energy and gradually replacing fossil energy is an important strategic issue related to national energy security, environmental security and social stability and peaceful development.

氢能作为极具潜力的未来替代清洁能源之一,是高效的能源载体,具有能量密度高、清洁、可再生、燃烧产物为水和无污染等特点,是十分理想的可再生能源。目前,氢气主要来自化石燃料的重整转化(占氢气来源的96%)和电解水制氢(占4%),未能摆脱对原有的化石能源的依赖。因此,如何利用可再生资源持续地获取氢气受到人们的广泛的关注。生物制氢是解决这一问题的重要途径之一。生物制氢具有常温常压反应、条件温和、对环境友好、可利用废弃生物物质为底物等优点,可以和环境污染治理、减少污染排放相联系,是十分理想的制氢方法。Hydrogen energy, as one of the potential alternative clean energy sources in the future, is an efficient energy carrier with the characteristics of high energy density, cleanness, regeneration, and the combustion product is water and non-polluting. It is an ideal renewable energy source. At present, hydrogen mainly comes from the reforming conversion of fossil fuels (accounting for 96% of hydrogen sources) and hydrogen production by electrolysis of water (accounting for 4%), failing to get rid of the dependence on the original fossil energy. Therefore, how to use renewable resources to continuously obtain hydrogen has attracted widespread attention. Biological hydrogen production is one of the important ways to solve this problem. Biological hydrogen production has the advantages of normal temperature and pressure reaction, mild conditions, environmental friendliness, and the use of waste biomass as substrates. It can be linked with environmental pollution control and pollution reduction, and is an ideal hydrogen production method.

现代生物制氢的研究始于20世纪70年代的能源危机,90年代以来,随着人们对温室效应的进一步认识,生物制氢作为可持续发展的制氢方法更加引起了人们的广泛重视。生物制氢技术包括光驱动过程和厌氧发酵两种路线。前者利用光合细菌或藻类直接将太阳能转化为氢气,是一个非常理想的过程,但是由于光利用效率很低,光反应器设计困难等因素,近期内很难推向应用。后者采用的是产氢菌厌氧发酵,它的优点是产氢速度快、反应器设计简单、且能够和废弃生物的利用相结合,相对于前者更容易在近期内实现工业应用。The research on modern biohydrogen production began with the energy crisis in the 1970s. Since the 1990s, with people's further understanding of the greenhouse effect, biohydrogen production has attracted more and more attention as a sustainable hydrogen production method. Biological hydrogen production technology includes two routes: light-driven process and anaerobic fermentation. The former uses photosynthetic bacteria or algae to directly convert solar energy into hydrogen, which is a very ideal process. However, due to factors such as low light utilization efficiency and difficult design of photoreactors, it is difficult to push it into application in the near future. The latter uses hydrogen-producing bacteria anaerobic fermentation, which has the advantages of fast hydrogen production, simple reactor design, and the ability to combine with the utilization of waste organisms. Compared with the former, it is easier to realize industrial application in the near future.

发酵法制氢始于六十年代中期,九十年代受到重视,但进展并不大。九十年代末到本世纪初,人们意识到发酵制氢更容易在近期内实现产业化,大大增加了暗发酵制氢方面的科研投入,产生了一批有关培养工艺的基础性研究结果。近年来与废弃生物质处理相结合的制氢过程的研究大为增加,其中一些达到了中试水平,但主要集中在反应器类型设计、工艺研究上,且混合培养产氢效率低于纯培养,总的转化率都不高,这也正是发酵制氢的瓶颈所在。解决发酵制氢瓶颈的关键,是实现技术突破,提高氢气得率。研究表明,仅从工艺的角度,无法从根本上突破产氢效率低的问题,必须注重高效产氢菌种的研究与开发。Hydrogen production by fermentation began in the mid-1960s and received attention in the 1990s, but little progress has been made. From the end of the 1990s to the beginning of this century, people realized that hydrogen production by fermentation is easier to realize industrialization in the near future, which greatly increased the scientific research investment in hydrogen production by dark fermentation, and produced a number of basic research results on the cultivation process. In recent years, the research on the hydrogen production process combined with waste biomass treatment has increased greatly, some of which have reached the pilot test level, but they mainly focus on reactor type design and process research, and the hydrogen production efficiency of mixed culture is lower than that of pure culture , the overall conversion rate is not high, which is where the bottleneck of fermentation hydrogen production lies. The key to solving the bottleneck of fermentation hydrogen production is to achieve technological breakthroughs and increase the yield of hydrogen. Studies have shown that only from the perspective of technology, it is impossible to fundamentally break through the problem of low hydrogen production efficiency, and we must pay attention to the research and development of high-efficiency hydrogen-producing strains.

多年以来,暗发酵制氢中应用的产氢菌种主要包括肠杆菌属(Enterobacter)、梭菌属(Clostridium)、埃希氏菌属(Escherichia)和芽孢杆菌属(Bacillus),其中尤以肠杆菌属和梭菌属的相关研究最多。梭菌属产氢率最高可达到2.36mol/mol葡萄糖,产气肠杆菌属产氢率最高可达3mol/mol葡萄糖(即6mol/mol蔗糖)[Kumar,N.and Das,D.Bioprocess Engineering 23,205-208(2000)],[Kumar,N.andDas,D.Process Biochemistry 35,589-593(2000)]。以梭菌(Clostridium sp)为代表的专性厌氧菌发酵产氢的机理为:葡萄糖酵解后生成丙酮酸,在形成醋酸过程中,一部分电子通过铁氧还蛋白在氢酶作用下形成氢气。一摩尔的葡萄糖可形成4摩尔氢气和2分子醋酸。因此,专性厌氧菌发酵产氢的同时,必然伴随醋酸等有机酸的形成。兼性厌氧产氢菌E.aerogenes通过糖解途径和三羧酸循环(TCA)途径产生NADH和ATP,氢酶通过NADH将质子转换为氢气,产氢理论转换率为1摩尔葡萄糖形成12mol氢气,远远大于专性厌氧菌的氢得率。因此,E.aerogenes是开发高效发酵制氢工艺的重要菌种。For many years, the hydrogen-producing bacteria used in dark fermentation hydrogen production mainly include Enterobacter, Clostridium, Escherichia and Bacillus, especially Enterobacter Bacillus and Clostridium have been most studied. The highest hydrogen production rate of Clostridium can reach 2.36mol/mol glucose, and the highest hydrogen production rate of Enterobacter aerogenes can reach 3mol/mol glucose (ie 6mol/mol sucrose) [Kumar, N. and Das, D. Bioprocess Engineering 23 , 205-208 (2000)], [Kumar, N. and Das, D. Process Biochemistry 35, 589-593 (2000)]. The mechanism of hydrogen production by the fermentation of obligate anaerobic bacteria represented by Clostridium sp is as follows: glucose is fermented to generate pyruvate, and in the process of forming acetic acid, some electrons pass through ferredoxin to form hydrogen under the action of hydrogenase . One mole of glucose can form 4 moles of hydrogen and 2 molecules of acetic acid. Therefore, the fermentation of obligate anaerobic bacteria to produce hydrogen must be accompanied by the formation of organic acids such as acetic acid. The facultative anaerobic hydrogen-producing bacteria E.aerogenes produces NADH and ATP through the glycolysis pathway and the tricarboxylic acid cycle (TCA) pathway. Hydrogenase converts protons into hydrogen through NADH. The theoretical conversion rate of hydrogen production is 1 mole of glucose to form 12 moles of hydrogen. , far greater than the hydrogen yield of obligate anaerobic bacteria. Therefore, E.aerogenes is an important strain for the development of efficient fermentation hydrogen production process.

随着生物技术的飞速发展,单纯的菌种筛选和培养工艺的优化已不能满足提高产氢效率的需求。发酵制氢的研究需要进入细胞内部,通过对氢酶及其代谢网络的改造来强化产氢过程。目前在基因库上已经可以获得超过100种的氢酶基因序列[Paulette M.Vignais,Bernard Billoud,Jacques Meyer.FEMS MicrobiologyReviews 25,455-501(2001)],但仍有大量已知产氢菌株的氢酶基因尚未被克隆,寻找更多的氢酶基因是生物制氢研究的重要方向[Kalia,V.C.,Lal,S.,Ghai,R.,Mandal,M.and Chauhan,A.Trends in Biotechnology 21,152-156(2003)]。不同的氢酶具有不同的功能,和其它酶系相比,人们对氢酶的认识还十分有限。With the rapid development of biotechnology, simple strain screening and optimization of culture process can no longer meet the needs of improving hydrogen production efficiency. The research of fermentative hydrogen production needs to enter the interior of the cell, and strengthen the hydrogen production process through the modification of hydrogenase and its metabolic network. At present, more than 100 hydrogenase gene sequences can be obtained on the gene bank [Paulette M.Vignais, Bernard Billoud, Jacques Meyer. FEMS Microbiology Reviews 25, 455-501 (2001)], but there are still a large number of known hydrogen-producing strains. Hydrogenase genes have not been cloned yet, and finding more hydrogenase genes is an important direction for biohydrogen production [Kalia, V.C., Lal, S., Ghai, R., Mandal, M. and Chauhan, A. Trends in Biotechnology 21 , 152-156 (2003)]. Different hydrogenases have different functions. Compared with other enzyme systems, people's understanding of hydrogenases is still very limited.

目前,研究的比较清楚的是大肠杆菌的氢酶I、II、III和IV的基因,它们都属于Ni-Fe氢酶,其中氢酶III和IV和产氢有关[Andrews,S.C.,Berks,B.C.,Mcclay,J.,Ambler,A.,Quail,M.A.,Golby,P.and Guest,J.R.Microbiology143,3633-3647(1997)],而I、II和吸氢过程相关。梭菌属的氢酶都属于铁氢酶,三梭菌的铁氢酶已有测序结果,但是关于其附属基因、调控机制还不清楚。已经克隆到梭菌的铁氢酶基因,并在光合细菌内获得了异源表达,强化了光合菌的产氢过程。梭菌的铁氢酶基因在大肠杆菌中的表达却没有成功,可能是由于梭菌和大肠杆菌对于铁氢酶表达的附属基因系统不相同造成的[Yasuo Asada,Yoji Koike,JorgSchnackenberg,Masato Miyake,Ieaki Uemura,Jun Miyake.Biochimica etBiophysica Acta 1490,269-278(2000)]。最近,Mishra J.等通过铁氢酶保守序列设计的方法从E.cloacae IIT-BT08中克隆出450bp左右的铁氢酶,并在不产氢的大肠杆菌中异源表达,验证了其功能,结果显示这个氢酶位于细胞质内[Mishra,J.,Kumar,N.,Ghosh,A.K.and Das,D.International Journal of Hydrogen Energy27,1475-1479(2002)],[Mishra,J.,Khurana,S.,Kumar,N.,Ghosh,A.K.andDas,D.Biochemical and Biophysical Research Communications 324,679-685(2004)]。产气肠杆菌E.aerogenes的前期研究表明,在其细胞膜上,氢酶与细胞内产生的NADH作用生成氢气[Nakashimada,Y.,Rachman,M.A.,Kakizono,T.andNishio,N.International Journal of Hydrogen Energy 27,1399-1405(2002)]。因此研究该菌属的氢酶特性、基因及其功能解析,对于实现提高产气肠杆菌产氢得率的技术突破具有重要意义。At present, the relatively clear studies are the genes of hydrogenase I, II, III and IV of Escherichia coli, which all belong to Ni-Fe hydrogenase, wherein hydrogenase III and IV are related to hydrogen production [Andrews, S.C., Berks, B.C. , Mcclay, J., Ambler, A., Quail, M.A., Golby, P.and Guest, J.R.Microbiology143, 3633-3647 (1997)], while I and II are related to the hydrogen absorption process. The hydrogenases of Clostridium belong to ferric hydrogenases, and the iron hydrogenases of Triclostridium have been sequenced, but the accessory genes and regulatory mechanisms are still unclear. The ferrohydrogenase gene of Clostridium has been cloned and expressed heterologously in photosynthetic bacteria, which strengthens the hydrogen production process of photosynthetic bacteria. The expression of the ferrohydrogenase gene of Clostridium in Escherichia coli was not successful, which may be caused by the different accessory gene systems of Clostridium and Escherichia coli [Yasuo Asada, Yoji Koike, JorgSchnackenberg, Masato Miyake, Ieaki Uemura, Jun Miyake. Biochimica et Biophysica Acta 1490, 269-278 (2000)]. Recently, Mishra J. et al. cloned a ferrohydrogenase of about 450 bp from E.cloacae IIT-BT08 through the method of ferrohydrogenase conservative sequence design, and expressed it heterologously in non-hydrogen-producing Escherichia coli to verify its function. The results show that this hydrogenase is located in the cytoplasm [Mishra, J., Kumar, N., Ghosh, A.K. and Das, D. International Journal of Hydrogen Energy27, 1475-1479 (2002)], [Mishra, J., Khurana, S ., Kumar, N., Ghosh, A.K. and Das, D. Biochemical and Biophysical Research Communications 324, 679-685 (2004)]. A previous study of Enterobacter aerogenes E. aerogenes showed that on its cell membrane, hydrogenase reacted with NADH produced in the cell to generate hydrogen [Nakashimada, Y., Rachman, M.A., Kakizono, T. and Nishio, N. International Journal of Hydrogen Energy 27, 1399-1405 (2002)]. Therefore, it is of great significance to study the hydrogenase characteristics, genes and functional analysis of this genus for the technological breakthrough of improving the hydrogen production rate of Enterobacter aerogenes.

对大肠杆菌产氢过程的研究表明,大肠杆菌可直接利用甲酸,也可以在同化糖类物质代谢过程中产生的甲酸为底物,在甲酸裂解酶系的作用下,分解甲酸生成CO2和H2。[Akihito Yoshida,Taku Nishimura,Hideo Kawaguchi,1 Masayuki Inui,andHideaki Yukawa*.Appl Environ Microbiol.71:6762-6768(2005)]。甲酸产氢途径是产氢速度最快的途径。The research on the hydrogen production process of Escherichia coli shows that Escherichia coli can directly use formic acid, and can also use the formic acid produced in the process of assimilating carbohydrates as a substrate. 2 . [Akihito Yoshida, Taku Nishimura, Hideo Kawaguchi, 1 Masayuki Inui, and Hideaki Yukawa*. Appl Environ Microbiol. 71: 6762-6768 (2005)]. Formic acid hydrogen production pathway is the fastest way to produce hydrogen.

产气肠杆菌是兼性厌氧菌,生长速度快,在厌氧条件下可以产生氢气,且具有利用底物范围广,生长适应性强等优点,是具有优良工业性状的菌株。已有许多关于产气肠杆菌产氢的报道,但多是在工艺及培养方面[E.Palazzi,B.Fabiano,P.Perego.Bioprocess Eng.22:205-213(2000).],有关产氢相关的基因还没有任何报道。研究表明,产气肠杆菌具有和大肠杆菌相似的利用甲酸产氢的能力[Tatsuo,K.,Shigeharu,T.Mar Biotechnol.7:112-118(2005).],而且其具有吸氢过程,即有吸氢酶的存在[Y.L Ren.,X.H.Xing.,C.Zhang.,and Z.X.Gou.Biotechnol Lett.27(14):1029-1033(2005).]。因此克隆产气肠杆菌利用甲酸途径产氢的基因及吸氢酶基因,对理解其利用甲酸产氢和耗氢的过程,从而利用甲酸途径生物制氢具有重要的意义。克隆甲酸氢酶基因和吸氢酶基因也是对氢酶基因家族有益的补充。Enterobacter aerogenes is a facultative anaerobic bacterium with a fast growth rate, can produce hydrogen under anaerobic conditions, and has the advantages of a wide range of substrates and strong growth adaptability. It is a strain with excellent industrial characteristics. There are many reports about the hydrogen production of Enterobacter aerogenes, but most of them are in terms of technology and cultivation [E.Palazzi, B.Fabiano, P.Perego.Bioprocess Eng.22:205-213 (2000).]. Hydrogen-related genes have not been reported yet. Studies have shown that Enterobacter aerogenes has the ability to produce hydrogen from formic acid similar to Escherichia coli [Tatsuo, K., Shigeharu, T.Mar Biotechnol.7: 112-118 (2005).], and it has a hydrogen absorption process, That is, the presence of hydrogen-absorbing enzyme [Y.L Ren., X.H.Xing., C. Zhang., and Z.X.Gou. Biotechnol Lett. 27(14): 1029-1033(2005).]. Therefore, the cloning of the hydrogen production gene and the hydrogen uptake enzyme gene of Enterobacter aerogenes using the formate pathway is of great significance for understanding the process of hydrogen production and hydrogen consumption in Enterobacter aerogenes, so as to use the formate pathway to produce hydrogen. The cloning of the formate hydrogenase gene and the hydrogen uptake enzyme gene is also a useful addition to the hydrogenase gene family.

发明内容Contents of the invention

本发明的目的是提供产氢工程菌及其应用。The purpose of the present invention is to provide hydrogen-producing engineering bacteria and applications thereof.

本发明提供的产氢工程菌,是如下a)或b)的工程菌:The hydrogen-producing engineering bacterium provided by the present invention is the engineering bacterium of the following a) or b):

a)灭活E.aerogenes IAM1183中的ΔhybO蛋白得到的工程菌;a) engineering bacteria obtained by inactivating the ΔhybO protein in E.aerogenes IAM1183;

b)灭活E.aerogenes IAM1183中的ΔhybO蛋白和ΔhycA蛋白得到的工程菌;b) engineering bacteria obtained by inactivating the ΔhybO protein and ΔhycA protein in E.aerogenes IAM1183;

所述ΔhybO蛋白的氨基酸序列是序列表中的序列1;所述ΔhycA蛋白的氨基酸序列是序列表中的序列4。The amino acid sequence of the ΔhybO protein is sequence 1 in the sequence listing; the amino acid sequence of the ΔhycA protein is sequence 4 in the sequence listing.

所述灭活E.aerogenes IAM1183中的ΔhybO蛋白可通过将DNA片段Q导入所述E.aerogenes IAM1183中实现;所述DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与所述ΔhybO蛋白的编码基因发生同源重组,灭活所述ΔhybO蛋白;所述DNA片段N为抗生素抗性片段。The inactivation of the ΔhybO protein in E. aerogenes IAM1183 can be achieved by introducing DNA fragment Q into the E. aerogenes IAM1183; the DNA fragment Q is sequenced from upstream to downstream as homology arm T 1 , DNA fragment N, homology The homologous arm T 2 ; the homologous arm T 1 and the homologous arm T 2 can undergo homologous recombination with the coding gene of the ΔhybO protein to inactivate the ΔhybO protein; the DNA fragment N is an antibiotic resistance fragment.

所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段。The nucleotide sequence of the gene encoding the ΔhybO protein is sequence 2 in the sequence listing; the nucleotide sequence of the homology arm T1 is sequence 7 in the sequence listing; the nucleotide sequence of the homology arm T 2 is The acid sequence is sequence 8 in the sequence listing; the DNA fragment N is a tetracycline-resistant fragment.

所述DNA片段Q的核苷酸序列具体可为序列表中的序列3。The nucleotide sequence of the DNA fragment Q can specifically be sequence 3 in the sequence listing.

所述灭活E.aerogenes IAM1183中的ΔhybO蛋白和ΔhycA蛋白可通过将DNA片段P和DNA片段Q导入所述E.aerogenes IAM1183中实现;实际操作中,DNA片段P和DNA片段Q的导入可采取任意先后的顺序,如先导入DNA片段P,筛选得到重组菌后再在重组菌中导入DNA片段Q;The inactivation of ΔhybO protein and ΔhycA protein in E.aerogenes IAM1183 can be achieved by introducing DNA fragment P and DNA fragment Q into the E.aerogenes IAM1183; in actual operation, the introduction of DNA fragment P and DNA fragment Q can take Arbitrary order, such as introducing DNA segment P first, screening recombinant bacteria and then introducing DNA segment Q into recombinant bacteria;

所述DNA片段P自上游至下游依次为同源臂T3、DNA片段M、同源臂T4;所述同源臂T3和同源臂T4能与所述ΔhycA蛋白的编码基因发生同源重组,灭活所述ΔhycA蛋白;所述DNA片段M为抗生素抗性片段;The DNA fragment P is sequentially homologous arm T 3 , DNA fragment M, and homologous arm T 4 from upstream to downstream; the homologous arm T 3 and homologous arm T 4 can interact with the gene encoding the ΔhycA protein Homologous recombination inactivates the ΔhycA protein; the DNA fragment M is an antibiotic-resistant fragment;

所述DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与所述ΔhybO蛋白的编码基因发生同源重组,灭活所述ΔhybO蛋白;所述DNA片段N为抗生素抗性片段。The DNA fragment Q is sequentially homologous arm T 1 , DNA fragment N, and homologous arm T 2 from upstream to downstream; the homologous arm T 1 and homologous arm T 2 can interact with the gene encoding the ΔhybO protein Homologous recombination inactivates the ΔhybO protein; the DNA fragment N is an antibiotic-resistant fragment.

所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段;所述ΔhycA蛋白的编码基因的核苷酸序列是序列表中的序列5;所述同源臂T3的核苷酸序列是序列表中的序列9;所述同源臂T4的核苷酸序列是序列表中的序列10;所述DNA片段M为卡那霉素抗性片段。The nucleotide sequence of the gene encoding the ΔhybO protein is sequence 2 in the sequence listing; the nucleotide sequence of the homology arm T1 is sequence 7 in the sequence listing; the nucleotide sequence of the homology arm T 2 is The acid sequence is sequence 8 in the sequence list; the DNA fragment N is a tetracycline resistance fragment; the nucleotide sequence of the gene encoding the ΔhycA protein is sequence 5 in the sequence list; the core of the homology arm T3 The nucleotide sequence is sequence 9 in the sequence listing; the nucleotide sequence of the homology arm T4 is sequence 10 in the sequence listing; the DNA fragment M is a kanamycin-resistant fragment.

所述DNA片段Q的核苷酸序列具体可为序列表中的序列3;所述DNA片段P的核苷酸序列具体可为序列表中的序列6。The nucleotide sequence of the DNA fragment Q can specifically be sequence 3 in the sequence listing; the nucleotide sequence of the DNA fragment P can specifically be sequence 6 in the sequence listing.

本发明还保护一种DNA片段Q,DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与E.aerogenes IAM1183的ΔhybO蛋白的编码基因发生同源重组,灭活ΔhybO蛋白;所述ΔhybO蛋白的氨基酸序列是序列表中的序列1;所述DNA片段N为抗生素抗性片段。The present invention also protects a DNA fragment Q, the DNA fragment Q is sequentially homologous arm T 1 , DNA fragment N, and homologous arm T 2 from upstream to downstream; the homologous arm T 1 and homologous arm T 2 can be combined with The gene encoding the ΔhybO protein of E. aerogenes IAM1183 undergoes homologous recombination to inactivate the ΔhybO protein; the amino acid sequence of the ΔhybO protein is sequence 1 in the sequence table; the DNA fragment N is an antibiotic resistance fragment.

所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段。The nucleotide sequence of the gene encoding the ΔhybO protein is sequence 2 in the sequence listing; the nucleotide sequence of the homology arm T1 is sequence 7 in the sequence listing; the nucleotide sequence of the homology arm T 2 is The acid sequence is sequence 8 in the sequence listing; the DNA fragment N is a tetracycline-resistant fragment.

所述DNA片段Q的核苷酸序列最优选为序列表中的序列3。The nucleotide sequence of the DNA fragment Q is most preferably sequence 3 in the sequence listing.

含有所述DNA片段Q的表达盒或重组表达载体或转基因细胞系或重组菌均属于本发明的保护范围。Expression cassettes or recombinant expression vectors or transgenic cell lines or recombinant bacteria containing the DNA fragment Q all belong to the protection scope of the present invention.

本发明以产气肠杆菌E.aerogenes为出发菌株,通过对产气肠杆菌E.aerogenes中的产氢相关蛋白编码基因进行灭活,获得了两株甲酸途径产氢能力提高的菌株,可应用于生物制氢,对生物制氢具有巨大的指导意义。The present invention takes Enterobacter aerogenes E.aerogenes as the starting strain, and obtains two bacterial strains with improved hydrogen production ability in the formic acid pathway by inactivating the gene encoding the hydrogen production-related protein in the Enterobacter aerogenes E.aerogenes, which can be applied For biohydrogen production, it has great guiding significance for biohydrogen production.

本发明获得的工程菌具有以下优点:The engineering bacterium that the present invention obtains has the following advantages:

1)出发菌株E.aerogenes IAM1183是兼性厌氧菌,在好氧、厌氧条件下均能快速生长,对环境适应性强;利用其进行生物制氢具有利用底物范围广、利用底物能力强和产氢较高的优点,是具有潜在应用于工业化制氢的优良菌株。1) The starting strain E.aerogenes IAM1183 is a facultative anaerobic bacterium, which can grow rapidly under both aerobic and anaerobic conditions, and has strong adaptability to the environment; using it for biological hydrogen production has a wide range of substrates and a wide range of substrates. With the advantages of strong ability and high hydrogen production, it is an excellent strain with potential application in industrial hydrogen production.

2)本发明获得的工程菌E.aerogenes IAM1183-O和工程菌E.aerogenesIAM1183-AO,除了具有原始菌1)的优点外,还具有底物利用能力更强,产氢能力进一步提高的特点,尤其是E.aerogenes IAM1183-AO。2) The engineering bacteria E.aerogenes IAM1183-O and the engineering bacteria E.aerogenesIAM1183-AO obtained in the present invention, in addition to the advantages of the original bacteria 1), also have the characteristics of stronger substrate utilization ability and further improved hydrogen production ability, Especially E. aerogenes IAM1183-AO.

以下的实施例便于更好地理解本发明,但并不限定本发明。The following examples facilitate a better understanding of the present invention, but do not limit the present invention.

附图说明Description of drawings

图1为工程菌E.aerogenes IAM1183-O的单抗和双抗筛选图Figure 1 is the monoclonal antibody and double antibody screening diagram of engineering bacteria E.aerogenes IAM1183-O

图2为工程菌E.aerogenes IAM1183-O的PCR鉴定图Figure 2 is the PCR identification diagram of engineering bacteria E.aerogenes IAM1183-O

图3为工程菌E.aerogenes IAM1183-A的单抗和双抗筛选图Figure 3 is the monoclonal antibody and double antibody screening diagram of engineering bacteria E.aerogenes IAM1183-A

图4为工程菌E.aerogenes IAM1183-A的PCR鉴定图Figure 4 is a PCR identification diagram of engineering bacteria E.aerogenes IAM1183-A

图5为工程菌E.aerogenes IAM1183-AO的PCR鉴定图Figure 5 is a PCR identification diagram of engineering bacteria E.aerogenes IAM1183-AO

图6工程菌的生长曲线OD600 Figure 6 The growth curve OD 600 of engineered bacteria

图7工程菌生长过程中的pH变化Figure 7 pH changes during the growth of engineered bacteria

图8工程菌的H2生成分析Figure 8 H2 production analysis of engineered bacteria

图9工程菌的CO2生成分析Figure 9 CO2 production analysis of engineered bacteria

具体实施方式Detailed ways

下述实施例中的实验方法,如无特殊说明,均为常规方法。The experimental methods in the following examples are conventional methods unless otherwise specified.

以下实施例中所用到的引物如下:The primers used in the following examples are as follows:

hycA-Km-fw:CTGCA ATTCGCTGGT TCAGGGCATC ACCCTGTCAA AAGCGATAGGCTCCGCCCCCCTGA;hycA-Km-fw: CTGCA ATTCGCTGGT TCAGGGCATC ACCCTGTCAA AAGCG ATAGGCTCCGCCCCCCTGA;

hycA-Km-rv:GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATACAGGTGGCAC TTTTCGGGG;hycA-Km-rv: GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATA CAGGTGGCAC TTTTCGGGG;

HybO-tet-fw:AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCTTTTGGTGACTGCGCTCCTC;HybO-tet-fw: AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCT TTTGGTGACTGCGCTCCTC;

HybO-tet-rv:GATACCTTCT TCGTTACAGC CATAGCAAGG GTGACCAATCTGTTGTTGCTCAGGTCGCA;HybO-tet-rv: GATACCTTCT TCGTTACAGC CATAGCAAGG GTGACCAATC TGTTGTTGCTCAGGTCGCA;

hycA-fw:CTGCAATTCGCTGGT TCAGGGCATC;hycA-fw: CTGCAATTCGCTGGT TCAGGGCATC;

hycA-rv:GGCTTAAATCCACCG GCTGGTCGTG;hycA-rv: GGCTTAAATCCACCG GCTGGTCGTG;

hybO-fw:AATCTCTGCT TCGTGCAACGCATC;hybO-fw: AATCTCTGCT TCGTGCAACGCATC;

hybO-rv:GATACCTTCT TCGTTACAGCCATA。hybO-rv: GATACCTTCT TCGTTACAGCCATA.

以下实施例中所涉及的培养基配方及用途如下:The culture medium formulation and purposes involved in the following examples are as follows:

(1)LB培养基(L-1):蛋白胨10g、酵母浸粉5g、NaCl 10g、琼脂粉15g(固体培养基时添加);用于菌种短期保藏和活化培养。(1) LB medium (L -1 ): 10g of peptone, 5g of yeast extract powder, 10g of NaCl, 15g of agar powder (added to solid medium); used for short-term preservation and activation of strains.

(2)葡萄糖培养基(L-1):葡萄糖15g、蛋白胨5g、K2HPO4·3H2O 14g、KH2PO4 6g、(NH4)2SO4 2g、MgSO4·7H2O 0.2g;用于发酵制氢。(2) Glucose medium (L -1 ): glucose 15g, peptone 5g, K 2 HPO 4 3H 2 O 14g, KH 2 PO 4 6g, (NH 4 ) 2 SO 4 2g, MgSO 4 7H 2 O 0.2 g; for hydrogen production by fermentation.

实施例1、产气肠杆菌E.aerogenes IAM1183-O的获得Embodiment 1, the acquisition of Enterobacter aerogenes E.aerogenes IAM1183-O

出发菌株产气肠杆菌(E.aerogenes IAM1183)购自日本东京大学应用微生物研究所(IAM)菌种库。The starting strain Enterobacter aerogenes (E. aerogenes IAM1183) was purchased from the strain bank of the Institute of Applied Microbiology (IAM), University of Tokyo, Japan.

对NCBI中的产气肠杆菌基因序列(Genbank NO:EF601126)进行序列分析,设计一对引物HybO-tet-fw和HybO-tet-rv,序列如下:Sequence analysis was performed on the Enterobacter aerogenes gene sequence (Genbank NO: EF601126) in NCBI, and a pair of primers HybO-tet-fw and HybO-tet-rv were designed with the following sequences:

HybO-tet-fw:HybO-tet-fw:

5’-AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCTTTTGGTGACTGCGCTCCTC-3’;5'- AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCT TTTGGTGACTGCGCTCCTC-3';

HybO-tet-rv:HybO-tet-rv:

5’-GATACCTTCTTCGTTACAGCCATAGCAAGGGTGACCAATCTGTTGTTGCTCAGGTCGCA-3’。5'- GATACCTTCTTCGTTACAGCCATAGCAAGGGTGACCAATC TGTTGTTGCTCAGGTCGCA-3'.

引物中的带划线的序列为产气肠杆菌(E.aerogenes IAM1183)中ΔhybO基因的同源序列。The underlined sequence in the primer is the homologous sequence of the ΔhybO gene in Enterobacter aerogenes (E. aerogenes IAM1183).

通过电转化的方式将pYM-red质粒(于梅,周建光,陈伟,李山虎,黄翠芬,一种可转移的重组工程系统pYM-Red的建立.生物化学与生物物理进展.2005,32(4).)电击到产气肠杆菌(E.aerogenes IAM1183中,进行氯霉素(24mg/mL)抗性筛选,从阳性菌株中提取pYM-red质粒进行鉴定,获得了含有pYM-red重组质粒的产气肠杆菌(E.aerogenes IAM1183)。Transformation of pYM-red plasmid (Yu Mei, Zhou Jianguang, Chen Wei, Li Shanhu, Huang Cuifen, establishment of a transferable recombinant engineering system pYM-Red. Advances in Biochemistry and Biophysics. 2005, 32(4) .) electric shock into Enterobacter aerogenes (E.aerogenes IAM1183), carry out chloramphenicol (24mg/mL) resistance screening, extract pYM-red plasmid from positive strain and carry out identification, obtained the product containing pYM-red recombinant plasmid Enterobacter aerogenes (E. aerogenes IAM1183).

以pACYC184质粒(Chang,A.C.,and S.N.Cohen.1978.Construction andcharacterization of amplifiable multicopy DNA cloning vehicles derived fromthe P15A cryptic miniplasmid.J.Bacteriol.134:1141-1156.)DNA为模板,用引物HybO-tet-fw和HybO-tet-rv进行PCR扩增,获得含有四环素标记的线性DNA,将该线性DNA作为打靶载体。通过电转化的方式,将打靶载体导入含有pYM-red质粒的产气肠杆菌(E.aerogenes IAM1183)。With pACYC184 plasmid (Chang, A.C., and S.N.Cohen.1978.Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid.J.Bacteriol.134:1141-1156.) DNA as template, primer et-t-HybO Perform PCR amplification with HybO-tet-rv to obtain a linear DNA labeled with tetracycline, and use the linear DNA as a targeting vector. By electroporation, the targeting vector was introduced into Enterobacter aerogenes (E. aerogenes IAM1183) containing the pYM-red plasmid.

将转化后的菌涂布于含有的四环素(4ug/ml)的单抗LB平板上,30℃培养培养1天;然后将长出的菌转接入含有四环素(4ug/ml)和氯霉素(24ug/ml)的双抗LB平板上,30℃培养培养1天。单抗和双抗筛选的结果见图1,图1中左图为单抗筛选的图,右图为双抗筛选的图。Spread the transformed bacteria on the monoclonal antibody LB plate containing tetracycline (4ug/ml) and culture at 30°C for 1 day; (24ug/ml) double antibody LB plate, cultured at 30°C for 1 day. The results of monoclonal antibody and double antibody screening are shown in Figure 1. The left picture in Figure 1 is the picture of monoclonal antibody screening, and the right picture is the picture of double antibody screening.

随机挑取几个双抗培养基上生长的克隆,提取基因组DNA,通过PCR的方法鉴定打靶载体是否与染色体上的目标位点发生了同源重组,PCR反应所用的一对引物为hybO-fw和hybO-rv,hybO-fw和hybO-rv的序列如下:Randomly pick several clones grown on double-antibody medium, extract genomic DNA, and identify whether the targeting vector has undergone homologous recombination with the target site on the chromosome by PCR. The pair of primers used in the PCR reaction is hybO-fw and the sequences of hybO-rv, hybO-fw and hybO-rv are as follows:

hybO-fw 5’-AATCTCTGCT TCGTGCAACG CATC-3’;hybO-fw 5'-AATCTCTGCT TCGTGCAACG CATC-3';

hybO-rv 5’-GATACCTTCT TCGTTACAGC CATA-3’。hybO-rv 5'-GATACCTTCT TCGTTACAGC CATA-3'.

PCR鉴定结果见图2,图2中,1:DNA 2000marker;2:E.aerogenes IAM1183-O。由图可见,E.aerogenes IAM1183-O的扩增产物获得了1800bp目标带,与预期结果一致。结果表明,获得的克隆中,打靶载体与染色体上的目标位点发生了同源重组。将发生了同源重组的突变型菌株命名为E.aerogenes IAM1183-O。The results of PCR identification are shown in Figure 2. In Figure 2, 1: DNA 2000marker; 2: E.aerogenes IAM1183-O. It can be seen from the figure that the amplified product of E.aerogenes IAM1183-O obtained the 1800bp target band, which was consistent with the expected result. The results showed that in the obtained clones, homologous recombination occurred between the targeting vector and the target site on the chromosome. The mutant strain with homologous recombination was named E.aerogenes IAM1183-O.

实施例2、产气肠杆菌E.aerogenes IAM1183-A的获得Embodiment 2, the acquisition of Enterobacter aerogenes E.aerogenes IAM1183-A

出发菌株产气肠杆菌(E.aerogenes IAM1183)购自日本东京大学应用微生物研究所(IAM)菌种库。The starting strain Enterobacter aerogenes (E. aerogenes IAM1183) was purchased from the strain bank of the Institute of Applied Microbiology (IAM), University of Tokyo, Japan.

对NCBI中的产气肠杆菌基因序列(Genbank NO:EF601125)进行序列分析,设计一对引物hycA-Km-fw和hycA-Km-rv,hycA-Km-fw和hycA-Km-rv的序列如下:Sequence analysis was performed on the Enterobacter aerogenes gene sequence (Genbank NO: EF601125) in NCBI, and a pair of primers hycA-Km-fw and hycA-Km-rv were designed. The sequences of hycA-Km-fw and hycA-Km-rv are as follows :

hycA-Km-fw:hycA-Km-fw:

5’-CTGCAATTCGCTGGTTCAGGGCATCACCCTGTCAAAAGCGATAGGCTCCGCCCCCCTGA-3’;5'- CTGCAATTCGCTGGTTCAGGGCATCACCCTGTCAAAAGCG ATAGGCTCCGCCCCCCTGA-3';

hycA-Km-rv:hycA-Km-rv:

5’-GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATACAGGTGGCACTTTTCGGGG-3’。5'- GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATA CAGGTGGCACTTTTCGGGG-3'.

引物中的带划线的序列为产气肠杆菌(E.aerogenes IAM1183)ΔhycA的同源臂。The underlined sequence in the primer is the homology arm of Enterobacter aerogenes (E. aerogenes IAM1183) ΔhycA.

通过电转化的方式将pYM-red质粒(于梅,周建光,陈伟,李山虎,黄翠芬,一种可转移的重组工程系统pYM-Red的建立.生物化学与生物物理进展.2005,32(4).)电击到产气肠杆菌(E.aerogenes IAM1183中,进行氯霉素(24mg/mL)抗性筛选,从阳性菌株中提取pYM-red质粒进行鉴定,获得了含有pYM-red重组质粒的产气肠杆菌(E.aerogenes IAM1183)。Transformation of pYM-red plasmid (Yu Mei, Zhou Jianguang, Chen Wei, Li Shanhu, Huang Cuifen, establishment of a transferable recombinant engineering system pYM-Red. Advances in Biochemistry and Biophysics. 2005, 32(4) .) electric shock into Enterobacter aerogenes (E.aerogenes IAM1183), carry out chloramphenicol (24mg/mL) resistance screening, extract pYM-red plasmid from positive strain and carry out identification, obtained the product containing pYM-red recombinant plasmid Enterobacter aerogenes (E. aerogenes IAM1183).

以pET28a质粒DNA为模板,用引物hycA-Km-fw和hycA-Km-rv进行PCR扩增,获得含有卡那霉素标记的线性DNA,将该线性DNA作为打靶载体。通过电转化的方式,将打靶载体导入含有pYM-red重组质粒的产气肠杆菌(E.aerogenes IAM1183)。将转化后的菌涂布于含有卡那霉素(50mg/mL)的单抗LB平板上,30℃培养培养1天;然后将长出的菌转接入含有卡那霉素(50mg/mL)和氯霉素(30mg/mL)的双抗LB平板上,30℃培养培养1天。单抗和双抗筛选的结果见图3,图3中左图为单抗筛选的图,右图为双抗筛选的图。The pET28a plasmid DNA was used as a template, and the primers hycA-Km-fw and hycA-Km-rv were used for PCR amplification to obtain a linear DNA containing a kanamycin marker, which was used as a targeting vector. By electroporation, the targeting vector was introduced into Enterobacter aerogenes (E. aerogenes IAM1183) containing the pYM-red recombinant plasmid. Spread the transformed bacteria on monoclonal antibody LB plates containing kanamycin (50 mg/mL), and culture them at 30 ° C for 1 day; then transfer the grown bacteria into cells containing kanamycin (50 mg/mL ) and chloramphenicol (30 mg/mL) double antibody LB plate, cultured at 30 ° C for 1 day. The results of monoclonal antibody and double antibody screening are shown in Figure 3, the left picture in Figure 3 is the picture of monoclonal antibody screening, and the right picture is the picture of double antibody screening.

随机挑取几个双抗培养基上生长的克隆,提取基因组DNA,通过PCR的方法鉴定打靶载体是否与染色体上的目标位点发生了同源重组,PCR反应所用的一对引物为hycA-fw和hycA-rv,hycA-fw和hycA-rv的序列如下:Randomly pick several clones grown on double-antibody medium, extract genomic DNA, and identify whether the targeting vector has undergone homologous recombination with the target site on the chromosome by PCR. The pair of primers used in the PCR reaction is hycA-fw and hycA-rv, the sequences of hycA-fw and hycA-rv are as follows:

hycA-fw:5’-CTGCAATTCGCTGGTTCAGGGCATC-3’;hycA-fw: 5'-CTGCAATTCGCTGGTTCAGGGCATC-3';

hycA-rv:5’-GGCTTAAATCCACCGGCTGGTCGTG-3’。hycA-rv: 5'-GGCTTAAATCCACCGGCTGGTCGTG-3'.

PCR鉴定结果见图4,图4中,1:E.aerogenes IAM1183-A;2:E.aerogenesIAM1183(对照);3:DNA 2000marker。由图可见,E.aerogenes IAM1183-A的扩增产物获得了1700bp目标带;E.aerogenes IAM1183的扩增产物获得了550bp的条带,与预期结果一致。结果表明,获得的克隆中,打靶载体与染色体上的目标位点发生了同源重组。将发生了同源重组的突变型菌株命名为E.aerogenesIAM1183-A。The results of PCR identification are shown in Figure 4. In Figure 4, 1: E.aerogenes IAM1183-A; 2: E.aerogenes IAM1183 (control); 3: DNA 2000marker. It can be seen from the figure that the amplified product of E.aerogenes IAM1183-A obtained a 1700bp target band; the amplified product of E.aerogenes IAM1183 obtained a 550bp band, which was consistent with the expected results. The results showed that in the obtained clones, homologous recombination occurred between the targeting vector and the target site on the chromosome. The mutant strain with homologous recombination was named E.aerogenes IAM1183-A.

实施例3、产气肠杆菌E.aerogenes IAM1183-AO的获得Embodiment 3, the acquisition of Enterobacter aerogenes E.aerogenes IAM1183-AO

以E.aerogenes IAM1183-O为出发菌株,灭活ΔhycA蛋白(方法同实施例2);或以E.aerogenes IAM1183-A为出发菌株,灭活ΔhycO蛋白(方法同实施例1),均可以获得突变株E.aerogenes IAM1183-AO。以下以E.aerogenes IAM1183-A为出发菌株,构建E.aerogenes IAM1183-AO。Use E.aerogenes IAM1183-O as the starting strain to inactivate the ΔhycA protein (the method is the same as in Example 2); or use E.aerogenes IAM1183-A as the starting strain to inactivate the ΔhycO protein (the method is the same as in Example 1), all of which can be obtained Mutant strain E. aerogenes IAM1183-AO. The following uses E.aerogenes IAM1183-A as the starting strain to construct E.aerogenes IAM1183-AO.

以pACYC184质粒DNA为模板,用引物HybO-tet-fw和HybO-tet-rv进行PCR扩增,获得含有四环素标记的线性DNA,将该线性DNA作为打靶载体。通过电转化的方式,将打靶载体导入含有pYM-red质粒的产气肠杆菌E.aerogenes IAM1183-A。将转化后的菌涂布于含有卡那霉素(50mg/mL)和四环素(4mg/mL)的双抗LB平板上,30℃培养培养1天。Using pACYC184 plasmid DNA as a template, primers HybO-tet-fw and HybO-tet-rv were used for PCR amplification to obtain a linear DNA labeled with tetracycline, which was used as a targeting vector. By electroporation, the targeting vector was introduced into Enterobacter aerogenes E. aerogenes IAM1183-A containing the pYM-red plasmid. Spread the transformed bacteria on a double-antibody LB plate containing kanamycin (50 mg/mL) and tetracycline (4 mg/mL), and incubate at 30° C. for 1 day.

随机挑取几个双抗培养基上生长的克隆,提取基因组DNA,通过PCR的方法鉴定打靶载体是否与染色体上的目标位点发生了同源重组,PCR反应所用的一对引物为hybO-fw和hybO-rv,hybO-fw和hybO-rv的序列如下:Randomly pick several clones grown on double-antibody medium, extract genomic DNA, and identify whether the targeting vector has undergone homologous recombination with the target site on the chromosome by PCR. The pair of primers used in the PCR reaction is hybO-fw and the sequences of hybO-rv, hybO-fw and hybO-rv are as follows:

hybO-fw 5’-AATCTCTGCT TCGTGCAACG CATC-3’;hybO-fw 5'-AATCTCTGCT TCGTGCAACG CATC-3';

hybO-rv 5’-GATACCTTCT TCGTTACAGC CATA-3’。hybO-rv 5'-GATACCTTCT TCGTTACAGC CATA-3'.

PCR鉴定结果见图5,图5中,1:DNA 2000 marker;2:E.aerogenes IAM1183-AO。由图可见,E.aerogenes IAM1183-AO的扩增产物获得了1800bp目标带,与预期结果一致。结果表明,获得的克隆中,打靶载体与染色体上的目标位点发生了同源重组。将发生了同源重组的突变型菌株命名为E.aerogenes IAM1183-AO。The results of PCR identification are shown in Figure 5. In Figure 5, 1: DNA 2000 marker; 2: E.aerogenes IAM1183-AO. It can be seen from the figure that the amplified product of E.aerogenes IAM1183-AO obtained a target band of 1800bp, which was consistent with the expected result. The results showed that in the obtained clones, homologous recombination occurred between the targeting vector and the target site on the chromosome. The mutant strain with homologous recombination was named E.aerogenes IAM1183-AO.

实施例4、工程菌的产氢性能及生理特性测定Embodiment 4, the hydrogen production performance of engineering bacteria and the determination of physiological characteristics

在不同的70mL血清瓶中,分别装20mL葡萄糖培养基,分别将活化后的工程菌E.aerogenes IAM1183-O和工程菌E.aerogenes IAM1183-AO进行摇瓶培养,同时将活化后的野生菌进行同样条件摇瓶培养,作为对照。具体操作步骤如下:In different 70mL serum bottles, 20mL of glucose medium were respectively installed, and the activated engineering bacteria E. Shake flask culture under the same conditions was used as a control. The specific operation steps are as follows:

(1)种子培养:采用15ml离心管,LB培养基装液量5ml,从固体平板接种,培养温度37℃,空气浴摇床转速170rpm,过夜培养。(1) Seed culture: use a 15ml centrifuge tube with 5ml of LB medium, inoculate from a solid plate, cultivate overnight at a temperature of 37°C and an air bath shaker at a speed of 170rpm.

(2)厌氧摇瓶培养:采用70ml血清瓶厌氧培养瓶,葡萄糖培养基装液量20ml(预先用氮气置换培养瓶顶部及培养基中的空气);种子菌的接种量2.5%(v/v),培养温度37℃,空气浴,摇床转速170rpm。培养24小时。(2) Anaerobic shake flask culture: adopt 70ml serum bottle anaerobic culture bottle, glucose medium filling capacity 20ml (use the air in the top of culture bottle and culture medium in advance with nitrogen replacement); The inoculation amount of seed bacteria 2.5% (v /v), culture temperature 37°C, air bath, shaker speed 170rpm. Incubate for 24 hours.

试验设三次重复,所有结果均为三次重复的平均值,用平均值±标准差表示。The experiment was repeated three times, and all the results were the average of three repetitions, expressed as mean ± standard deviation.

分别收集工程菌和野生菌产生的气体,利用注射器测定生成的气体量;利用分光光度计(UV-1206,SHIMADZU公司(日本))测定菌体的生长情况;利用pH计(CHNO60(828),ORION公司(美国))测定pH的变化情况。工程菌和野生菌的OD600的变化见图6,工程菌和野生菌的培养液的pH变化见图7,工程菌和野生菌的氢气生成情况见图8,工程菌和野生菌的CO2生成情况图9。Collect the gas produced by engineering bacteria and wild bacteria respectively, and use a syringe to measure the amount of gas generated; utilize a spectrophotometer (UV-1206, SHIMADZU company (Japan)) to measure the growth of the bacteria; utilize a pH meter (CHNO60 (828), ORION company (USA)) measured the change of pH. The change of OD 600 of engineering bacteria and wild bacteria is shown in Figure 6, the pH change of the culture solution of engineered bacteria and wild bacteria is shown in Figure 7, the hydrogen production of engineered bacteria and wild bacteria is shown in Figure 8, and the CO 2 of engineered bacteria and wild bacteria Generate situation figure 9.

工程菌和野生菌的最大比生长速率和菌体最大产氢速率比较见表1。The maximum specific growth rate and maximum hydrogen production rate of engineered bacteria and wild bacteria are compared in Table 1.

表1最大生长速率和产氢速率(n=3)Table 1 Maximum growth rate and hydrogen production rate (n=3)

Figure S2008101152311D00101
Figure S2008101152311D00101

以上结果表明,经过12h的批式培养后,野生菌的细胞密度达到最高(OD600为2.26),而在产氢最快的对数生长期中,两株工程菌的细胞密度均比野生菌高。氢气是与细胞生长偶联的初级代谢产物,在对数生长期时2株工程菌也表现出较高的产氢速率,并且最终氢气产量也较高,分别达到76.8mM和83.0mM。3株菌的pH变化趋势是一致的,均在发酵过程中产酸而使发酵液呈酸性,pH从初始值6.9下降到4.7-4.9之间。工程菌E.aerogenes IAM1183-O和E.aerogenes IAM1183-AO在对数生长期的pH下降速率要略快于野生菌,这和它们在对数生长期的高增值速率是相关的。工程菌E.aerogenes IAM1183-AO的二氧化碳产量要明显低于其它两株菌。将2株工程菌的最大比生长速率和最大产氢速率并与野生菌进行比较,野生菌的最大比生长速率高于2株工程菌,达0.523h-1,而工程菌E.aerogenes IAM1183-AO的最大比生长速率最低,为0.523h-1。最大产氢速率反映的是单位细胞单位时间的氢气最高产出量,与野生菌相比,2株工程菌的菌体最大产氢速率均有一定程度的提高,分别是野生型的1.18和1.45倍。The above results showed that after 12 hours of batch culture, the cell density of the wild strains reached the highest (OD 600 was 2.26), and in the logarithmic growth phase of the fastest hydrogen production, the cell densities of the two engineered strains were higher than those of the wild strains. high. Hydrogen is a primary metabolite coupled with cell growth. In the logarithmic growth phase, the two engineered strains also showed a higher hydrogen production rate, and the final hydrogen production was also higher, reaching 76.8mM and 83.0mM respectively. The change trend of pH of the three strains was consistent, all of them produced acid during the fermentation process to make the fermentation broth acidic, and the pH dropped from the initial value of 6.9 to 4.7-4.9. The pH drop rate of engineering bacteria E.aerogenes IAM1183-O and E.aerogenes IAM1183-AO in the logarithmic growth phase is slightly faster than that of the wild bacteria, which is related to their high value-added rate in the logarithmic growth phase. The carbon dioxide production of the engineered strain E.aerogenes IAM1183-AO was significantly lower than that of the other two strains. Comparing the maximum specific growth rate and maximum hydrogen production rate of the two engineered strains with the wild strain, the maximum specific growth rate of the wild strain was higher than that of the two engineered strains, reaching 0.523h -1 , while the engineered strain E.aerogenes IAM1183- The maximum specific growth rate of AO is the lowest, which is 0.523h -1 . The maximum hydrogen production rate reflects the maximum hydrogen production per unit cell per unit time. Compared with the wild strains, the maximum hydrogen production rates of the two strains of engineered bacteria have been increased to a certain extent, which are 1.18 and 1.45 of the wild type respectively. times.

实施例5、工程菌的代谢流分析Embodiment 5, the metabolic flow analysis of engineering bacteria

分别检测野生菌和工程菌细胞内各代谢通量的分布,具体步骤如下:The distribution of metabolic fluxes in the cells of wild bacteria and engineered bacteria were detected respectively, and the specific steps were as follows:

(1)种子培养:采用15ml离心管,LB培养基装液量5ml,从固体平板接种菌,培养温度37℃,空气浴摇床转速170rpm,过夜培养。(1) Seed cultivation: use a 15ml centrifuge tube with 5ml of LB medium, inoculate bacteria from a solid plate, cultivate overnight at a temperature of 37°C and an air bath shaker at a speed of 170rpm.

(2)厌氧摇瓶培养:采用70ml血清瓶厌氧培养瓶,葡萄糖培养基装液量20ml(预先用氮气置换培养瓶顶部及培养基中的空气);种子菌的接种量2.5%(v/v),培养温度37℃,空气浴摇床转速170rpm。培养16小时。(2) Anaerobic shake flask culture: adopt 70ml serum bottle anaerobic culture bottle, glucose medium filling capacity 20ml (use the air in the top of culture bottle and culture medium in advance with nitrogen replacement); The inoculation amount of seed bacteria 2.5% (v /v), the culture temperature is 37° C., and the rotation speed of the air bath shaker is 170 rpm. Incubate for 16 hours.

(3)厌氧摇瓶培养16h后对代谢产物进行检测。将发酵物离心取上清后,过滤。利用高压液相色谱测定代谢物的产量和组成。高压液相气谱为(HPLC-10A,SHIMADZU公司(日本)。具体检测方法如下:10ml样品在12000rpm,4℃离心5分钟,取上清冻存于-80℃冰箱直至测量。采用高效液相色谱(HPLC)测定葡萄糖、乳酸、琥珀酸、甲酸、乙酸、2,3-丁二醇和乙醇的浓度。(3) Metabolites were detected after anaerobic shake flask culture for 16 hours. After the fermented product was centrifuged to obtain the supernatant, it was filtered. The yield and composition of metabolites were determined by high pressure liquid chromatography. The high-pressure liquid gas spectrometer is (HPLC-10A, SHIMADZU company (Japan). The specific detection method is as follows: 10ml samples are centrifuged at 12000rpm at 4°C for 5 minutes, and the supernatant is frozen and stored in a refrigerator at -80°C until measurement. High performance liquid phase Chromatographic (HPLC) determination of concentrations of glucose, lactic acid, succinic acid, formic acid, acetic acid, 2,3-butanediol and ethanol.

分析方法及条件:色谱柱选用岛津Shim-pack SCR-102H,基质为PS/DVB,功能基为-SO3H。该柱尺寸为:300mm(长度)×8mm(内径),粒径为7μm。色谱分析条件如下:柱温40℃,流动相5mM高氯酸,流速1.0ml·min-1;示差检测器(RID);样品进样量20μl。采用岛津公司提供的HPLC计算机控制软件CLASS-VP工作站进行数据的分析处理。Analysis method and conditions: Shimadzu Shim-pack SCR-102H is used as the chromatographic column, the matrix is PS/DVB, and the functional group is -SO 3 H. The size of the column is: 300 mm (length)×8 mm (inner diameter), and the particle size is 7 μm. The chromatographic analysis conditions are as follows: column temperature 40°C, mobile phase 5mM perchloric acid, flow rate 1.0ml·min -1 ; differential detector (RID); sample injection volume 20μl. The HPLC computer control software CLASS-VP workstation provided by Shimadzu Corporation was used for data analysis and processing.

实验重复三次,实验结果如表2所示。表2中的数据为平均值±标准差。The experiment was repeated three times, and the experimental results are shown in Table 2. Data in Table 2 are mean ± standard deviation.

表2代谢流分析(n=3)Table 2 Metabolic flux analysis (n=3)

Figure S2008101152311D00111
Figure S2008101152311D00111

结果表明,2株工程菌的氢气对葡萄糖的得率分别达到1.27和1.36mol-氢气·mol-葡萄糖-1,均高于野生菌的相应值(1.16mol-氢气·mol-葡萄糖-1)。这说明对ΔhycA的灭活和对ΔhybO的灭活都能有效地增加产氢代谢途径的通量,从而提高细胞产氢得率。与此同时,上述基因修饰对其它代谢产物的分布也有一定的影响。2,3-丁二醇、乳酸、琥珀酸和乙醇都是依赖胞内NADH而产生的代谢产物,与野生菌相比,这些物质的得率在2株工程菌中均有所增加,显示出胞内可利用的还原力的增加,而这是有利于产氢的一个重要条件。2株工程菌的乙酸和乙醇产量之和均比野生型菌株有一定幅度的提高,表明甲酸产氢途径在产氢过程中被强化,这也达到了甲酸脱氢酶负调控基因灭活预期的效果。The results showed that the hydrogen-to-glucose yields of the two engineered strains reached 1.27 and 1.36 mol-hydrogen·mol-glucose -1 , respectively, both of which were higher than the corresponding values of wild bacteria (1.16 mol-hydrogen·mol-glucose -1 ). This shows that both the inactivation of ΔhycA and the inactivation of ΔhybO can effectively increase the flux of hydrogen-producing metabolic pathways, thereby increasing the yield of hydrogen production in cells. At the same time, the above-mentioned genetic modifications also have certain effects on the distribution of other metabolites. 2,3-Butanediol, lactic acid, succinic acid and ethanol are metabolites produced by relying on intracellular NADH. Compared with wild bacteria, the yields of these substances were increased in the two strains of engineered bacteria, showing Intracellular available reducing power increases, which is an important condition favorable for hydrogen production. The sum of acetic acid and ethanol production of the two engineered strains was higher than that of the wild-type strain, indicating that the formic acid hydrogen production pathway was strengthened during the hydrogen production process, which also reached the expected inactivation of formate dehydrogenase negative regulatory genes. Effect.

试验表明,对靶基因的灭活会引起胞内相应酶活性的变化,进而改变代谢通量,增加目标产物的产量。本发明所获得的基因工程菌株具有较高的产氢能力,可应用于发酵制氢。Experiments have shown that the inactivation of the target gene will cause changes in the activity of the corresponding enzymes in the cell, thereby changing the metabolic flux and increasing the yield of the target product. The genetically engineered bacterial strain obtained by the invention has high hydrogen production capacity and can be applied to hydrogen production by fermentation.

序列表sequence listing

<110>清华大学<110> Tsinghua University

<120>产氢工程菌及其应用<120>Engineering bacteria producing hydrogen and its application

<130>CGGNARY81442<130>CGGNARY81442

<160>10<160>10

<210>1<210>1

<211>263<211>263

<212>PRT<212>PRT

<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)

<400>1<400>1

Val Ile Trp Ile Gly Ala Gln Glu Cys Thr Gly Cys Thr Glu Ser LeuVal Ile Trp Ile Gly Ala Gln Glu Cys Thr Gly Cys Thr Glu Ser Leu

1               5                   10                  151 5 10 15

Leu Arg Ala Thr His Pro Thr Val Glu Asn Leu Val Leu Glu Thr IleLeu Arg Ala Thr His Pro Thr Val Glu Asn Leu Val Leu Glu Thr Ile

            20                  25                  3020 25 30

Ser Leu Glu Tyr His Glu Val Leu Ser Ala Ala Phe Gly His Gln ValSer Leu Glu Tyr His Glu Val Leu Ser Ala Ala Phe Gly His Gln Val

        35                  40                  4535 40 45

Glu Glu Asn Lys His Asn Ala Leu Glu Lys Tyr Lys Gly Gln Tyr ValGlu Glu Asn Lys His Asn Ala Leu Glu Lys Tyr Lys Gly Gln Tyr Val

    50                  55                  6050 55 60

Leu Val Val Asp Gly Ser Ile Pro Leu Lys Asp Asn Gly Ile Tyr CysLeu Val Val Asp Gly Ser Ile Pro Leu Lys Asp Asn Gly Ile Tyr Cys

65                  70                  75                  8065 70 75 80

Met Val Ala Gly Glu Pro Ile Val Asp His Ile Arg Lys Ala Ala GluMet Val Ala Gly Glu Pro Ile Val Asp His Ile Arg Lys Ala Ala Glu

                85                  90                  9585 90 95

Gly Ala Ala Ala Ile Ile Ala Ile Gly Ser Cys Ser Ala Trp Gly GlyGly Ala Ala Ala Ile Ile Ala Ile Gly Ser Cys Ser Ala Trp Gly Gly

            100                 105                 110100 105 110

Val Ala Ala Ala Gly Val Asn Pro Thr Gly Ala Val Ser Leu Gln GluVal Ala Ala Ala Gly Val Asn Pro Thr Gly Ala Val Ser Leu Gln Glu

        115                 120                 125115 120 125

Val Leu Pro Gly Lys Thr Val Ile Asn Ile Pro Gly Cys Pro Pro AsnVal Leu Pro Gly Lys Thr Val Ile Asn Ile Pro Gly Cys Pro Pro Asn

    130                 135                 140130 135 140

Pro His Asn Phe Leu Ala Thr Val Ala His Ile Ile Thr Tyr Gly LysPro His Asn Phe Leu Ala Thr Val Ala His Ile Ile Thr Tyr Gly Lys

145                 150                 155                 160145 150 155 160

Pro Pro Lys Leu Asp Asp Lys Asn Arg Pro Thr Phe Ala Tyr Gly ArgPro Pro Lys Leu Asp Asp Lys Asn Arg Pro Thr Phe Ala Tyr Gly Arg

                165                 170                 175165 170 175

Leu Ile His Glu His Cys Glu Arg Arg Pro His Phe Asp Ala Gly ArgLeu Ile His Glu His Cys Glu Arg Arg Pro His Phe Asp Ala Gly Arg

            180                 185                 190180 185 190

Phe Ala Lys Glu Phe Gly Asp Glu Gly His Arg Glu Gly Trp Cys LeuPhe Ala Lys Glu Phe Gly Asp Glu Gly His Arg Glu Gly Trp Cys Leu

        195                 200                 205195 200 205

Tyr His Leu Gly Cys Lys Gly Pro Glu Thr Tyr Gly Asn Cys Ser ThrTyr His Leu Gly Cys Lys Gly Pro Glu Thr Tyr Gly Asn Cys Ser Thr

    210                 215                 220210 215 220

Leu Gln Phe Cys Asp Val Gly Gly Val Trp Pro Val Ala Ile Gly HisLeu Gln Phe Cys Asp Val Gly Gly Val Trp Pro Val Ala Ile Gly His

225                 230                 235                 240225 230 235 240

Pro Cys Tyr Gly Cys Asn Glu Glu Gly Ile Gly Phe His Lys Gly IlePro Cys Tyr Gly Cys Asn Glu Glu Gly Ile Gly Phe His Lys Gly Ile

                245                 250                 255245 250 255

His Gln Leu Ala Asn Val GluHis Gln Leu Ala Asn Val Glu

            260260

<210>2<210>2

<211>789<211>789

<212>DNA<212>DNA

<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)

<400>2<400>2

gttatctgga ttggcgcgca ggagtgcacc ggttgtacgg aatctctgct tcgtgcaacg     60gttatctgga ttggcgcgca ggagtgcacc ggttgtacgg aatctctgct tcgtgcaacg 60

catccaacgg tagaaaacct cgtactggag actatctctc tggagtatca cgaagtgctt    120catccaacgg tagaaaacct cgtactggag actatctctc tggagtatca cgaagtgctt 120

tccgccgcct tcggtcatca ggtcgaagag aacaaacata acgctcttga gaagtacaaa    180tccgccgcct tcggtcatca ggtcgaagag aacaaacata acgctcttga gaagtacaaa 180

gggcagtatg tgttagtggt ggatggttcc atcccattaa aagataacgg tatttattgc    240gggcagtatg tgttagtggt ggatggttcc atcccattaa aagataacgg tatttattgc 240

atggttgccg gtgagccgat tgtggatcac atccgcaaag cggcggaagg cgcagcagcc    300atggttgccg gtgagccgat tgtggatcac atccgcaaag cggcggaagg cgcagcagcc 300

attatcgcta tcggttcctg ctctgcgtgg ggcggtgttg ccgcagctgg agttaaccca    360attatcgcta tcggttcctg ctctgcgtgg ggcggtgttg ccgcagctgg agttaaccca 360

actggcgcag tcagcctgca agaagttctg ccaggcaaaa ccgttatcaa tattccgggc    420actggcgcag tcagcctgca agaagttctg ccaggcaaaa ccgttatcaa tattccgggc 420

tgcccgccga acccgcacaa cttcctcgcg accgttgcgc acatcatcac ttacggcaaa    480tgcccgccga acccgcacaa cttcctcgcg accgttgcgc acatcatcac ttacggcaaa 480

ccgccgaaac tggatgacaa aaaccgtccg accttcgcct atggccgtct gattcacgaa    540ccgccgaaac tggatgacaa aaaccgtccg accttcgcct atggccgtct gattcacgaa 540

cactgcgaac gtcgcccgca cttcgatgct ggtcgttttg ccaaagagtt cggtgatgaa    600cactgcgaac gtcgcccgca cttcgatgct ggtcgttttg ccaaagagtt cggtgatgaa 600

ggccaccgcg aaggctggtg cctgtaccac ctcggctgta aagggccaga aacttacggc    660ggccaccgcg aaggctggtg cctgtaccac ctcggctgta aagggccaga aacttacggc 660

aactgctcaa cgctgcaatt ctgcgatgtt ggcggtgtgt ggccggtggc gattggtcac    720aactgctcaa cgctgcaatt ctgcgatgtt ggcggtgtgt ggccggtggc gattggtcac 720

ccttgctatg gctgtaacga agaaggtatc ggcttccata aaggcatcca tcaactggcc    780ccttgctatg gctgtaacga agaaggtatc ggcttccata aaggcatcca tcaactggcc 780

aacgtcgaa                                                            789aacgtcgaa 789

<210>3<210>3

<211>1910<211>1910

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<400>3<400>3

aatctctgct tcgtgcaacg catccaacgg tagaaaacct tttggtgact gcgctcctcc     60aatctctgct tcgtgcaacg catccaacgg tagaaaacct tttggtgact gcgctcctcc 60

aagccagtta cctcggttca aagagttggt agctcagaga accttcgaaa aaccgccctg    120aagccagtta cctcggttca aagagttggt agctcagaga accttcgaaa aaccgccctg 120

caaggcggtt ttttcgtttt cagagcaaga gattacgcgc agaccaaaac gatctcaaga    180caaggcggtt ttttcgtttt cagagcaaga gattacgcgc agaccaaaac gatctcaaga 180

agatcatctt attaatcaga taaaatattt ctagatttca gtgcaattta tctcttcaaa    240agatcatctt attaatcaga taaaatattt ctagatttca gtgcaattta tctcttcaaa 240

tgtagcacct gaagtcagcc ccatacgata taagttgtaa ttctcatgtt tgacagctta    300tgtagcacct gaagtcagcc ccatacgata taagttgtaa ttctcatgtt tgacagctta 300

tcatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac    360tcatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac 360

cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg caccgtcacc ctggatgctg    420cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg caccgtcacc ctggatgctg 420

taggcatagg cttggttatg ccggtactgc cgggcctctt gcgggatatc gtccattccg    480taggcatagg cttggttatg ccggtactgc cgggcctctt gcgggatc gtccattccg 480

acagcatcgc cagtcactat ggcgtgctgc tagcgctata tgcgttgatg caatttctat    540acagcatcgc cagtcactat ggcgtgctgc tagcgctata tgcgttgatg caatttctat 540

gcgcacccgt tctcggagca ctgtccgacc gctttggccg ccgcccagtc ctgctcgctt    600gcgcacccgt tctcggagca ctgtccgacc gctttggccg ccgcccagtc ctgctcgctt 600

cgctacttgg agccactatc gactacgcga tcatggcgac cacacccgtc ctgtggatcc    660cgctacttgg agccactatc gactacgcga tcatggcgac cacacccgtc ctgtggatcc 660

tctacgccgg acgcatcgtg gccggcatca ccggcgccac aggtgcggtt gctggcgcct    720tctacgccgg acgcatcgtg gccggcatca ccggcgccac aggtgcggtt gctggcgcct 720

atatcgccga catcaccgat ggggaagatc gggctcgcca cttcgggctc atgagcgctt    780atatcgccga catcaccgat gggaagatc gggctcgcca cttcgggctc atgagcgctt 780

gtttcggcgt gggtatggtg gcaggccccg tggccggggg actgttgggc gccatctcct    840gtttcggcgt gggtatggtg gcaggccccg tggccggggg actgttgggc gccatctcct 840

tgcatgcacc attccttgcg gcggcggtgc tcaacggcct caacctacta ctgggctgct    900tgcatgcacc attccttgcg gcggcggtgc tcaacggcct caacctacta ctgggctgct 900

tcctaatgca ggagtcgcat aagggagagc gtcgaccgat gcccttgaga gccttcaacc    960tcctaatgca ggagtcgcat aagggagagc gtcgaccgat gcccttgaga gccttcaacc 960

cagtcagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt atgactgtct   1020cagtcagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt atgactgtct 1020

tctttatcat gcaactcgta ggacaggtgc cggcagcgct ctgggtcatt ttcggcgagg   1080tctttatcat gcaactcgta ggacaggtgc cggcagcgct ctgggtcatt ttcggcgagg 1080

accgctttcg ctggagcgcg acgatgatcg gcctgtcgct tgcggtattc ggaatcttgc   1140accgctttcg ctggagcgcg acgatgatcg gcctgtcgct tgcggtattc ggaatcttgc 1140

acgccctcgc tcaagccttc gtcactggtc ccgccaccaa acgtttcggc gagaagcagg   1200acgccctcgc tcaagccttc gtcactggtc ccgccaccaa acgtttcggc gagaagcagg 1200

ccattatcgc cggcatggcg gccgacgcgc tgggctacgt cttgctggcg ttcgcgacgc   1260ccattatcgc cggcatggcg gccgacgcgc tgggctacgt cttgctggcg ttcgcgacgc 1260

gaggctggat ggccttcccc attatgattc ttctcgcttc cggcggcatc gggatgcccg   1320gaggctggat ggccttcccc attatgattc ttctcgcttc cggcggcatc gggatgcccg 1320

cgttgcaggc catgctgtcc aggcaggtag atgacgacca tcagggacag cttcaaggat   1380cgttgcaggc catgctgtcc aggcaggtag atgacgacca tcagggacag cttcaaggat 1380

cgctcgcggc tcttaccagc ctaacttcga tcactggacc gctgatcgtc acggcgattt   1440cgctcgcggc tcttaccagc ctaacttcga tcactggacc gctgatcgtc acggcgattt 1440

atgccgcctc ggcgagcaca tggaacgggt tggcatggat tgtaggcgcc gccctatacc   1500atgccgcctc ggcgagcaca tggaacgggt tggcatggat tgtaggcgcc gccctatacc 1500

ttgtctgcct ccccgcgttg cgtcgcggtg catggagccg ggccacctcg acctgaatgg   1560ttgtctgcct ccccgcgttg cgtcgcggtg catggagccg ggccacctcg acctgaatgg 1560

aagccggcgg cacctcgcta acggattcac cactccaaga attggagcca atcaattctt   1620aagccggcgg cacctcgcta acggattcac cactccaaga attggagcca atcaattctt 1620

gcggagaact gtgaatgcgc aaaccaaccc ttggcagaac atatccatcg cgtccgccat   1680gcggagaact gtgaatgcgc aaaccaaccc ttggcagaac atatccatcg cgtccgccat 1680

ctccagcagc cgcacgcggc gcatctcggg cagcgttggg tcctggccac gggtgcgcat   1740ctccagcagc cgcacgcggc gcatctcggg cagcgttggg tcctggccac gggtgcgcat 1740

gatcgtgctc ctgtcgttga ggacccggct aggctggcgg ggttgcctta ctggttagca   1800gatcgtgctc ctgtcgttga ggacccggct aggctggcgg ggttgcctta ctggttagca 1800

gaatgaatca ccgatacgcg agcgaacgtg aagcgactgc tgctgcaaaa cgtctgcgac   1860gaatgaatca ccgatacgcg agcgaacgtg aagcgactgc tgctgcaaaa cgtctgcgac 1860

ctgagcaaca gattggtcac ccttgctatg gctgtaacga agaaggtatc              1910ctgagcaaca gattggtcac ccttgctatg gctgtaacga agaaggtatc 1910

<210>4<210>4

<211>134<211>134

<212>PRT<212>PRT

<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)

<400>4<400>4

Arg His Arg Arg Tyr Gln Asp Gln Trp Arg Gln Tyr Cys Asn Ser LeuArg His Arg Arg Tyr Gln Asp Gln Trp Arg Gln Tyr Cys Asn Ser Leu

1               5                   10                  151 5 10 15

Val Gln Gly Ile Thr Leu Ser Lys Ala Arg Leu His His Ala Met SerVal Gln Gly Ile Thr Leu Ser Lys Ala Arg Leu His His Ala Met Ser

            20                  25                  3020 25 30

Cys Ala Pro Asp Lys Glu Leu Cys Phe Val Leu Phe Glu His Phe GlnCys Ala Pro Asp Lys Glu Leu Cys Phe Val Leu Phe Glu His Phe Gln

        35                  40                  4535 40 45

Val Tyr Val Ala Leu Ala Glu Gly Phe Asn Asn His Thr Ile Glu TyrVal Tyr Val Ala Leu Ala Glu Gly Phe Asn Asn His Thr Ile Glu Tyr

    50                  55                  6050 55 60

Tyr Val Glu Thr Arg Asn Gly Asp Asp Lys Arg Leu Ile Ala Gln AlaTyr Val Glu Thr Arg Asn Gly Asp Asp Lys Arg Leu Ile Ala Gln Ala

65                  70                  75                  8065 70 75 80

Thr Leu Ala Ser Asp Gly Thr Val Asp Gly Arg Ile Ser Asn Arg SerThr Leu Ala Ser Asp Gly Thr Val Asp Gly Arg Ile Ser Asn Arg Ser

                85                  90                  9585 90 95

Arg Glu Gln Val Leu Glu His Tyr Leu Ala Ile Ile Ala Ser Val TyrArg Glu Gln Val Leu Glu His Tyr Leu Ala Ile Ile Ala Ser Val Tyr

            100                 105                 110100 105 110

Asp Arg Leu Tyr Asp Ala Met Glu His Asp Gln Pro Val Asp Leu SerAsp Arg Leu Tyr Asp Ala Met Glu His Asp Gln Pro Val Asp Leu Ser

        115                 120                 125115 120 125

His Leu Ala Leu Ala HisHis Leu Ala Leu Ala His

    130130

<210>5<210>5

<211>405<211>405

<212>DNA<212>DNA

<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)

<400>5<400>5

cgtcaccgcc gctatcagga tcagtggcgc cagtactgca attcgctggt tcagggcatc   60cgtcaccgcc gctatcagga tcagtggcgc cagtactgca attcgctggt tcagggcatc 60

accctgtcaa aagcgcgttt gcatcatgcg atgagctgcg cgccggacaa agagctgtgc  120accctgtcaa aagcgcgttt gcatcatgcg atgagctgcg cgccggacaa agagctgtgc 120

ttcgtcctgt ttgaacattt tcaggtgtat gtcgcgctgg cggaagggtt caacaaccac  180ttcgtcctgt ttgaacattt tcaggtgtat gtcgcgctgg cggaagggtt caacaaccac 180

accatcgagt actacgtcga aacgcgcaat ggtgatgata agcgattgat tgctcaggca  240accatcgagt actacgtcga aacgcgcaat ggtgatgata agcgattgat tgctcaggca 240

acgctggcat ccgacggtac cgttgacggc cggatcagca accgttcgcg cgaacaggtg  300acgctggcat ccgacggtac cgttgacggc cggatcagca accgttcgcg cgaacaggtg 300

ctggaacatt acctggccat tattgccagc gtctatgacc gtctgtatga cgccatggaa  360ctggaacatt acctggccat tattgccagc gtctatgacc gtctgtatga cgccatggaa 360

cacgaccagc cggtggattt aagccatctg gcgctggccc attaa                  405cacgaccagc cggtggattt aagccatctg gcgctggccc attaa 405

<210>6<210>6

<211>1693<211>1693

<212>DNA<212>DNA

<213>6<213>6

<400>人工序列<400> artificial sequence

ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg ataggctccg cccccctgac   60ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg ataggctccg cccccctgac 60

gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga  120gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga 120

taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt  180taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt 180

accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc  240accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc 240

tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc  300tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc 300

cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta  360cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta 360

agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat  420agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat 420

gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca  480gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca 480

gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct  540gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct 540

tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt  600tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt 600

acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct  660acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct 660

cagtggaacg aaaactcacg ttaagggatt ttggtcatga acaataaaac tgtctgctta  720cagtggaacg aaaactcacg ttaagggatt ttggtcatga acaataaaac tgtctgctta 720

cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt cttgctctag  780cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt cttgctctag 780

gccgcgatta aattccaaca tggatgctga tttatatggg tataaatggg ctcgcgataa  840gccgcgatta aattccaaca tggatgctga tttatatggg tataaatggg ctcgcgataa 840

tgtcgggcaa tcaggtgcga caatctatcg attgtatggg aagcccgatg cgccagagtt  900tgtcgggcaa tcaggtgcga caatctatcg attgtatggg aagcccgatg cgccagagtt 900

gtttctgaaa catggcaaag gtagcgttgc caatgatgtt acagatgaga tggtcagact  960gtttctgaaa catggcaaag gtagcgttgc caatgatgtt acagatgaga tggtcagact 960

aaactggctg acggaattta tgcctcttcc gaccatcaag cattttatcc gtactcctga  1020aaactggctg acggaattta tgcctcttcc gaccatcaag cattttatcc gtactcctga 1020

tgatgcatgg ttactcacca ctgcgatccc cgggaaaaca gcattccagg tattagaaga  1080tgatgcatgg ttactcacca ctgcgatccc cgggaaaaca gcattccagg tattagaaga 1080

atatcctgat tcaggtgaaa atattgttga tgcgctggca gtgttcctgc gccggttgca  1140atatcctgat tcaggtgaaa atattgttga tgcgctggca gtgttcctgc gccggttgca 1140

ttcgattcct gtttgtaatt gtccttttaa cagcgatcgc gtatttcgtc tcgctcaggc  1200ttcgattcct gtttgtaatt gtccttttaa cagcgatcgc gtatttcgtc tcgctcaggc 1200

gcaatcacga atgaataacg gtttggttga tgcgagtgat tttgatgacg agcgtaatgg  1260gcaatcacga atgaataacg gtttggttga tgcgagtgat tttgatgacg agcgtaatgg 1260

ctggcctgtt gaacaagtct ggaaagaaat gcataaactt ttgccattct caccggattc  1320ctggcctgtt gaacaagtct ggaaagaaat gcataaactt ttgccattct caccggattc 1320

agtcgtcact catggtgatt tctcacttga taaccttatt tttgacgagg ggaaattaat  1380agtcgtcact catggtgatt tctcacttga taaccttatt tttgacgagg ggaaattaat 1380

aggttgtatt gatgttggac gagtcggaat cgcagaccga taccaggatc ttgccatcct  1440aggttgtatt gatgttggac gagtcggaat cgcagaccga taccaggatc ttgccatcct 1440

atggaactgc ctcggtgagt tttctccttc attacagaaa cggctttttc aaaaatatgg  1500atggaactgc ctcggtgagt tttctccttc attacagaaa cggctttttc aaaaatgg 1500

tattgataat cctgatatga ataaattgca gtttcatttg atgctcgatg agtttttcta  1560tattgataat cctgatatga ataaattgca gtttcatttg atgctcgatg agtttttcta 1560

agaattaatt catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg  1620agaattaatt catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 1620

ttccgcgcac atttccccga aaagtgccac ctgtatgacg ccatggaaca cgaccagccg  1680ttccgcgcac atttccccga aaagtgccac ctgtatgacg ccatggaaca cgaccagccg 1680

gtggatttaa gcc                                                     1693gtggatttaa gcc 1693

<210>7<210>7

<211>40<211>40

<212>DNA<212> DNA

<213>人工序列<213> Artificial sequence

<400>7<400>7

aatctctgct tcgtgcaacg catccaacgg tagaaaacct                        40aatctctgct tcgtgcaacg catccaacgg tagaaaacct 40

<210>8<210>8

<211>40<211>40

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<400>8<400>8

gataccttct tcgttacagc catagcaagg gtgaccaatc                        40gataccttct tcgttacagc catagcaagg gtgaccaatc 40

<210>9<210>9

<211>40<211>40

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<400>9<400>9

ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg                        40ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg 40

<210>10<210>10

<211>40<211>40

<212>DNA<212>DNA

<213>人工序列<213> Artificial sequence

<400>10<400>10

ggcttaaatc caccggctgg tcgtgttcca tggcgtcata    40ggcttaaatc caccggctgg tcgtgttcca tggcgtcata 40

Claims (8)

1.产氢工程菌,是如下a)或b)的工程菌:1. Hydrogen-producing engineering bacteria are engineering bacteria as follows a) or b): a)灭活E.aerogenes IAM1183中的ΔhybO蛋白得到的工程菌;a) engineering bacteria obtained by inactivating the ΔhybO protein in E.aerogenes IAM1183; 所述ΔhybO蛋白的氨基酸序列是序列表中的序列1;所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;The amino acid sequence of the ΔhybO protein is sequence 1 in the sequence listing; the nucleotide sequence of the gene encoding the ΔhybO protein is sequence 2 in the sequence listing; 所述灭活E.aerogenes IAM1183中的ΔhybO蛋白是通过将DNA片段Q导入所述E.aerogenes IAM1183中实现的;The inactivation of the ΔhybO protein in E.aerogenes IAM1183 is achieved by introducing DNA fragment Q into the E.aerogenes IAM1183; 所述DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与所述ΔhybO蛋白的编码基因发生同源重组,灭活所述ΔhybO蛋白;所述DNA片段N为抗生素抗性片段;The DNA fragment Q is sequentially homologous arm T 1 , DNA fragment N, and homologous arm T 2 from upstream to downstream; the homologous arm T 1 and homologous arm T 2 can interact with the gene encoding the ΔhybO protein Homologous recombination inactivates the ΔhybO protein; the DNA fragment N is an antibiotic-resistant fragment; 所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段;The nucleotide sequence of the homology arm T1 is sequence 7 in the sequence listing; the nucleotide sequence of the homology arm T2 is sequence 8 in the sequence listing; the DNA fragment N is a tetracycline-resistant fragment ; b)灭活E.aerogenes IAM1183中的ΔhybO蛋白和ΔhycA蛋白得到的工程菌;b) engineering bacteria obtained by inactivating the ΔhybO protein and ΔhycA protein in E.aerogenes IAM1183; 所述ΔhycA蛋白的氨基酸序列是序列表中的序列4;所述ΔhycA蛋白的编码基因的核苷酸序列是序列表中的序列5;The amino acid sequence of the ΔhycA protein is sequence 4 in the sequence listing; the nucleotide sequence of the gene encoding the ΔhycA protein is sequence 5 in the sequence listing; 所述灭活E.aerogenes IAM1183中的ΔhybO蛋白和ΔhycA蛋白是通过将DNA片段Q和DNA片段P导入所述E.aerogenes IAM1183中实现的;The inactivation of ΔhybO protein and ΔhycA protein in E.aerogenes IAM1183 is achieved by introducing DNA fragment Q and DNA fragment P into the E.aerogenes IAM1183; 所述DNA片段P自上游至下游依次为同源臂T3、DNA片段M、同源臂T4;所述同源臂T3和同源臂T4能与所述ΔhycA蛋白的编码基因发生同源重组,灭活所述ΔhycA蛋白;所述DNA片段M为抗生素抗性片段;The DNA fragment P is sequentially homologous arm T 3 , DNA fragment M, and homologous arm T 4 from upstream to downstream; the homologous arm T 3 and homologous arm T 4 can interact with the gene encoding the ΔhycA protein Homologous recombination inactivates the ΔhycA protein; the DNA fragment M is an antibiotic-resistant fragment; 所述同源臂T3的核苷酸序列是序列表中的序列9;所述同源臂T4的核苷酸序列是序列表中的序列10;所述DNA片段M为卡那霉素抗性片段。The nucleotide sequence of the homology arm T3 is sequence 9 in the sequence listing; the nucleotide sequence of the homology arm T4 is sequence 10 in the sequence listing; the DNA fragment M is kanamycin resistant fragments. 2.如权利要求1所述的工程菌,其特征在于:所述DNA片段Q的核苷酸序列为序列表中的序列3。2. The engineering bacterium according to claim 1, characterized in that: the nucleotide sequence of the DNA fragment Q is sequence 3 in the sequence table. 3.DNA片段Q,自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与E.aerogenes IAM1183的ΔhybO蛋白的编码基因发生同源重组,灭活ΔhybO蛋白;所述ΔhybO蛋白的氨基酸序列是序列表中的序列1;所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;3. DNA fragment Q, from upstream to downstream is homology arm T 1 , DNA fragment N, homology arm T 2 ; the homology arm T 1 and homology arm T 2 can be combined with the ΔhybO protein of E.aerogenes IAM1183 Homologous recombination occurs in the gene encoding the ΔhybO protein, and the ΔhybO protein is inactivated; the amino acid sequence of the ΔhybO protein is sequence 1 in the sequence listing; the nucleotide sequence of the gene encoding the ΔhybO protein is sequence 2 in the sequence listing; 所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段。The nucleotide sequence of the homology arm T1 is sequence 7 in the sequence listing; the nucleotide sequence of the homology arm T2 is sequence 8 in the sequence listing; the DNA fragment N is a tetracycline-resistant fragment . 4.如权利要求3所述的DNA片段Q,其特征在于:所述DNA片段N的核苷酸序列为序列表中的序列3。4. The DNA fragment Q as claimed in claim 3, characterized in that: the nucleotide sequence of the DNA fragment N is sequence 3 in the sequence listing. 5.含有权利要求3或4所述DNA片段Q的表达盒。5. An expression cassette comprising the DNA fragment Q according to claim 3 or 4. 6.含有权利要求3或4所述DNA片段Q的重组表达载体。6. A recombinant expression vector containing the DNA fragment Q according to claim 3 or 4. 7.含有权利要求3或4所述DNA片段Q的转基因细胞系。7. A transgenic cell line containing the DNA fragment Q according to claim 3 or 4. 8.含有权利要求3或4所述DNA片段Q的重组菌。8. A recombinant bacterium containing the DNA fragment Q according to claim 3 or 4.
CN2008101152311A 2008-06-19 2008-06-19 Hydrogen-producing engineering bacteria and its application Expired - Fee Related CN101608170B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101152311A CN101608170B (en) 2008-06-19 2008-06-19 Hydrogen-producing engineering bacteria and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101152311A CN101608170B (en) 2008-06-19 2008-06-19 Hydrogen-producing engineering bacteria and its application

Publications (2)

Publication Number Publication Date
CN101608170A CN101608170A (en) 2009-12-23
CN101608170B true CN101608170B (en) 2011-06-29

Family

ID=41482080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101152311A Expired - Fee Related CN101608170B (en) 2008-06-19 2008-06-19 Hydrogen-producing engineering bacteria and its application

Country Status (1)

Country Link
CN (1) CN101608170B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2880819A1 (en) 2012-08-02 2014-02-06 University Of Central Florida Research Foundation, Inc. Compositions and methods for genetic constructs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵洪新等.产气肠杆菌(E.aerogenes IAMl138)甲酸氢酶基因的克隆及高效产氢工程菌的构建.《2007年中国微生物学会学术年会》.2007,173-174. *

Also Published As

Publication number Publication date
CN101608170A (en) 2009-12-23

Similar Documents

Publication Publication Date Title
US10961551B2 (en) Process for producing at least one metabolite of interest by conversion of a pentose in a microorganism
CN112501102B (en) A Recombinant Escherichia coli Bacteria Efficiently Produces Ectrahydropyrimidine
Raj et al. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues
CN102757975B (en) Method for increasing oxytetracycline yield of streptomyces rimosus
CN104774817A (en) Fructosyl transferase and coding gene and application thereof
CN112921047A (en) Shewanella electrogenesis strain for over-expressing cytochrome protein and construction method and application thereof
Zhang et al. irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses
CN101608170B (en) Hydrogen-producing engineering bacteria and its application
CN110499274A (en) A kind of genetically engineered rhodococcus and its construction method and application
CN106947776A (en) Multiple-effect modulin CcpA and its purposes in lifting fermenting performance
CN101608171A (en) A hydrogen-producing engineering bacterium and its application
CN104046635B (en) Application and usage method of nfiS gene for specific response of adversity signal
CN111996157B (en) A genetically engineered bacterium for efficient production of 1,3-propanediol and its construction method and application
US10934521B2 (en) Genetically modified microorganisms
CN113046286B (en) A kind of Shewanella strain promoting biofilm formation and construction method and application
CN110305892B (en) Method for verifying feasibility of inserting CRISPR-Cas9 system mediated target gene into Candida utilis
CN116121288B (en) Vector for cloning pseudomonas putida large fragment DNA and application thereof
CN102559507B (en) Cell for preparing competent cell and use thereof, novel escherichia coli and use thereof, and method for preparing competent cell
CN104152482A (en) RecET recombination system expression plasmids for zymomonas mobilis, as well as construction method and applications thereof
JP2015104373A (en) [NiFe] -hydrogenase expression system
CN101633690B (en) Hydrogen production associated protein, coding genes thereof and application thereof
CN113122563A (en) Method for constructing R-3-aminobutyric acid production strain
CN103525854A (en) Construction method for high-gene-knockout-efficiency Aspergillus chevalieri var. intermedius mutant engineering bacterial strain
CN111394349B (en) Rhodosporidium toruloides RNA polymerase III type promoter and application thereof
CN113272438A (en) Recombinant yeast and method for producing ethanol using same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110629

Termination date: 20120619