CN101608170B - Hydrogen-producing engineering bacteria and its application - Google Patents
Hydrogen-producing engineering bacteria and its application Download PDFInfo
- Publication number
- CN101608170B CN101608170B CN2008101152311A CN200810115231A CN101608170B CN 101608170 B CN101608170 B CN 101608170B CN 2008101152311 A CN2008101152311 A CN 2008101152311A CN 200810115231 A CN200810115231 A CN 200810115231A CN 101608170 B CN101608170 B CN 101608170B
- Authority
- CN
- China
- Prior art keywords
- sequence
- protein
- dna fragment
- δhybo
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 104
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 104
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 241000894006 Bacteria Species 0.000 title claims abstract description 67
- 241000588915 Klebsiella aerogenes Species 0.000 claims abstract description 90
- 230000000415 inactivating effect Effects 0.000 claims abstract description 7
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 5
- 108090000623 proteins and genes Proteins 0.000 claims description 71
- 239000012634 fragment Substances 0.000 claims description 61
- 102000004169 proteins and genes Human genes 0.000 claims description 43
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 230000006801 homologous recombination Effects 0.000 claims description 16
- 238000002744 homologous recombination Methods 0.000 claims description 16
- 239000004098 Tetracycline Substances 0.000 claims description 9
- 229960002180 tetracycline Drugs 0.000 claims description 9
- 229930101283 tetracycline Natural products 0.000 claims description 9
- 235000019364 tetracycline Nutrition 0.000 claims description 9
- 150000003522 tetracyclines Chemical class 0.000 claims description 9
- 230000002779 inactivation Effects 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 239000003242 anti bacterial agent Substances 0.000 claims description 6
- 230000003115 biocidal effect Effects 0.000 claims description 6
- 229930027917 kanamycin Natural products 0.000 claims description 6
- 229960000318 kanamycin Drugs 0.000 claims description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 claims description 6
- 229930182823 kanamycin A Natural products 0.000 claims description 6
- 239000013604 expression vector Substances 0.000 claims description 2
- 238000003259 recombinant expression Methods 0.000 claims description 2
- 230000009261 transgenic effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 67
- 239000000758 substrate Substances 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 7
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 101150099257 hybO gene Proteins 0.000 abstract 3
- 101150108643 hycA gene Proteins 0.000 abstract 2
- 229940092559 enterobacter aerogenes Drugs 0.000 description 23
- 108010020056 Hydrogenase Proteins 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 238000000855 fermentation Methods 0.000 description 15
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 14
- 230000004151 fermentation Effects 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 12
- 238000012216 screening Methods 0.000 description 12
- 230000008685 targeting Effects 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 10
- 239000008103 glucose Substances 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 241000193403 Clostridium Species 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 235000019253 formic acid Nutrition 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000003698 anagen phase Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000006481 glucose medium Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 4
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 4
- 238000012807 shake-flask culturing Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- DVJSJDDYCYSMFR-ZKWXMUAHSA-N Ala-Ile-Gly Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(O)=O DVJSJDDYCYSMFR-ZKWXMUAHSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 241000588914 Enterobacter Species 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- PELIQFPESHBTMA-WLTAIBSBSA-N Thr-Tyr-Gly Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=C(O)C=C1 PELIQFPESHBTMA-WLTAIBSBSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 108010020688 glycylhistidine Proteins 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- RLMISHABBKUNFO-WHFBIAKZSA-N Ala-Ala-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O RLMISHABBKUNFO-WHFBIAKZSA-N 0.000 description 1
- ZIBWKCRKNFYTPT-ZKWXMUAHSA-N Ala-Asn-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O ZIBWKCRKNFYTPT-ZKWXMUAHSA-N 0.000 description 1
- CFPQUJZTLUQUTJ-HTFCKZLJSA-N Ala-Ile-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](C)N CFPQUJZTLUQUTJ-HTFCKZLJSA-N 0.000 description 1
- CCDFBRZVTDDJNM-GUBZILKMSA-N Ala-Leu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O CCDFBRZVTDDJNM-GUBZILKMSA-N 0.000 description 1
- DHBKYZYFEXXUAK-ONGXEEELSA-N Ala-Phe-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 DHBKYZYFEXXUAK-ONGXEEELSA-N 0.000 description 1
- LFFOJBOTZUWINF-ZANVPECISA-N Ala-Trp-Gly Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](N)C)C(=O)NCC(O)=O)=CNC2=C1 LFFOJBOTZUWINF-ZANVPECISA-N 0.000 description 1
- PGNNQOJOEGFAOR-KWQFWETISA-N Ala-Tyr-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=C(O)C=C1 PGNNQOJOEGFAOR-KWQFWETISA-N 0.000 description 1
- OTOXOKCIIQLMFH-KZVJFYERSA-N Arg-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCN=C(N)N OTOXOKCIIQLMFH-KZVJFYERSA-N 0.000 description 1
- MTANSHNQTWPZKP-KKUMJFAQSA-N Arg-Gln-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N)O MTANSHNQTWPZKP-KKUMJFAQSA-N 0.000 description 1
- YBIAYFFIVAZXPK-AVGNSLFASA-N Arg-His-Arg Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YBIAYFFIVAZXPK-AVGNSLFASA-N 0.000 description 1
- WMEVEPXNCMKNGH-IHRRRGAJSA-N Arg-Leu-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N WMEVEPXNCMKNGH-IHRRRGAJSA-N 0.000 description 1
- PZBSKYJGKNNYNK-ULQDDVLXSA-N Arg-Leu-Tyr Chemical compound CC(C)C[C@H](NC(=O)[C@@H](N)CCCN=C(N)N)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O PZBSKYJGKNNYNK-ULQDDVLXSA-N 0.000 description 1
- CTAPSNCVKPOOSM-KKUMJFAQSA-N Arg-Tyr-Gln Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(O)=O CTAPSNCVKPOOSM-KKUMJFAQSA-N 0.000 description 1
- SPIPSJXLZVTXJL-ZLUOBGJFSA-N Asn-Cys-Ser Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O SPIPSJXLZVTXJL-ZLUOBGJFSA-N 0.000 description 1
- PBSQFBAJKPLRJY-BYULHYEWSA-N Asn-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC(=O)N)N PBSQFBAJKPLRJY-BYULHYEWSA-N 0.000 description 1
- SUEIIIFUBHDCCS-PBCZWWQYSA-N Asn-His-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SUEIIIFUBHDCCS-PBCZWWQYSA-N 0.000 description 1
- HPNDBHLITCHRSO-WHFBIAKZSA-N Asp-Ala-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)NCC(O)=O HPNDBHLITCHRSO-WHFBIAKZSA-N 0.000 description 1
- CXBOKJPLEYUPGB-FXQIFTODSA-N Asp-Ala-Met Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC(=O)O)N CXBOKJPLEYUPGB-FXQIFTODSA-N 0.000 description 1
- JRBVWZLHBGYZNY-QEJZJMRPSA-N Asp-Gln-Trp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O JRBVWZLHBGYZNY-QEJZJMRPSA-N 0.000 description 1
- VFUXXFVCYZPOQG-WDSKDSINSA-N Asp-Glu-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O VFUXXFVCYZPOQG-WDSKDSINSA-N 0.000 description 1
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 1
- VSMYBNPOHYAXSD-GUBZILKMSA-N Asp-Lys-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O VSMYBNPOHYAXSD-GUBZILKMSA-N 0.000 description 1
- 101000755953 Bacillus subtilis (strain 168) Ribosome maturation factor RimP Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- PKNIZMPLMSKROD-BIIVOSGPSA-N Cys-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CS)N PKNIZMPLMSKROD-BIIVOSGPSA-N 0.000 description 1
- CPTUXCUWQIBZIF-ZLUOBGJFSA-N Cys-Asn-Ser Chemical compound SC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O CPTUXCUWQIBZIF-ZLUOBGJFSA-N 0.000 description 1
- WXKWQSDHEXKKNC-ZKWXMUAHSA-N Cys-Asp-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CS)N WXKWQSDHEXKKNC-ZKWXMUAHSA-N 0.000 description 1
- KSMSFCBQBQPFAD-GUBZILKMSA-N Cys-Pro-Pro Chemical compound SC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 KSMSFCBQBQPFAD-GUBZILKMSA-N 0.000 description 1
- 241000703924 Enterobacter cloacae IIT-BT 08 Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 108010074122 Ferredoxins Proteins 0.000 description 1
- 108090000698 Formate Dehydrogenases Proteins 0.000 description 1
- DDNIZQDYXDENIT-FXQIFTODSA-N Gln-Glu-Cys Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N DDNIZQDYXDENIT-FXQIFTODSA-N 0.000 description 1
- YPFFHGRJCUBXPX-NHCYSSNCSA-N Gln-Pro-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CCC(N)=O)C(O)=O YPFFHGRJCUBXPX-NHCYSSNCSA-N 0.000 description 1
- WOMUDRVDJMHTCV-DCAQKATOSA-N Glu-Arg-Arg Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WOMUDRVDJMHTCV-DCAQKATOSA-N 0.000 description 1
- QQLBPVKLJBAXBS-FXQIFTODSA-N Glu-Glu-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O QQLBPVKLJBAXBS-FXQIFTODSA-N 0.000 description 1
- SJPMNHCEWPTRBR-BQBZGAKWSA-N Glu-Glu-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O SJPMNHCEWPTRBR-BQBZGAKWSA-N 0.000 description 1
- ZJFNRQHUIHKZJF-GUBZILKMSA-N Glu-His-Asp Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(O)=O ZJFNRQHUIHKZJF-GUBZILKMSA-N 0.000 description 1
- COSBSYQVPSODFX-GUBZILKMSA-N Glu-His-Cys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)O)N COSBSYQVPSODFX-GUBZILKMSA-N 0.000 description 1
- YRMZCZIRHYCNHX-RYUDHWBXSA-N Glu-Phe-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(O)=O YRMZCZIRHYCNHX-RYUDHWBXSA-N 0.000 description 1
- PYTZFYUXZZHOAD-WHFBIAKZSA-N Gly-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)CN PYTZFYUXZZHOAD-WHFBIAKZSA-N 0.000 description 1
- OCQUNKSFDYDXBG-QXEWZRGKSA-N Gly-Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N OCQUNKSFDYDXBG-QXEWZRGKSA-N 0.000 description 1
- FUTAPPOITCCWTH-WHFBIAKZSA-N Gly-Asp-Asp Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O FUTAPPOITCCWTH-WHFBIAKZSA-N 0.000 description 1
- YDWZGVCXMVLDQH-WHFBIAKZSA-N Gly-Cys-Asn Chemical compound NCC(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC(N)=O YDWZGVCXMVLDQH-WHFBIAKZSA-N 0.000 description 1
- LGQZOQRDEUIZJY-YUMQZZPRSA-N Gly-Cys-Lys Chemical compound NCCCC[C@H](NC(=O)[C@H](CS)NC(=O)CN)C(O)=O LGQZOQRDEUIZJY-YUMQZZPRSA-N 0.000 description 1
- JLJLBWDKDRYOPA-RYUDHWBXSA-N Gly-Gln-Tyr Chemical compound NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 JLJLBWDKDRYOPA-RYUDHWBXSA-N 0.000 description 1
- OLPPXYMMIARYAL-QMMMGPOBSA-N Gly-Gly-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)CNC(=O)CN OLPPXYMMIARYAL-QMMMGPOBSA-N 0.000 description 1
- FXGRXIATVXUAHO-WEDXCCLWSA-N Gly-Lys-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCCN FXGRXIATVXUAHO-WEDXCCLWSA-N 0.000 description 1
- MTBIKIMYHUWBRX-QWRGUYRKSA-N Gly-Phe-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)CN MTBIKIMYHUWBRX-QWRGUYRKSA-N 0.000 description 1
- JJGBXTYGTKWGAT-YUMQZZPRSA-N Gly-Pro-Glu Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O JJGBXTYGTKWGAT-YUMQZZPRSA-N 0.000 description 1
- RZEDHGORCKRINR-STQMWFEESA-N Gly-Trp-Cys Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)CN RZEDHGORCKRINR-STQMWFEESA-N 0.000 description 1
- MBSSHYPAEHPSGY-LSJOCFKGSA-N His-Ala-Met Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O MBSSHYPAEHPSGY-LSJOCFKGSA-N 0.000 description 1
- YPLYIXGKCRQZGW-SRVKXCTJSA-N His-Arg-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O YPLYIXGKCRQZGW-SRVKXCTJSA-N 0.000 description 1
- VHHYJBSXXMPQGZ-AVGNSLFASA-N His-Gln-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC1=CN=CN1)N VHHYJBSXXMPQGZ-AVGNSLFASA-N 0.000 description 1
- IIVZNQCUUMBBKF-GVXVVHGQSA-N His-Gln-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC1=CN=CN1 IIVZNQCUUMBBKF-GVXVVHGQSA-N 0.000 description 1
- MLZVJIREOKTDAR-SIGLWIIPSA-N His-Ile-Ile Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O MLZVJIREOKTDAR-SIGLWIIPSA-N 0.000 description 1
- XKIYNCLILDLGRS-QWRGUYRKSA-N His-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 XKIYNCLILDLGRS-QWRGUYRKSA-N 0.000 description 1
- FBCURAVMSXNOLP-JYJNAYRXSA-N His-Phe-Gln Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N FBCURAVMSXNOLP-JYJNAYRXSA-N 0.000 description 1
- OWYIDJCNRWRSJY-QTKMDUPCSA-N His-Pro-Thr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(O)=O OWYIDJCNRWRSJY-QTKMDUPCSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- YKRYHWJRQUSTKG-KBIXCLLPSA-N Ile-Ala-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N YKRYHWJRQUSTKG-KBIXCLLPSA-N 0.000 description 1
- JXMSHKFPDIUYGS-SIUGBPQLSA-N Ile-Glu-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N JXMSHKFPDIUYGS-SIUGBPQLSA-N 0.000 description 1
- NZOCIWKZUVUNDW-ZKWXMUAHSA-N Ile-Gly-Ala Chemical compound CC[C@H](C)[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O NZOCIWKZUVUNDW-ZKWXMUAHSA-N 0.000 description 1
- ODPKZZLRDNXTJZ-WHOFXGATSA-N Ile-Gly-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N ODPKZZLRDNXTJZ-WHOFXGATSA-N 0.000 description 1
- KCTIFOCXAIUQQK-QXEWZRGKSA-N Ile-Pro-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O KCTIFOCXAIUQQK-QXEWZRGKSA-N 0.000 description 1
- KBDIBHQICWDGDL-PPCPHDFISA-N Ile-Thr-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)O)N KBDIBHQICWDGDL-PPCPHDFISA-N 0.000 description 1
- RCFDOSNHHZGBOY-UHFFFAOYSA-N L-isoleucyl-L-alanine Natural products CCC(C)C(N)C(=O)NC(C)C(O)=O RCFDOSNHHZGBOY-UHFFFAOYSA-N 0.000 description 1
- LZDNBBYBDGBADK-UHFFFAOYSA-N L-valyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)C(C)C)C(O)=O)=CNC2=C1 LZDNBBYBDGBADK-UHFFFAOYSA-N 0.000 description 1
- CQQGCWPXDHTTNF-GUBZILKMSA-N Leu-Ala-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCC(O)=O CQQGCWPXDHTTNF-GUBZILKMSA-N 0.000 description 1
- DLFAACQHIRSQGG-CIUDSAMLSA-N Leu-Asp-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O DLFAACQHIRSQGG-CIUDSAMLSA-N 0.000 description 1
- YORLGJINWYYIMX-KKUMJFAQSA-N Leu-Cys-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O YORLGJINWYYIMX-KKUMJFAQSA-N 0.000 description 1
- GLBNEGIOFRVRHO-JYJNAYRXSA-N Leu-Gln-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GLBNEGIOFRVRHO-JYJNAYRXSA-N 0.000 description 1
- JFSGIJSCJFQGSZ-MXAVVETBSA-N Leu-Ile-His Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CC(C)C)N JFSGIJSCJFQGSZ-MXAVVETBSA-N 0.000 description 1
- RZXLZBIUTDQHJQ-SRVKXCTJSA-N Leu-Lys-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O RZXLZBIUTDQHJQ-SRVKXCTJSA-N 0.000 description 1
- AIRUUHAOKGVJAD-JYJNAYRXSA-N Leu-Phe-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O AIRUUHAOKGVJAD-JYJNAYRXSA-N 0.000 description 1
- YNNPKXBBRZVIRX-IHRRRGAJSA-N Lys-Arg-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O YNNPKXBBRZVIRX-IHRRRGAJSA-N 0.000 description 1
- DNEJSAIMVANNPA-DCAQKATOSA-N Lys-Asn-Arg Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O DNEJSAIMVANNPA-DCAQKATOSA-N 0.000 description 1
- SQJSXOQXJYAVRV-SRVKXCTJSA-N Lys-His-Asn Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCCCN)N SQJSXOQXJYAVRV-SRVKXCTJSA-N 0.000 description 1
- WINFHLHJTRGLCV-BZSNNMDCSA-N Lys-Tyr-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CCCCN)C(O)=O)CC1=CC=C(O)C=C1 WINFHLHJTRGLCV-BZSNNMDCSA-N 0.000 description 1
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- ULECEJGNDHWSKD-QEJZJMRPSA-N Phe-Ala-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=CC=C1 ULECEJGNDHWSKD-QEJZJMRPSA-N 0.000 description 1
- KXUZHWXENMYOHC-QEJZJMRPSA-N Phe-Leu-Ala Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O KXUZHWXENMYOHC-QEJZJMRPSA-N 0.000 description 1
- YKQNVTOIYFQMLW-IHRRRGAJSA-N Pro-Cys-Tyr Chemical compound C([C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H]1NCCC1)C1=CC=C(O)C=C1 YKQNVTOIYFQMLW-IHRRRGAJSA-N 0.000 description 1
- FDINZVJXLPILKV-DCAQKATOSA-N Pro-His-Asn Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(O)=O FDINZVJXLPILKV-DCAQKATOSA-N 0.000 description 1
- XQHGISDMVBTGAL-ULQDDVLXSA-N Pro-His-Phe Chemical compound C([C@@H](C(=O)[O-])NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H]1[NH2+]CCC1)C1=CC=CC=C1 XQHGISDMVBTGAL-ULQDDVLXSA-N 0.000 description 1
- PCWLNNZTBJTZRN-AVGNSLFASA-N Pro-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 PCWLNNZTBJTZRN-AVGNSLFASA-N 0.000 description 1
- JDJMFMVVJHLWDP-UNQGMJICSA-N Pro-Thr-Phe Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JDJMFMVVJHLWDP-UNQGMJICSA-N 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- OBXVZEAMXFSGPU-FXQIFTODSA-N Ser-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CO)N)CN=C(N)N OBXVZEAMXFSGPU-FXQIFTODSA-N 0.000 description 1
- BNFVPSRLHHPQKS-WHFBIAKZSA-N Ser-Asp-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O BNFVPSRLHHPQKS-WHFBIAKZSA-N 0.000 description 1
- MOVJSUIKUNCVMG-ZLUOBGJFSA-N Ser-Cys-Ser Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)O)N)O MOVJSUIKUNCVMG-ZLUOBGJFSA-N 0.000 description 1
- MOINZPRHJGTCHZ-MMWGEVLESA-N Ser-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N MOINZPRHJGTCHZ-MMWGEVLESA-N 0.000 description 1
- ZIFYDQAFEMIZII-GUBZILKMSA-N Ser-Leu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZIFYDQAFEMIZII-GUBZILKMSA-N 0.000 description 1
- GZSZPKSBVAOGIE-CIUDSAMLSA-N Ser-Lys-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O GZSZPKSBVAOGIE-CIUDSAMLSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- JMZKMSTYXHFYAK-VEVYYDQMSA-N Thr-Arg-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)O JMZKMSTYXHFYAK-VEVYYDQMSA-N 0.000 description 1
- ONNSECRQFSTMCC-XKBZYTNZSA-N Thr-Glu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O ONNSECRQFSTMCC-XKBZYTNZSA-N 0.000 description 1
- SLUWOCTZVGMURC-BFHQHQDPSA-N Thr-Gly-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O SLUWOCTZVGMURC-BFHQHQDPSA-N 0.000 description 1
- WYKJENSCCRJLRC-ZDLURKLDSA-N Thr-Gly-Cys Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)N[C@@H](CS)C(=O)O)N)O WYKJENSCCRJLRC-ZDLURKLDSA-N 0.000 description 1
- BVOVIGCHYNFJBZ-JXUBOQSCSA-N Thr-Leu-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O BVOVIGCHYNFJBZ-JXUBOQSCSA-N 0.000 description 1
- OGOYMQWIWHGTGH-KZVJFYERSA-N Thr-Val-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O OGOYMQWIWHGTGH-KZVJFYERSA-N 0.000 description 1
- FYBFTPLPAXZBOY-KKHAAJSZSA-N Thr-Val-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O FYBFTPLPAXZBOY-KKHAAJSZSA-N 0.000 description 1
- JEYRCNVVYHTZMY-SZMVWBNQSA-N Trp-Pro-Val Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O JEYRCNVVYHTZMY-SZMVWBNQSA-N 0.000 description 1
- GFJXBLSZOFWHAW-JYJNAYRXSA-N Tyr-His-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(O)=O GFJXBLSZOFWHAW-JYJNAYRXSA-N 0.000 description 1
- FBHBVXUBTYVCRU-BZSNNMDCSA-N Tyr-His-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CN=CN1 FBHBVXUBTYVCRU-BZSNNMDCSA-N 0.000 description 1
- PQPWEALFTLKSEB-DZKIICNBSA-N Tyr-Val-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O PQPWEALFTLKSEB-DZKIICNBSA-N 0.000 description 1
- IDKGBVZGNTYYCC-QXEWZRGKSA-N Val-Asn-Pro Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(O)=O IDKGBVZGNTYYCC-QXEWZRGKSA-N 0.000 description 1
- QHDXUYOYTPWCSK-RCOVLWMOSA-N Val-Asp-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)NCC(=O)O)N QHDXUYOYTPWCSK-RCOVLWMOSA-N 0.000 description 1
- XEYUMGGWQCIWAR-XVKPBYJWSA-N Val-Gln-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)NCC(=O)O)N XEYUMGGWQCIWAR-XVKPBYJWSA-N 0.000 description 1
- CVIXTAITYJQMPE-LAEOZQHASA-N Val-Glu-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O CVIXTAITYJQMPE-LAEOZQHASA-N 0.000 description 1
- BZMIYHIJVVJPCK-QSFUFRPTSA-N Val-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N BZMIYHIJVVJPCK-QSFUFRPTSA-N 0.000 description 1
- MYLNLEIZWHVENT-VKOGCVSHSA-N Val-Ile-Trp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](C(C)C)N MYLNLEIZWHVENT-VKOGCVSHSA-N 0.000 description 1
- LYERIXUFCYVFFX-GVXVVHGQSA-N Val-Leu-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N LYERIXUFCYVFFX-GVXVVHGQSA-N 0.000 description 1
- ZHQWPWQNVRCXAX-XQQFMLRXSA-N Val-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N ZHQWPWQNVRCXAX-XQQFMLRXSA-N 0.000 description 1
- BTWMICVCQLKKNR-DCAQKATOSA-N Val-Leu-Ser Chemical compound CC(C)[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C([O-])=O BTWMICVCQLKKNR-DCAQKATOSA-N 0.000 description 1
- VHIZXDZMTDVFGX-DCAQKATOSA-N Val-Ser-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N VHIZXDZMTDVFGX-DCAQKATOSA-N 0.000 description 1
- ZNGPROMGGGFOAA-JYJNAYRXSA-N Val-Tyr-Val Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C(C)C)C(O)=O)CC1=CC=C(O)C=C1 ZNGPROMGGGFOAA-JYJNAYRXSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 108010070944 alanylhistidine Proteins 0.000 description 1
- 108010060035 arginylproline Proteins 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003933 environmental pollution control Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 108010078326 glycyl-glycyl-valine Proteins 0.000 description 1
- 108010023364 glycyl-histidyl-arginine Proteins 0.000 description 1
- 108010015792 glycyllysine Proteins 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 108010028295 histidylhistidine Proteins 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 108010072136 iron hydrogenase Proteins 0.000 description 1
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 108010045397 lysyl-tyrosyl-lysine Proteins 0.000 description 1
- 108010064235 lysylglycine Proteins 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 108010056582 methionylglutamic acid Proteins 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 108010074082 phenylalanyl-alanyl-lysine Proteins 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 108010024607 phenylalanylalanine Proteins 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 229930010796 primary metabolite Natural products 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010090894 prolylleucine Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 102220277134 rs776745497 Human genes 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 108010058119 tryptophyl-glycyl-glycine Proteins 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及产氢工程菌及其应用。The invention relates to hydrogen-producing engineering bacteria and applications thereof.
背景技术Background technique
十八世纪世界工业革命以来建立的化石能源体系如今正面临着两大挑战:1)化石能源储量日益减小,面临着枯竭的危险;2)化石燃料的燃烧产生了大量污染物质,特别是CO2等温室气体的排放引起的温室效应,给人类赖以生存的环境带来巨大的威胁。因此,开发可持续发展的可再生清洁能源,逐步替代化石能源是关系国家能源安全、环境安全及社会稳定和平发展的重要战略课题。The fossil energy system established since the world industrial revolution in the 18th century is now facing two major challenges: 1) The reserves of fossil energy are decreasing day by day, facing the danger of depletion; 2) The combustion of fossil fuels produces a large amount of pollutants, especially CO The greenhouse effect caused by the emission of second- class greenhouse gases poses a huge threat to the environment on which human beings depend. Therefore, developing sustainable renewable clean energy and gradually replacing fossil energy is an important strategic issue related to national energy security, environmental security and social stability and peaceful development.
氢能作为极具潜力的未来替代清洁能源之一,是高效的能源载体,具有能量密度高、清洁、可再生、燃烧产物为水和无污染等特点,是十分理想的可再生能源。目前,氢气主要来自化石燃料的重整转化(占氢气来源的96%)和电解水制氢(占4%),未能摆脱对原有的化石能源的依赖。因此,如何利用可再生资源持续地获取氢气受到人们的广泛的关注。生物制氢是解决这一问题的重要途径之一。生物制氢具有常温常压反应、条件温和、对环境友好、可利用废弃生物物质为底物等优点,可以和环境污染治理、减少污染排放相联系,是十分理想的制氢方法。Hydrogen energy, as one of the potential alternative clean energy sources in the future, is an efficient energy carrier with the characteristics of high energy density, cleanness, regeneration, and the combustion product is water and non-polluting. It is an ideal renewable energy source. At present, hydrogen mainly comes from the reforming conversion of fossil fuels (accounting for 96% of hydrogen sources) and hydrogen production by electrolysis of water (accounting for 4%), failing to get rid of the dependence on the original fossil energy. Therefore, how to use renewable resources to continuously obtain hydrogen has attracted widespread attention. Biological hydrogen production is one of the important ways to solve this problem. Biological hydrogen production has the advantages of normal temperature and pressure reaction, mild conditions, environmental friendliness, and the use of waste biomass as substrates. It can be linked with environmental pollution control and pollution reduction, and is an ideal hydrogen production method.
现代生物制氢的研究始于20世纪70年代的能源危机,90年代以来,随着人们对温室效应的进一步认识,生物制氢作为可持续发展的制氢方法更加引起了人们的广泛重视。生物制氢技术包括光驱动过程和厌氧发酵两种路线。前者利用光合细菌或藻类直接将太阳能转化为氢气,是一个非常理想的过程,但是由于光利用效率很低,光反应器设计困难等因素,近期内很难推向应用。后者采用的是产氢菌厌氧发酵,它的优点是产氢速度快、反应器设计简单、且能够和废弃生物的利用相结合,相对于前者更容易在近期内实现工业应用。The research on modern biohydrogen production began with the energy crisis in the 1970s. Since the 1990s, with people's further understanding of the greenhouse effect, biohydrogen production has attracted more and more attention as a sustainable hydrogen production method. Biological hydrogen production technology includes two routes: light-driven process and anaerobic fermentation. The former uses photosynthetic bacteria or algae to directly convert solar energy into hydrogen, which is a very ideal process. However, due to factors such as low light utilization efficiency and difficult design of photoreactors, it is difficult to push it into application in the near future. The latter uses hydrogen-producing bacteria anaerobic fermentation, which has the advantages of fast hydrogen production, simple reactor design, and the ability to combine with the utilization of waste organisms. Compared with the former, it is easier to realize industrial application in the near future.
发酵法制氢始于六十年代中期,九十年代受到重视,但进展并不大。九十年代末到本世纪初,人们意识到发酵制氢更容易在近期内实现产业化,大大增加了暗发酵制氢方面的科研投入,产生了一批有关培养工艺的基础性研究结果。近年来与废弃生物质处理相结合的制氢过程的研究大为增加,其中一些达到了中试水平,但主要集中在反应器类型设计、工艺研究上,且混合培养产氢效率低于纯培养,总的转化率都不高,这也正是发酵制氢的瓶颈所在。解决发酵制氢瓶颈的关键,是实现技术突破,提高氢气得率。研究表明,仅从工艺的角度,无法从根本上突破产氢效率低的问题,必须注重高效产氢菌种的研究与开发。Hydrogen production by fermentation began in the mid-1960s and received attention in the 1990s, but little progress has been made. From the end of the 1990s to the beginning of this century, people realized that hydrogen production by fermentation is easier to realize industrialization in the near future, which greatly increased the scientific research investment in hydrogen production by dark fermentation, and produced a number of basic research results on the cultivation process. In recent years, the research on the hydrogen production process combined with waste biomass treatment has increased greatly, some of which have reached the pilot test level, but they mainly focus on reactor type design and process research, and the hydrogen production efficiency of mixed culture is lower than that of pure culture , the overall conversion rate is not high, which is where the bottleneck of fermentation hydrogen production lies. The key to solving the bottleneck of fermentation hydrogen production is to achieve technological breakthroughs and increase the yield of hydrogen. Studies have shown that only from the perspective of technology, it is impossible to fundamentally break through the problem of low hydrogen production efficiency, and we must pay attention to the research and development of high-efficiency hydrogen-producing strains.
多年以来,暗发酵制氢中应用的产氢菌种主要包括肠杆菌属(Enterobacter)、梭菌属(Clostridium)、埃希氏菌属(Escherichia)和芽孢杆菌属(Bacillus),其中尤以肠杆菌属和梭菌属的相关研究最多。梭菌属产氢率最高可达到2.36mol/mol葡萄糖,产气肠杆菌属产氢率最高可达3mol/mol葡萄糖(即6mol/mol蔗糖)[Kumar,N.and Das,D.Bioprocess Engineering 23,205-208(2000)],[Kumar,N.andDas,D.Process Biochemistry 35,589-593(2000)]。以梭菌(Clostridium sp)为代表的专性厌氧菌发酵产氢的机理为:葡萄糖酵解后生成丙酮酸,在形成醋酸过程中,一部分电子通过铁氧还蛋白在氢酶作用下形成氢气。一摩尔的葡萄糖可形成4摩尔氢气和2分子醋酸。因此,专性厌氧菌发酵产氢的同时,必然伴随醋酸等有机酸的形成。兼性厌氧产氢菌E.aerogenes通过糖解途径和三羧酸循环(TCA)途径产生NADH和ATP,氢酶通过NADH将质子转换为氢气,产氢理论转换率为1摩尔葡萄糖形成12mol氢气,远远大于专性厌氧菌的氢得率。因此,E.aerogenes是开发高效发酵制氢工艺的重要菌种。For many years, the hydrogen-producing bacteria used in dark fermentation hydrogen production mainly include Enterobacter, Clostridium, Escherichia and Bacillus, especially Enterobacter Bacillus and Clostridium have been most studied. The highest hydrogen production rate of Clostridium can reach 2.36mol/mol glucose, and the highest hydrogen production rate of Enterobacter aerogenes can reach 3mol/mol glucose (ie 6mol/mol sucrose) [Kumar, N. and Das, D. Bioprocess Engineering 23 , 205-208 (2000)], [Kumar, N. and Das, D. Process Biochemistry 35, 589-593 (2000)]. The mechanism of hydrogen production by the fermentation of obligate anaerobic bacteria represented by Clostridium sp is as follows: glucose is fermented to generate pyruvate, and in the process of forming acetic acid, some electrons pass through ferredoxin to form hydrogen under the action of hydrogenase . One mole of glucose can form 4 moles of hydrogen and 2 molecules of acetic acid. Therefore, the fermentation of obligate anaerobic bacteria to produce hydrogen must be accompanied by the formation of organic acids such as acetic acid. The facultative anaerobic hydrogen-producing bacteria E.aerogenes produces NADH and ATP through the glycolysis pathway and the tricarboxylic acid cycle (TCA) pathway. Hydrogenase converts protons into hydrogen through NADH. The theoretical conversion rate of hydrogen production is 1 mole of glucose to form 12 moles of hydrogen. , far greater than the hydrogen yield of obligate anaerobic bacteria. Therefore, E.aerogenes is an important strain for the development of efficient fermentation hydrogen production process.
随着生物技术的飞速发展,单纯的菌种筛选和培养工艺的优化已不能满足提高产氢效率的需求。发酵制氢的研究需要进入细胞内部,通过对氢酶及其代谢网络的改造来强化产氢过程。目前在基因库上已经可以获得超过100种的氢酶基因序列[Paulette M.Vignais,Bernard Billoud,Jacques Meyer.FEMS MicrobiologyReviews 25,455-501(2001)],但仍有大量已知产氢菌株的氢酶基因尚未被克隆,寻找更多的氢酶基因是生物制氢研究的重要方向[Kalia,V.C.,Lal,S.,Ghai,R.,Mandal,M.and Chauhan,A.Trends in Biotechnology 21,152-156(2003)]。不同的氢酶具有不同的功能,和其它酶系相比,人们对氢酶的认识还十分有限。With the rapid development of biotechnology, simple strain screening and optimization of culture process can no longer meet the needs of improving hydrogen production efficiency. The research of fermentative hydrogen production needs to enter the interior of the cell, and strengthen the hydrogen production process through the modification of hydrogenase and its metabolic network. At present, more than 100 hydrogenase gene sequences can be obtained on the gene bank [Paulette M.Vignais, Bernard Billoud, Jacques Meyer. FEMS Microbiology Reviews 25, 455-501 (2001)], but there are still a large number of known hydrogen-producing strains. Hydrogenase genes have not been cloned yet, and finding more hydrogenase genes is an important direction for biohydrogen production [Kalia, V.C., Lal, S., Ghai, R., Mandal, M. and Chauhan, A. Trends in Biotechnology 21 , 152-156 (2003)]. Different hydrogenases have different functions. Compared with other enzyme systems, people's understanding of hydrogenases is still very limited.
目前,研究的比较清楚的是大肠杆菌的氢酶I、II、III和IV的基因,它们都属于Ni-Fe氢酶,其中氢酶III和IV和产氢有关[Andrews,S.C.,Berks,B.C.,Mcclay,J.,Ambler,A.,Quail,M.A.,Golby,P.and Guest,J.R.Microbiology143,3633-3647(1997)],而I、II和吸氢过程相关。梭菌属的氢酶都属于铁氢酶,三梭菌的铁氢酶已有测序结果,但是关于其附属基因、调控机制还不清楚。已经克隆到梭菌的铁氢酶基因,并在光合细菌内获得了异源表达,强化了光合菌的产氢过程。梭菌的铁氢酶基因在大肠杆菌中的表达却没有成功,可能是由于梭菌和大肠杆菌对于铁氢酶表达的附属基因系统不相同造成的[Yasuo Asada,Yoji Koike,JorgSchnackenberg,Masato Miyake,Ieaki Uemura,Jun Miyake.Biochimica etBiophysica Acta 1490,269-278(2000)]。最近,Mishra J.等通过铁氢酶保守序列设计的方法从E.cloacae IIT-BT08中克隆出450bp左右的铁氢酶,并在不产氢的大肠杆菌中异源表达,验证了其功能,结果显示这个氢酶位于细胞质内[Mishra,J.,Kumar,N.,Ghosh,A.K.and Das,D.International Journal of Hydrogen Energy27,1475-1479(2002)],[Mishra,J.,Khurana,S.,Kumar,N.,Ghosh,A.K.andDas,D.Biochemical and Biophysical Research Communications 324,679-685(2004)]。产气肠杆菌E.aerogenes的前期研究表明,在其细胞膜上,氢酶与细胞内产生的NADH作用生成氢气[Nakashimada,Y.,Rachman,M.A.,Kakizono,T.andNishio,N.International Journal of Hydrogen Energy 27,1399-1405(2002)]。因此研究该菌属的氢酶特性、基因及其功能解析,对于实现提高产气肠杆菌产氢得率的技术突破具有重要意义。At present, the relatively clear studies are the genes of hydrogenase I, II, III and IV of Escherichia coli, which all belong to Ni-Fe hydrogenase, wherein hydrogenase III and IV are related to hydrogen production [Andrews, S.C., Berks, B.C. , Mcclay, J., Ambler, A., Quail, M.A., Golby, P.and Guest, J.R.Microbiology143, 3633-3647 (1997)], while I and II are related to the hydrogen absorption process. The hydrogenases of Clostridium belong to ferric hydrogenases, and the iron hydrogenases of Triclostridium have been sequenced, but the accessory genes and regulatory mechanisms are still unclear. The ferrohydrogenase gene of Clostridium has been cloned and expressed heterologously in photosynthetic bacteria, which strengthens the hydrogen production process of photosynthetic bacteria. The expression of the ferrohydrogenase gene of Clostridium in Escherichia coli was not successful, which may be caused by the different accessory gene systems of Clostridium and Escherichia coli [Yasuo Asada, Yoji Koike, JorgSchnackenberg, Masato Miyake, Ieaki Uemura, Jun Miyake. Biochimica et Biophysica Acta 1490, 269-278 (2000)]. Recently, Mishra J. et al. cloned a ferrohydrogenase of about 450 bp from E.cloacae IIT-BT08 through the method of ferrohydrogenase conservative sequence design, and expressed it heterologously in non-hydrogen-producing Escherichia coli to verify its function. The results show that this hydrogenase is located in the cytoplasm [Mishra, J., Kumar, N., Ghosh, A.K. and Das, D. International Journal of Hydrogen Energy27, 1475-1479 (2002)], [Mishra, J., Khurana, S ., Kumar, N., Ghosh, A.K. and Das, D. Biochemical and Biophysical Research Communications 324, 679-685 (2004)]. A previous study of Enterobacter aerogenes E. aerogenes showed that on its cell membrane, hydrogenase reacted with NADH produced in the cell to generate hydrogen [Nakashimada, Y., Rachman, M.A., Kakizono, T. and Nishio, N. International Journal of Hydrogen Energy 27, 1399-1405 (2002)]. Therefore, it is of great significance to study the hydrogenase characteristics, genes and functional analysis of this genus for the technological breakthrough of improving the hydrogen production rate of Enterobacter aerogenes.
对大肠杆菌产氢过程的研究表明,大肠杆菌可直接利用甲酸,也可以在同化糖类物质代谢过程中产生的甲酸为底物,在甲酸裂解酶系的作用下,分解甲酸生成CO2和H2。[Akihito Yoshida,Taku Nishimura,Hideo Kawaguchi,1 Masayuki Inui,andHideaki Yukawa*.Appl Environ Microbiol.71:6762-6768(2005)]。甲酸产氢途径是产氢速度最快的途径。The research on the hydrogen production process of Escherichia coli shows that Escherichia coli can directly use formic acid, and can also use the formic acid produced in the process of assimilating carbohydrates as a substrate. 2 . [Akihito Yoshida, Taku Nishimura, Hideo Kawaguchi, 1 Masayuki Inui, and Hideaki Yukawa*. Appl Environ Microbiol. 71: 6762-6768 (2005)]. Formic acid hydrogen production pathway is the fastest way to produce hydrogen.
产气肠杆菌是兼性厌氧菌,生长速度快,在厌氧条件下可以产生氢气,且具有利用底物范围广,生长适应性强等优点,是具有优良工业性状的菌株。已有许多关于产气肠杆菌产氢的报道,但多是在工艺及培养方面[E.Palazzi,B.Fabiano,P.Perego.Bioprocess Eng.22:205-213(2000).],有关产氢相关的基因还没有任何报道。研究表明,产气肠杆菌具有和大肠杆菌相似的利用甲酸产氢的能力[Tatsuo,K.,Shigeharu,T.Mar Biotechnol.7:112-118(2005).],而且其具有吸氢过程,即有吸氢酶的存在[Y.L Ren.,X.H.Xing.,C.Zhang.,and Z.X.Gou.Biotechnol Lett.27(14):1029-1033(2005).]。因此克隆产气肠杆菌利用甲酸途径产氢的基因及吸氢酶基因,对理解其利用甲酸产氢和耗氢的过程,从而利用甲酸途径生物制氢具有重要的意义。克隆甲酸氢酶基因和吸氢酶基因也是对氢酶基因家族有益的补充。Enterobacter aerogenes is a facultative anaerobic bacterium with a fast growth rate, can produce hydrogen under anaerobic conditions, and has the advantages of a wide range of substrates and strong growth adaptability. It is a strain with excellent industrial characteristics. There are many reports about the hydrogen production of Enterobacter aerogenes, but most of them are in terms of technology and cultivation [E.Palazzi, B.Fabiano, P.Perego.Bioprocess Eng.22:205-213 (2000).]. Hydrogen-related genes have not been reported yet. Studies have shown that Enterobacter aerogenes has the ability to produce hydrogen from formic acid similar to Escherichia coli [Tatsuo, K., Shigeharu, T.Mar Biotechnol.7: 112-118 (2005).], and it has a hydrogen absorption process, That is, the presence of hydrogen-absorbing enzyme [Y.L Ren., X.H.Xing., C. Zhang., and Z.X.Gou. Biotechnol Lett. 27(14): 1029-1033(2005).]. Therefore, the cloning of the hydrogen production gene and the hydrogen uptake enzyme gene of Enterobacter aerogenes using the formate pathway is of great significance for understanding the process of hydrogen production and hydrogen consumption in Enterobacter aerogenes, so as to use the formate pathway to produce hydrogen. The cloning of the formate hydrogenase gene and the hydrogen uptake enzyme gene is also a useful addition to the hydrogenase gene family.
发明内容Contents of the invention
本发明的目的是提供产氢工程菌及其应用。The purpose of the present invention is to provide hydrogen-producing engineering bacteria and applications thereof.
本发明提供的产氢工程菌,是如下a)或b)的工程菌:The hydrogen-producing engineering bacterium provided by the present invention is the engineering bacterium of the following a) or b):
a)灭活E.aerogenes IAM1183中的ΔhybO蛋白得到的工程菌;a) engineering bacteria obtained by inactivating the ΔhybO protein in E.aerogenes IAM1183;
b)灭活E.aerogenes IAM1183中的ΔhybO蛋白和ΔhycA蛋白得到的工程菌;b) engineering bacteria obtained by inactivating the ΔhybO protein and ΔhycA protein in E.aerogenes IAM1183;
所述ΔhybO蛋白的氨基酸序列是序列表中的序列1;所述ΔhycA蛋白的氨基酸序列是序列表中的序列4。The amino acid sequence of the ΔhybO protein is
所述灭活E.aerogenes IAM1183中的ΔhybO蛋白可通过将DNA片段Q导入所述E.aerogenes IAM1183中实现;所述DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与所述ΔhybO蛋白的编码基因发生同源重组,灭活所述ΔhybO蛋白;所述DNA片段N为抗生素抗性片段。The inactivation of the ΔhybO protein in E. aerogenes IAM1183 can be achieved by introducing DNA fragment Q into the E. aerogenes IAM1183; the DNA fragment Q is sequenced from upstream to downstream as homology arm T 1 , DNA fragment N, homology The homologous arm T 2 ; the homologous arm T 1 and the homologous arm T 2 can undergo homologous recombination with the coding gene of the ΔhybO protein to inactivate the ΔhybO protein; the DNA fragment N is an antibiotic resistance fragment.
所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段。The nucleotide sequence of the gene encoding the ΔhybO protein is
所述DNA片段Q的核苷酸序列具体可为序列表中的序列3。The nucleotide sequence of the DNA fragment Q can specifically be
所述灭活E.aerogenes IAM1183中的ΔhybO蛋白和ΔhycA蛋白可通过将DNA片段P和DNA片段Q导入所述E.aerogenes IAM1183中实现;实际操作中,DNA片段P和DNA片段Q的导入可采取任意先后的顺序,如先导入DNA片段P,筛选得到重组菌后再在重组菌中导入DNA片段Q;The inactivation of ΔhybO protein and ΔhycA protein in E.aerogenes IAM1183 can be achieved by introducing DNA fragment P and DNA fragment Q into the E.aerogenes IAM1183; in actual operation, the introduction of DNA fragment P and DNA fragment Q can take Arbitrary order, such as introducing DNA segment P first, screening recombinant bacteria and then introducing DNA segment Q into recombinant bacteria;
所述DNA片段P自上游至下游依次为同源臂T3、DNA片段M、同源臂T4;所述同源臂T3和同源臂T4能与所述ΔhycA蛋白的编码基因发生同源重组,灭活所述ΔhycA蛋白;所述DNA片段M为抗生素抗性片段;The DNA fragment P is sequentially homologous arm T 3 , DNA fragment M, and homologous arm T 4 from upstream to downstream; the homologous arm T 3 and homologous arm T 4 can interact with the gene encoding the ΔhycA protein Homologous recombination inactivates the ΔhycA protein; the DNA fragment M is an antibiotic-resistant fragment;
所述DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与所述ΔhybO蛋白的编码基因发生同源重组,灭活所述ΔhybO蛋白;所述DNA片段N为抗生素抗性片段。The DNA fragment Q is sequentially homologous arm T 1 , DNA fragment N, and homologous arm T 2 from upstream to downstream; the homologous arm T 1 and homologous arm T 2 can interact with the gene encoding the ΔhybO protein Homologous recombination inactivates the ΔhybO protein; the DNA fragment N is an antibiotic-resistant fragment.
所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段;所述ΔhycA蛋白的编码基因的核苷酸序列是序列表中的序列5;所述同源臂T3的核苷酸序列是序列表中的序列9;所述同源臂T4的核苷酸序列是序列表中的序列10;所述DNA片段M为卡那霉素抗性片段。The nucleotide sequence of the gene encoding the ΔhybO protein is
所述DNA片段Q的核苷酸序列具体可为序列表中的序列3;所述DNA片段P的核苷酸序列具体可为序列表中的序列6。The nucleotide sequence of the DNA fragment Q can specifically be
本发明还保护一种DNA片段Q,DNA片段Q自上游至下游依次为同源臂T1、DNA片段N、同源臂T2;所述同源臂T1和同源臂T2能与E.aerogenes IAM1183的ΔhybO蛋白的编码基因发生同源重组,灭活ΔhybO蛋白;所述ΔhybO蛋白的氨基酸序列是序列表中的序列1;所述DNA片段N为抗生素抗性片段。The present invention also protects a DNA fragment Q, the DNA fragment Q is sequentially homologous arm T 1 , DNA fragment N, and homologous arm T 2 from upstream to downstream; the homologous arm T 1 and homologous arm T 2 can be combined with The gene encoding the ΔhybO protein of E. aerogenes IAM1183 undergoes homologous recombination to inactivate the ΔhybO protein; the amino acid sequence of the ΔhybO protein is
所述ΔhybO蛋白的编码基因的核苷酸序列是序列表中的序列2;所述同源臂T1的核苷酸序列是序列表中的序列7;所述同源臂T2的核苷酸序列是序列表中的序列8;所述DNA片段N为四环素抗性片段。The nucleotide sequence of the gene encoding the ΔhybO protein is
所述DNA片段Q的核苷酸序列最优选为序列表中的序列3。The nucleotide sequence of the DNA fragment Q is most preferably
含有所述DNA片段Q的表达盒或重组表达载体或转基因细胞系或重组菌均属于本发明的保护范围。Expression cassettes or recombinant expression vectors or transgenic cell lines or recombinant bacteria containing the DNA fragment Q all belong to the protection scope of the present invention.
本发明以产气肠杆菌E.aerogenes为出发菌株,通过对产气肠杆菌E.aerogenes中的产氢相关蛋白编码基因进行灭活,获得了两株甲酸途径产氢能力提高的菌株,可应用于生物制氢,对生物制氢具有巨大的指导意义。The present invention takes Enterobacter aerogenes E.aerogenes as the starting strain, and obtains two bacterial strains with improved hydrogen production ability in the formic acid pathway by inactivating the gene encoding the hydrogen production-related protein in the Enterobacter aerogenes E.aerogenes, which can be applied For biohydrogen production, it has great guiding significance for biohydrogen production.
本发明获得的工程菌具有以下优点:The engineering bacterium that the present invention obtains has the following advantages:
1)出发菌株E.aerogenes IAM1183是兼性厌氧菌,在好氧、厌氧条件下均能快速生长,对环境适应性强;利用其进行生物制氢具有利用底物范围广、利用底物能力强和产氢较高的优点,是具有潜在应用于工业化制氢的优良菌株。1) The starting strain E.aerogenes IAM1183 is a facultative anaerobic bacterium, which can grow rapidly under both aerobic and anaerobic conditions, and has strong adaptability to the environment; using it for biological hydrogen production has a wide range of substrates and a wide range of substrates. With the advantages of strong ability and high hydrogen production, it is an excellent strain with potential application in industrial hydrogen production.
2)本发明获得的工程菌E.aerogenes IAM1183-O和工程菌E.aerogenesIAM1183-AO,除了具有原始菌1)的优点外,还具有底物利用能力更强,产氢能力进一步提高的特点,尤其是E.aerogenes IAM1183-AO。2) The engineering bacteria E.aerogenes IAM1183-O and the engineering bacteria E.aerogenesIAM1183-AO obtained in the present invention, in addition to the advantages of the original bacteria 1), also have the characteristics of stronger substrate utilization ability and further improved hydrogen production ability, Especially E. aerogenes IAM1183-AO.
以下的实施例便于更好地理解本发明,但并不限定本发明。The following examples facilitate a better understanding of the present invention, but do not limit the present invention.
附图说明Description of drawings
图1为工程菌E.aerogenes IAM1183-O的单抗和双抗筛选图Figure 1 is the monoclonal antibody and double antibody screening diagram of engineering bacteria E.aerogenes IAM1183-O
图2为工程菌E.aerogenes IAM1183-O的PCR鉴定图Figure 2 is the PCR identification diagram of engineering bacteria E.aerogenes IAM1183-O
图3为工程菌E.aerogenes IAM1183-A的单抗和双抗筛选图Figure 3 is the monoclonal antibody and double antibody screening diagram of engineering bacteria E.aerogenes IAM1183-A
图4为工程菌E.aerogenes IAM1183-A的PCR鉴定图Figure 4 is a PCR identification diagram of engineering bacteria E.aerogenes IAM1183-A
图5为工程菌E.aerogenes IAM1183-AO的PCR鉴定图Figure 5 is a PCR identification diagram of engineering bacteria E.aerogenes IAM1183-AO
图6工程菌的生长曲线OD600 Figure 6 The growth curve OD 600 of engineered bacteria
图7工程菌生长过程中的pH变化Figure 7 pH changes during the growth of engineered bacteria
图8工程菌的H2生成分析Figure 8 H2 production analysis of engineered bacteria
图9工程菌的CO2生成分析Figure 9 CO2 production analysis of engineered bacteria
具体实施方式Detailed ways
下述实施例中的实验方法,如无特殊说明,均为常规方法。The experimental methods in the following examples are conventional methods unless otherwise specified.
以下实施例中所用到的引物如下:The primers used in the following examples are as follows:
hycA-Km-fw:CTGCA ATTCGCTGGT TCAGGGCATC ACCCTGTCAA AAGCGATAGGCTCCGCCCCCCTGA;hycA-Km-fw: CTGCA ATTCGCTGGT TCAGGGCATC ACCCTGTCAA AAGCG ATAGGCTCCGCCCCCCTGA;
hycA-Km-rv:GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATACAGGTGGCAC TTTTCGGGG;hycA-Km-rv: GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATA CAGGTGGCAC TTTTCGGGG;
HybO-tet-fw:AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCTTTTGGTGACTGCGCTCCTC;HybO-tet-fw: AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCT TTTGGTGACTGCGCTCCTC;
HybO-tet-rv:GATACCTTCT TCGTTACAGC CATAGCAAGG GTGACCAATCTGTTGTTGCTCAGGTCGCA;HybO-tet-rv: GATACCTTCT TCGTTACAGC CATAGCAAGG GTGACCAATC TGTTGTTGCTCAGGTCGCA;
hycA-fw:CTGCAATTCGCTGGT TCAGGGCATC;hycA-fw: CTGCAATTCGCTGGT TCAGGGCATC;
hycA-rv:GGCTTAAATCCACCG GCTGGTCGTG;hycA-rv: GGCTTAAATCCACCG GCTGGTCGTG;
hybO-fw:AATCTCTGCT TCGTGCAACGCATC;hybO-fw: AATCTCTGCT TCGTGCAACGCATC;
hybO-rv:GATACCTTCT TCGTTACAGCCATA。hybO-rv: GATACCTTCT TCGTTACAGCCATA.
以下实施例中所涉及的培养基配方及用途如下:The culture medium formulation and purposes involved in the following examples are as follows:
(1)LB培养基(L-1):蛋白胨10g、酵母浸粉5g、NaCl 10g、琼脂粉15g(固体培养基时添加);用于菌种短期保藏和活化培养。(1) LB medium (L -1 ): 10g of peptone, 5g of yeast extract powder, 10g of NaCl, 15g of agar powder (added to solid medium); used for short-term preservation and activation of strains.
(2)葡萄糖培养基(L-1):葡萄糖15g、蛋白胨5g、K2HPO4·3H2O 14g、KH2PO4 6g、(NH4)2SO4 2g、MgSO4·7H2O 0.2g;用于发酵制氢。(2) Glucose medium (L -1 ): glucose 15g, peptone 5g, K 2 HPO 4 3H 2 O 14g, KH 2 PO 4 6g, (NH 4 ) 2 SO 4 2g, MgSO 4 7H 2 O 0.2 g; for hydrogen production by fermentation.
实施例1、产气肠杆菌E.aerogenes IAM1183-O的获得
出发菌株产气肠杆菌(E.aerogenes IAM1183)购自日本东京大学应用微生物研究所(IAM)菌种库。The starting strain Enterobacter aerogenes (E. aerogenes IAM1183) was purchased from the strain bank of the Institute of Applied Microbiology (IAM), University of Tokyo, Japan.
对NCBI中的产气肠杆菌基因序列(Genbank NO:EF601126)进行序列分析,设计一对引物HybO-tet-fw和HybO-tet-rv,序列如下:Sequence analysis was performed on the Enterobacter aerogenes gene sequence (Genbank NO: EF601126) in NCBI, and a pair of primers HybO-tet-fw and HybO-tet-rv were designed with the following sequences:
HybO-tet-fw:HybO-tet-fw:
5’-AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCTTTTGGTGACTGCGCTCCTC-3’;5'- AATCTCTGCTTCGTGCAACGCATCCAACGGTAGAAAACCT TTTGGTGACTGCGCTCCTC-3';
HybO-tet-rv:HybO-tet-rv:
5’-GATACCTTCTTCGTTACAGCCATAGCAAGGGTGACCAATCTGTTGTTGCTCAGGTCGCA-3’。5'- GATACCTTCTTCGTTACAGCCATAGCAAGGGTGACCAATC TGTTGTTGCTCAGGTCGCA-3'.
引物中的带划线的序列为产气肠杆菌(E.aerogenes IAM1183)中ΔhybO基因的同源序列。The underlined sequence in the primer is the homologous sequence of the ΔhybO gene in Enterobacter aerogenes (E. aerogenes IAM1183).
通过电转化的方式将pYM-red质粒(于梅,周建光,陈伟,李山虎,黄翠芬,一种可转移的重组工程系统pYM-Red的建立.生物化学与生物物理进展.2005,32(4).)电击到产气肠杆菌(E.aerogenes IAM1183中,进行氯霉素(24mg/mL)抗性筛选,从阳性菌株中提取pYM-red质粒进行鉴定,获得了含有pYM-red重组质粒的产气肠杆菌(E.aerogenes IAM1183)。Transformation of pYM-red plasmid (Yu Mei, Zhou Jianguang, Chen Wei, Li Shanhu, Huang Cuifen, establishment of a transferable recombinant engineering system pYM-Red. Advances in Biochemistry and Biophysics. 2005, 32(4) .) electric shock into Enterobacter aerogenes (E.aerogenes IAM1183), carry out chloramphenicol (24mg/mL) resistance screening, extract pYM-red plasmid from positive strain and carry out identification, obtained the product containing pYM-red recombinant plasmid Enterobacter aerogenes (E. aerogenes IAM1183).
以pACYC184质粒(Chang,A.C.,and S.N.Cohen.1978.Construction andcharacterization of amplifiable multicopy DNA cloning vehicles derived fromthe P15A cryptic miniplasmid.J.Bacteriol.134:1141-1156.)DNA为模板,用引物HybO-tet-fw和HybO-tet-rv进行PCR扩增,获得含有四环素标记的线性DNA,将该线性DNA作为打靶载体。通过电转化的方式,将打靶载体导入含有pYM-red质粒的产气肠杆菌(E.aerogenes IAM1183)。With pACYC184 plasmid (Chang, A.C., and S.N.Cohen.1978.Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid.J.Bacteriol.134:1141-1156.) DNA as template, primer et-t-HybO Perform PCR amplification with HybO-tet-rv to obtain a linear DNA labeled with tetracycline, and use the linear DNA as a targeting vector. By electroporation, the targeting vector was introduced into Enterobacter aerogenes (E. aerogenes IAM1183) containing the pYM-red plasmid.
将转化后的菌涂布于含有的四环素(4ug/ml)的单抗LB平板上,30℃培养培养1天;然后将长出的菌转接入含有四环素(4ug/ml)和氯霉素(24ug/ml)的双抗LB平板上,30℃培养培养1天。单抗和双抗筛选的结果见图1,图1中左图为单抗筛选的图,右图为双抗筛选的图。Spread the transformed bacteria on the monoclonal antibody LB plate containing tetracycline (4ug/ml) and culture at 30°C for 1 day; (24ug/ml) double antibody LB plate, cultured at 30°C for 1 day. The results of monoclonal antibody and double antibody screening are shown in Figure 1. The left picture in Figure 1 is the picture of monoclonal antibody screening, and the right picture is the picture of double antibody screening.
随机挑取几个双抗培养基上生长的克隆,提取基因组DNA,通过PCR的方法鉴定打靶载体是否与染色体上的目标位点发生了同源重组,PCR反应所用的一对引物为hybO-fw和hybO-rv,hybO-fw和hybO-rv的序列如下:Randomly pick several clones grown on double-antibody medium, extract genomic DNA, and identify whether the targeting vector has undergone homologous recombination with the target site on the chromosome by PCR. The pair of primers used in the PCR reaction is hybO-fw and the sequences of hybO-rv, hybO-fw and hybO-rv are as follows:
hybO-fw 5’-AATCTCTGCT TCGTGCAACG CATC-3’;hybO-fw 5'-AATCTCTGCT TCGTGCAACG CATC-3';
hybO-rv 5’-GATACCTTCT TCGTTACAGC CATA-3’。hybO-rv 5'-GATACCTTCT TCGTTACAGC CATA-3'.
PCR鉴定结果见图2,图2中,1:DNA 2000marker;2:E.aerogenes IAM1183-O。由图可见,E.aerogenes IAM1183-O的扩增产物获得了1800bp目标带,与预期结果一致。结果表明,获得的克隆中,打靶载体与染色体上的目标位点发生了同源重组。将发生了同源重组的突变型菌株命名为E.aerogenes IAM1183-O。The results of PCR identification are shown in Figure 2. In Figure 2, 1: DNA 2000marker; 2: E.aerogenes IAM1183-O. It can be seen from the figure that the amplified product of E.aerogenes IAM1183-O obtained the 1800bp target band, which was consistent with the expected result. The results showed that in the obtained clones, homologous recombination occurred between the targeting vector and the target site on the chromosome. The mutant strain with homologous recombination was named E.aerogenes IAM1183-O.
实施例2、产气肠杆菌E.aerogenes IAM1183-A的获得
出发菌株产气肠杆菌(E.aerogenes IAM1183)购自日本东京大学应用微生物研究所(IAM)菌种库。The starting strain Enterobacter aerogenes (E. aerogenes IAM1183) was purchased from the strain bank of the Institute of Applied Microbiology (IAM), University of Tokyo, Japan.
对NCBI中的产气肠杆菌基因序列(Genbank NO:EF601125)进行序列分析,设计一对引物hycA-Km-fw和hycA-Km-rv,hycA-Km-fw和hycA-Km-rv的序列如下:Sequence analysis was performed on the Enterobacter aerogenes gene sequence (Genbank NO: EF601125) in NCBI, and a pair of primers hycA-Km-fw and hycA-Km-rv were designed. The sequences of hycA-Km-fw and hycA-Km-rv are as follows :
hycA-Km-fw:hycA-Km-fw:
5’-CTGCAATTCGCTGGTTCAGGGCATCACCCTGTCAAAAGCGATAGGCTCCGCCCCCCTGA-3’;5'- CTGCAATTCGCTGGTTCAGGGCATCACCCTGTCAAAAGCG ATAGGCTCCGCCCCCCTGA-3';
hycA-Km-rv:hycA-Km-rv:
5’-GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATACAGGTGGCACTTTTCGGGG-3’。5'- GGCTTAAATCCACCGGCTGGTCGTGTTCCATGGCGTCATA CAGGTGGCACTTTTCGGGG-3'.
引物中的带划线的序列为产气肠杆菌(E.aerogenes IAM1183)ΔhycA的同源臂。The underlined sequence in the primer is the homology arm of Enterobacter aerogenes (E. aerogenes IAM1183) ΔhycA.
通过电转化的方式将pYM-red质粒(于梅,周建光,陈伟,李山虎,黄翠芬,一种可转移的重组工程系统pYM-Red的建立.生物化学与生物物理进展.2005,32(4).)电击到产气肠杆菌(E.aerogenes IAM1183中,进行氯霉素(24mg/mL)抗性筛选,从阳性菌株中提取pYM-red质粒进行鉴定,获得了含有pYM-red重组质粒的产气肠杆菌(E.aerogenes IAM1183)。Transformation of pYM-red plasmid (Yu Mei, Zhou Jianguang, Chen Wei, Li Shanhu, Huang Cuifen, establishment of a transferable recombinant engineering system pYM-Red. Advances in Biochemistry and Biophysics. 2005, 32(4) .) electric shock into Enterobacter aerogenes (E.aerogenes IAM1183), carry out chloramphenicol (24mg/mL) resistance screening, extract pYM-red plasmid from positive strain and carry out identification, obtained the product containing pYM-red recombinant plasmid Enterobacter aerogenes (E. aerogenes IAM1183).
以pET28a质粒DNA为模板,用引物hycA-Km-fw和hycA-Km-rv进行PCR扩增,获得含有卡那霉素标记的线性DNA,将该线性DNA作为打靶载体。通过电转化的方式,将打靶载体导入含有pYM-red重组质粒的产气肠杆菌(E.aerogenes IAM1183)。将转化后的菌涂布于含有卡那霉素(50mg/mL)的单抗LB平板上,30℃培养培养1天;然后将长出的菌转接入含有卡那霉素(50mg/mL)和氯霉素(30mg/mL)的双抗LB平板上,30℃培养培养1天。单抗和双抗筛选的结果见图3,图3中左图为单抗筛选的图,右图为双抗筛选的图。The pET28a plasmid DNA was used as a template, and the primers hycA-Km-fw and hycA-Km-rv were used for PCR amplification to obtain a linear DNA containing a kanamycin marker, which was used as a targeting vector. By electroporation, the targeting vector was introduced into Enterobacter aerogenes (E. aerogenes IAM1183) containing the pYM-red recombinant plasmid. Spread the transformed bacteria on monoclonal antibody LB plates containing kanamycin (50 mg/mL), and culture them at 30 ° C for 1 day; then transfer the grown bacteria into cells containing kanamycin (50 mg/mL ) and chloramphenicol (30 mg/mL) double antibody LB plate, cultured at 30 ° C for 1 day. The results of monoclonal antibody and double antibody screening are shown in Figure 3, the left picture in Figure 3 is the picture of monoclonal antibody screening, and the right picture is the picture of double antibody screening.
随机挑取几个双抗培养基上生长的克隆,提取基因组DNA,通过PCR的方法鉴定打靶载体是否与染色体上的目标位点发生了同源重组,PCR反应所用的一对引物为hycA-fw和hycA-rv,hycA-fw和hycA-rv的序列如下:Randomly pick several clones grown on double-antibody medium, extract genomic DNA, and identify whether the targeting vector has undergone homologous recombination with the target site on the chromosome by PCR. The pair of primers used in the PCR reaction is hycA-fw and hycA-rv, the sequences of hycA-fw and hycA-rv are as follows:
hycA-fw:5’-CTGCAATTCGCTGGTTCAGGGCATC-3’;hycA-fw: 5'-CTGCAATTCGCTGGTTCAGGGCATC-3';
hycA-rv:5’-GGCTTAAATCCACCGGCTGGTCGTG-3’。hycA-rv: 5'-GGCTTAAATCCACCGGCTGGTCGTG-3'.
PCR鉴定结果见图4,图4中,1:E.aerogenes IAM1183-A;2:E.aerogenesIAM1183(对照);3:DNA 2000marker。由图可见,E.aerogenes IAM1183-A的扩增产物获得了1700bp目标带;E.aerogenes IAM1183的扩增产物获得了550bp的条带,与预期结果一致。结果表明,获得的克隆中,打靶载体与染色体上的目标位点发生了同源重组。将发生了同源重组的突变型菌株命名为E.aerogenesIAM1183-A。The results of PCR identification are shown in Figure 4. In Figure 4, 1: E.aerogenes IAM1183-A; 2: E.aerogenes IAM1183 (control); 3: DNA 2000marker. It can be seen from the figure that the amplified product of E.aerogenes IAM1183-A obtained a 1700bp target band; the amplified product of E.aerogenes IAM1183 obtained a 550bp band, which was consistent with the expected results. The results showed that in the obtained clones, homologous recombination occurred between the targeting vector and the target site on the chromosome. The mutant strain with homologous recombination was named E.aerogenes IAM1183-A.
实施例3、产气肠杆菌E.aerogenes IAM1183-AO的获得
以E.aerogenes IAM1183-O为出发菌株,灭活ΔhycA蛋白(方法同实施例2);或以E.aerogenes IAM1183-A为出发菌株,灭活ΔhycO蛋白(方法同实施例1),均可以获得突变株E.aerogenes IAM1183-AO。以下以E.aerogenes IAM1183-A为出发菌株,构建E.aerogenes IAM1183-AO。Use E.aerogenes IAM1183-O as the starting strain to inactivate the ΔhycA protein (the method is the same as in Example 2); or use E.aerogenes IAM1183-A as the starting strain to inactivate the ΔhycO protein (the method is the same as in Example 1), all of which can be obtained Mutant strain E. aerogenes IAM1183-AO. The following uses E.aerogenes IAM1183-A as the starting strain to construct E.aerogenes IAM1183-AO.
以pACYC184质粒DNA为模板,用引物HybO-tet-fw和HybO-tet-rv进行PCR扩增,获得含有四环素标记的线性DNA,将该线性DNA作为打靶载体。通过电转化的方式,将打靶载体导入含有pYM-red质粒的产气肠杆菌E.aerogenes IAM1183-A。将转化后的菌涂布于含有卡那霉素(50mg/mL)和四环素(4mg/mL)的双抗LB平板上,30℃培养培养1天。Using pACYC184 plasmid DNA as a template, primers HybO-tet-fw and HybO-tet-rv were used for PCR amplification to obtain a linear DNA labeled with tetracycline, which was used as a targeting vector. By electroporation, the targeting vector was introduced into Enterobacter aerogenes E. aerogenes IAM1183-A containing the pYM-red plasmid. Spread the transformed bacteria on a double-antibody LB plate containing kanamycin (50 mg/mL) and tetracycline (4 mg/mL), and incubate at 30° C. for 1 day.
随机挑取几个双抗培养基上生长的克隆,提取基因组DNA,通过PCR的方法鉴定打靶载体是否与染色体上的目标位点发生了同源重组,PCR反应所用的一对引物为hybO-fw和hybO-rv,hybO-fw和hybO-rv的序列如下:Randomly pick several clones grown on double-antibody medium, extract genomic DNA, and identify whether the targeting vector has undergone homologous recombination with the target site on the chromosome by PCR. The pair of primers used in the PCR reaction is hybO-fw and the sequences of hybO-rv, hybO-fw and hybO-rv are as follows:
hybO-fw 5’-AATCTCTGCT TCGTGCAACG CATC-3’;hybO-fw 5'-AATCTCTGCT TCGTGCAACG CATC-3';
hybO-rv 5’-GATACCTTCT TCGTTACAGC CATA-3’。hybO-rv 5'-GATACCTTCT TCGTTACAGC CATA-3'.
PCR鉴定结果见图5,图5中,1:DNA 2000 marker;2:E.aerogenes IAM1183-AO。由图可见,E.aerogenes IAM1183-AO的扩增产物获得了1800bp目标带,与预期结果一致。结果表明,获得的克隆中,打靶载体与染色体上的目标位点发生了同源重组。将发生了同源重组的突变型菌株命名为E.aerogenes IAM1183-AO。The results of PCR identification are shown in Figure 5. In Figure 5, 1:
实施例4、工程菌的产氢性能及生理特性测定
在不同的70mL血清瓶中,分别装20mL葡萄糖培养基,分别将活化后的工程菌E.aerogenes IAM1183-O和工程菌E.aerogenes IAM1183-AO进行摇瓶培养,同时将活化后的野生菌进行同样条件摇瓶培养,作为对照。具体操作步骤如下:In different 70mL serum bottles, 20mL of glucose medium were respectively installed, and the activated engineering bacteria E. Shake flask culture under the same conditions was used as a control. The specific operation steps are as follows:
(1)种子培养:采用15ml离心管,LB培养基装液量5ml,从固体平板接种,培养温度37℃,空气浴摇床转速170rpm,过夜培养。(1) Seed culture: use a 15ml centrifuge tube with 5ml of LB medium, inoculate from a solid plate, cultivate overnight at a temperature of 37°C and an air bath shaker at a speed of 170rpm.
(2)厌氧摇瓶培养:采用70ml血清瓶厌氧培养瓶,葡萄糖培养基装液量20ml(预先用氮气置换培养瓶顶部及培养基中的空气);种子菌的接种量2.5%(v/v),培养温度37℃,空气浴,摇床转速170rpm。培养24小时。(2) Anaerobic shake flask culture: adopt 70ml serum bottle anaerobic culture bottle, glucose medium filling capacity 20ml (use the air in the top of culture bottle and culture medium in advance with nitrogen replacement); The inoculation amount of seed bacteria 2.5% (v /v), culture temperature 37°C, air bath, shaker speed 170rpm. Incubate for 24 hours.
试验设三次重复,所有结果均为三次重复的平均值,用平均值±标准差表示。The experiment was repeated three times, and all the results were the average of three repetitions, expressed as mean ± standard deviation.
分别收集工程菌和野生菌产生的气体,利用注射器测定生成的气体量;利用分光光度计(UV-1206,SHIMADZU公司(日本))测定菌体的生长情况;利用pH计(CHNO60(828),ORION公司(美国))测定pH的变化情况。工程菌和野生菌的OD600的变化见图6,工程菌和野生菌的培养液的pH变化见图7,工程菌和野生菌的氢气生成情况见图8,工程菌和野生菌的CO2生成情况图9。Collect the gas produced by engineering bacteria and wild bacteria respectively, and use a syringe to measure the amount of gas generated; utilize a spectrophotometer (UV-1206, SHIMADZU company (Japan)) to measure the growth of the bacteria; utilize a pH meter (CHNO60 (828), ORION company (USA)) measured the change of pH. The change of OD 600 of engineering bacteria and wild bacteria is shown in Figure 6, the pH change of the culture solution of engineered bacteria and wild bacteria is shown in Figure 7, the hydrogen production of engineered bacteria and wild bacteria is shown in Figure 8, and the CO 2 of engineered bacteria and wild bacteria Generate situation figure 9.
工程菌和野生菌的最大比生长速率和菌体最大产氢速率比较见表1。The maximum specific growth rate and maximum hydrogen production rate of engineered bacteria and wild bacteria are compared in Table 1.
表1最大生长速率和产氢速率(n=3)Table 1 Maximum growth rate and hydrogen production rate (n=3)
以上结果表明,经过12h的批式培养后,野生菌的细胞密度达到最高(OD600为2.26),而在产氢最快的对数生长期中,两株工程菌的细胞密度均比野生菌高。氢气是与细胞生长偶联的初级代谢产物,在对数生长期时2株工程菌也表现出较高的产氢速率,并且最终氢气产量也较高,分别达到76.8mM和83.0mM。3株菌的pH变化趋势是一致的,均在发酵过程中产酸而使发酵液呈酸性,pH从初始值6.9下降到4.7-4.9之间。工程菌E.aerogenes IAM1183-O和E.aerogenes IAM1183-AO在对数生长期的pH下降速率要略快于野生菌,这和它们在对数生长期的高增值速率是相关的。工程菌E.aerogenes IAM1183-AO的二氧化碳产量要明显低于其它两株菌。将2株工程菌的最大比生长速率和最大产氢速率并与野生菌进行比较,野生菌的最大比生长速率高于2株工程菌,达0.523h-1,而工程菌E.aerogenes IAM1183-AO的最大比生长速率最低,为0.523h-1。最大产氢速率反映的是单位细胞单位时间的氢气最高产出量,与野生菌相比,2株工程菌的菌体最大产氢速率均有一定程度的提高,分别是野生型的1.18和1.45倍。The above results showed that after 12 hours of batch culture, the cell density of the wild strains reached the highest (OD 600 was 2.26), and in the logarithmic growth phase of the fastest hydrogen production, the cell densities of the two engineered strains were higher than those of the wild strains. high. Hydrogen is a primary metabolite coupled with cell growth. In the logarithmic growth phase, the two engineered strains also showed a higher hydrogen production rate, and the final hydrogen production was also higher, reaching 76.8mM and 83.0mM respectively. The change trend of pH of the three strains was consistent, all of them produced acid during the fermentation process to make the fermentation broth acidic, and the pH dropped from the initial value of 6.9 to 4.7-4.9. The pH drop rate of engineering bacteria E.aerogenes IAM1183-O and E.aerogenes IAM1183-AO in the logarithmic growth phase is slightly faster than that of the wild bacteria, which is related to their high value-added rate in the logarithmic growth phase. The carbon dioxide production of the engineered strain E.aerogenes IAM1183-AO was significantly lower than that of the other two strains. Comparing the maximum specific growth rate and maximum hydrogen production rate of the two engineered strains with the wild strain, the maximum specific growth rate of the wild strain was higher than that of the two engineered strains, reaching 0.523h -1 , while the engineered strain E.aerogenes IAM1183- The maximum specific growth rate of AO is the lowest, which is 0.523h -1 . The maximum hydrogen production rate reflects the maximum hydrogen production per unit cell per unit time. Compared with the wild strains, the maximum hydrogen production rates of the two strains of engineered bacteria have been increased to a certain extent, which are 1.18 and 1.45 of the wild type respectively. times.
实施例5、工程菌的代谢流分析Embodiment 5, the metabolic flow analysis of engineering bacteria
分别检测野生菌和工程菌细胞内各代谢通量的分布,具体步骤如下:The distribution of metabolic fluxes in the cells of wild bacteria and engineered bacteria were detected respectively, and the specific steps were as follows:
(1)种子培养:采用15ml离心管,LB培养基装液量5ml,从固体平板接种菌,培养温度37℃,空气浴摇床转速170rpm,过夜培养。(1) Seed cultivation: use a 15ml centrifuge tube with 5ml of LB medium, inoculate bacteria from a solid plate, cultivate overnight at a temperature of 37°C and an air bath shaker at a speed of 170rpm.
(2)厌氧摇瓶培养:采用70ml血清瓶厌氧培养瓶,葡萄糖培养基装液量20ml(预先用氮气置换培养瓶顶部及培养基中的空气);种子菌的接种量2.5%(v/v),培养温度37℃,空气浴摇床转速170rpm。培养16小时。(2) Anaerobic shake flask culture: adopt 70ml serum bottle anaerobic culture bottle, glucose medium filling capacity 20ml (use the air in the top of culture bottle and culture medium in advance with nitrogen replacement); The inoculation amount of seed bacteria 2.5% (v /v), the culture temperature is 37° C., and the rotation speed of the air bath shaker is 170 rpm. Incubate for 16 hours.
(3)厌氧摇瓶培养16h后对代谢产物进行检测。将发酵物离心取上清后,过滤。利用高压液相色谱测定代谢物的产量和组成。高压液相气谱为(HPLC-10A,SHIMADZU公司(日本)。具体检测方法如下:10ml样品在12000rpm,4℃离心5分钟,取上清冻存于-80℃冰箱直至测量。采用高效液相色谱(HPLC)测定葡萄糖、乳酸、琥珀酸、甲酸、乙酸、2,3-丁二醇和乙醇的浓度。(3) Metabolites were detected after anaerobic shake flask culture for 16 hours. After the fermented product was centrifuged to obtain the supernatant, it was filtered. The yield and composition of metabolites were determined by high pressure liquid chromatography. The high-pressure liquid gas spectrometer is (HPLC-10A, SHIMADZU company (Japan). The specific detection method is as follows: 10ml samples are centrifuged at 12000rpm at 4°C for 5 minutes, and the supernatant is frozen and stored in a refrigerator at -80°C until measurement. High performance liquid phase Chromatographic (HPLC) determination of concentrations of glucose, lactic acid, succinic acid, formic acid, acetic acid, 2,3-butanediol and ethanol.
分析方法及条件:色谱柱选用岛津Shim-pack SCR-102H,基质为PS/DVB,功能基为-SO3H。该柱尺寸为:300mm(长度)×8mm(内径),粒径为7μm。色谱分析条件如下:柱温40℃,流动相5mM高氯酸,流速1.0ml·min-1;示差检测器(RID);样品进样量20μl。采用岛津公司提供的HPLC计算机控制软件CLASS-VP工作站进行数据的分析处理。Analysis method and conditions: Shimadzu Shim-pack SCR-102H is used as the chromatographic column, the matrix is PS/DVB, and the functional group is -SO 3 H. The size of the column is: 300 mm (length)×8 mm (inner diameter), and the particle size is 7 μm. The chromatographic analysis conditions are as follows:
实验重复三次,实验结果如表2所示。表2中的数据为平均值±标准差。The experiment was repeated three times, and the experimental results are shown in Table 2. Data in Table 2 are mean ± standard deviation.
表2代谢流分析(n=3)Table 2 Metabolic flux analysis (n=3)
结果表明,2株工程菌的氢气对葡萄糖的得率分别达到1.27和1.36mol-氢气·mol-葡萄糖-1,均高于野生菌的相应值(1.16mol-氢气·mol-葡萄糖-1)。这说明对ΔhycA的灭活和对ΔhybO的灭活都能有效地增加产氢代谢途径的通量,从而提高细胞产氢得率。与此同时,上述基因修饰对其它代谢产物的分布也有一定的影响。2,3-丁二醇、乳酸、琥珀酸和乙醇都是依赖胞内NADH而产生的代谢产物,与野生菌相比,这些物质的得率在2株工程菌中均有所增加,显示出胞内可利用的还原力的增加,而这是有利于产氢的一个重要条件。2株工程菌的乙酸和乙醇产量之和均比野生型菌株有一定幅度的提高,表明甲酸产氢途径在产氢过程中被强化,这也达到了甲酸脱氢酶负调控基因灭活预期的效果。The results showed that the hydrogen-to-glucose yields of the two engineered strains reached 1.27 and 1.36 mol-hydrogen·mol-glucose -1 , respectively, both of which were higher than the corresponding values of wild bacteria (1.16 mol-hydrogen·mol-glucose -1 ). This shows that both the inactivation of ΔhycA and the inactivation of ΔhybO can effectively increase the flux of hydrogen-producing metabolic pathways, thereby increasing the yield of hydrogen production in cells. At the same time, the above-mentioned genetic modifications also have certain effects on the distribution of other metabolites. 2,3-Butanediol, lactic acid, succinic acid and ethanol are metabolites produced by relying on intracellular NADH. Compared with wild bacteria, the yields of these substances were increased in the two strains of engineered bacteria, showing Intracellular available reducing power increases, which is an important condition favorable for hydrogen production. The sum of acetic acid and ethanol production of the two engineered strains was higher than that of the wild-type strain, indicating that the formic acid hydrogen production pathway was strengthened during the hydrogen production process, which also reached the expected inactivation of formate dehydrogenase negative regulatory genes. Effect.
试验表明,对靶基因的灭活会引起胞内相应酶活性的变化,进而改变代谢通量,增加目标产物的产量。本发明所获得的基因工程菌株具有较高的产氢能力,可应用于发酵制氢。Experiments have shown that the inactivation of the target gene will cause changes in the activity of the corresponding enzymes in the cell, thereby changing the metabolic flux and increasing the yield of the target product. The genetically engineered bacterial strain obtained by the invention has high hydrogen production capacity and can be applied to hydrogen production by fermentation.
序列表sequence listing
<110>清华大学<110> Tsinghua University
<120>产氢工程菌及其应用<120>Engineering bacteria producing hydrogen and its application
<130>CGGNARY81442<130>CGGNARY81442
<160>10<160>10
<210>1<210>1
<211>263<211>263
<212>PRT<212>PRT
<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)
<400>1<400>1
Val Ile Trp Ile Gly Ala Gln Glu Cys Thr Gly Cys Thr Glu Ser LeuVal Ile Trp Ile Gly Ala Gln Glu Cys Thr Gly Cys Thr Glu Ser Leu
1 5 10 151 5 10 15
Leu Arg Ala Thr His Pro Thr Val Glu Asn Leu Val Leu Glu Thr IleLeu Arg Ala Thr His Pro Thr Val Glu Asn Leu Val Leu Glu Thr Ile
20 25 3020 25 30
Ser Leu Glu Tyr His Glu Val Leu Ser Ala Ala Phe Gly His Gln ValSer Leu Glu Tyr His Glu Val Leu Ser Ala Ala Phe Gly His Gln Val
35 40 4535 40 45
Glu Glu Asn Lys His Asn Ala Leu Glu Lys Tyr Lys Gly Gln Tyr ValGlu Glu Asn Lys His Asn Ala Leu Glu Lys Tyr Lys Gly Gln Tyr Val
50 55 6050 55 60
Leu Val Val Asp Gly Ser Ile Pro Leu Lys Asp Asn Gly Ile Tyr CysLeu Val Val Asp Gly Ser Ile Pro Leu Lys Asp Asn Gly Ile Tyr Cys
65 70 75 8065 70 75 80
Met Val Ala Gly Glu Pro Ile Val Asp His Ile Arg Lys Ala Ala GluMet Val Ala Gly Glu Pro Ile Val Asp His Ile Arg Lys Ala Ala Glu
85 90 9585 90 95
Gly Ala Ala Ala Ile Ile Ala Ile Gly Ser Cys Ser Ala Trp Gly GlyGly Ala Ala Ala Ile Ile Ala Ile Gly Ser Cys Ser Ala Trp Gly Gly
100 105 110100 105 110
Val Ala Ala Ala Gly Val Asn Pro Thr Gly Ala Val Ser Leu Gln GluVal Ala Ala Ala Gly Val Asn Pro Thr Gly Ala Val Ser Leu Gln Glu
115 120 125115 120 125
Val Leu Pro Gly Lys Thr Val Ile Asn Ile Pro Gly Cys Pro Pro AsnVal Leu Pro Gly Lys Thr Val Ile Asn Ile Pro Gly Cys Pro Pro Asn
130 135 140130 135 140
Pro His Asn Phe Leu Ala Thr Val Ala His Ile Ile Thr Tyr Gly LysPro His Asn Phe Leu Ala Thr Val Ala His Ile Ile Thr Tyr Gly Lys
145 150 155 160145 150 155 160
Pro Pro Lys Leu Asp Asp Lys Asn Arg Pro Thr Phe Ala Tyr Gly ArgPro Pro Lys Leu Asp Asp Lys Asn Arg Pro Thr Phe Ala Tyr Gly Arg
165 170 175165 170 175
Leu Ile His Glu His Cys Glu Arg Arg Pro His Phe Asp Ala Gly ArgLeu Ile His Glu His Cys Glu Arg Arg Pro His Phe Asp Ala Gly Arg
180 185 190180 185 190
Phe Ala Lys Glu Phe Gly Asp Glu Gly His Arg Glu Gly Trp Cys LeuPhe Ala Lys Glu Phe Gly Asp Glu Gly His Arg Glu Gly Trp Cys Leu
195 200 205195 200 205
Tyr His Leu Gly Cys Lys Gly Pro Glu Thr Tyr Gly Asn Cys Ser ThrTyr His Leu Gly Cys Lys Gly Pro Glu Thr Tyr Gly Asn Cys Ser Thr
210 215 220210 215 220
Leu Gln Phe Cys Asp Val Gly Gly Val Trp Pro Val Ala Ile Gly HisLeu Gln Phe Cys Asp Val Gly Gly Val Trp Pro Val Ala Ile Gly His
225 230 235 240225 230 235 240
Pro Cys Tyr Gly Cys Asn Glu Glu Gly Ile Gly Phe His Lys Gly IlePro Cys Tyr Gly Cys Asn Glu Glu Gly Ile Gly Phe His Lys Gly Ile
245 250 255245 250 255
His Gln Leu Ala Asn Val GluHis Gln Leu Ala Asn Val Glu
260260
<210>2<210>2
<211>789<211>789
<212>DNA<212>DNA
<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)
<400>2<400>2
gttatctgga ttggcgcgca ggagtgcacc ggttgtacgg aatctctgct tcgtgcaacg 60gttatctgga ttggcgcgca ggagtgcacc ggttgtacgg aatctctgct tcgtgcaacg 60
catccaacgg tagaaaacct cgtactggag actatctctc tggagtatca cgaagtgctt 120catccaacgg tagaaaacct cgtactggag actatctctc tggagtatca cgaagtgctt 120
tccgccgcct tcggtcatca ggtcgaagag aacaaacata acgctcttga gaagtacaaa 180tccgccgcct tcggtcatca ggtcgaagag aacaaacata acgctcttga gaagtacaaa 180
gggcagtatg tgttagtggt ggatggttcc atcccattaa aagataacgg tatttattgc 240gggcagtatg tgttagtggt ggatggttcc atcccattaa aagataacgg tatttattgc 240
atggttgccg gtgagccgat tgtggatcac atccgcaaag cggcggaagg cgcagcagcc 300atggttgccg gtgagccgat tgtggatcac atccgcaaag cggcggaagg cgcagcagcc 300
attatcgcta tcggttcctg ctctgcgtgg ggcggtgttg ccgcagctgg agttaaccca 360attatcgcta tcggttcctg ctctgcgtgg ggcggtgttg ccgcagctgg agttaaccca 360
actggcgcag tcagcctgca agaagttctg ccaggcaaaa ccgttatcaa tattccgggc 420actggcgcag tcagcctgca agaagttctg ccaggcaaaa ccgttatcaa tattccgggc 420
tgcccgccga acccgcacaa cttcctcgcg accgttgcgc acatcatcac ttacggcaaa 480tgcccgccga acccgcacaa cttcctcgcg accgttgcgc acatcatcac ttacggcaaa 480
ccgccgaaac tggatgacaa aaaccgtccg accttcgcct atggccgtct gattcacgaa 540ccgccgaaac tggatgacaa aaaccgtccg accttcgcct atggccgtct gattcacgaa 540
cactgcgaac gtcgcccgca cttcgatgct ggtcgttttg ccaaagagtt cggtgatgaa 600cactgcgaac gtcgcccgca cttcgatgct ggtcgttttg ccaaagagtt cggtgatgaa 600
ggccaccgcg aaggctggtg cctgtaccac ctcggctgta aagggccaga aacttacggc 660ggccaccgcg aaggctggtg cctgtaccac ctcggctgta aagggccaga aacttacggc 660
aactgctcaa cgctgcaatt ctgcgatgtt ggcggtgtgt ggccggtggc gattggtcac 720aactgctcaa cgctgcaatt ctgcgatgtt ggcggtgtgt ggccggtggc gattggtcac 720
ccttgctatg gctgtaacga agaaggtatc ggcttccata aaggcatcca tcaactggcc 780ccttgctatg gctgtaacga agaaggtatc ggcttccata aaggcatcca tcaactggcc 780
aacgtcgaa 789aacgtcgaa 789
<210>3<210>3
<211>1910<211>1910
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>3<400>3
aatctctgct tcgtgcaacg catccaacgg tagaaaacct tttggtgact gcgctcctcc 60aatctctgct tcgtgcaacg catccaacgg tagaaaacct tttggtgact gcgctcctcc 60
aagccagtta cctcggttca aagagttggt agctcagaga accttcgaaa aaccgccctg 120aagccagtta cctcggttca aagagttggt agctcagaga accttcgaaa aaccgccctg 120
caaggcggtt ttttcgtttt cagagcaaga gattacgcgc agaccaaaac gatctcaaga 180caaggcggtt ttttcgtttt cagagcaaga gattacgcgc agaccaaaac gatctcaaga 180
agatcatctt attaatcaga taaaatattt ctagatttca gtgcaattta tctcttcaaa 240agatcatctt attaatcaga taaaatattt ctagatttca gtgcaattta tctcttcaaa 240
tgtagcacct gaagtcagcc ccatacgata taagttgtaa ttctcatgtt tgacagctta 300tgtagcacct gaagtcagcc ccatacgata taagttgtaa ttctcatgtt tgacagctta 300
tcatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac 360tcatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac 360
cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg caccgtcacc ctggatgctg 420cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg caccgtcacc ctggatgctg 420
taggcatagg cttggttatg ccggtactgc cgggcctctt gcgggatatc gtccattccg 480taggcatagg cttggttatg ccggtactgc cgggcctctt gcgggatc gtccattccg 480
acagcatcgc cagtcactat ggcgtgctgc tagcgctata tgcgttgatg caatttctat 540acagcatcgc cagtcactat ggcgtgctgc tagcgctata tgcgttgatg caatttctat 540
gcgcacccgt tctcggagca ctgtccgacc gctttggccg ccgcccagtc ctgctcgctt 600gcgcacccgt tctcggagca ctgtccgacc gctttggccg ccgcccagtc ctgctcgctt 600
cgctacttgg agccactatc gactacgcga tcatggcgac cacacccgtc ctgtggatcc 660cgctacttgg agccactatc gactacgcga tcatggcgac cacacccgtc ctgtggatcc 660
tctacgccgg acgcatcgtg gccggcatca ccggcgccac aggtgcggtt gctggcgcct 720tctacgccgg acgcatcgtg gccggcatca ccggcgccac aggtgcggtt gctggcgcct 720
atatcgccga catcaccgat ggggaagatc gggctcgcca cttcgggctc atgagcgctt 780atatcgccga catcaccgat gggaagatc gggctcgcca cttcgggctc atgagcgctt 780
gtttcggcgt gggtatggtg gcaggccccg tggccggggg actgttgggc gccatctcct 840gtttcggcgt gggtatggtg gcaggccccg tggccggggg actgttgggc gccatctcct 840
tgcatgcacc attccttgcg gcggcggtgc tcaacggcct caacctacta ctgggctgct 900tgcatgcacc attccttgcg gcggcggtgc tcaacggcct caacctacta ctgggctgct 900
tcctaatgca ggagtcgcat aagggagagc gtcgaccgat gcccttgaga gccttcaacc 960tcctaatgca ggagtcgcat aagggagagc gtcgaccgat gcccttgaga gccttcaacc 960
cagtcagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt atgactgtct 1020cagtcagctc cttccggtgg gcgcggggca tgactatcgt cgccgcactt atgactgtct 1020
tctttatcat gcaactcgta ggacaggtgc cggcagcgct ctgggtcatt ttcggcgagg 1080tctttatcat gcaactcgta ggacaggtgc cggcagcgct ctgggtcatt ttcggcgagg 1080
accgctttcg ctggagcgcg acgatgatcg gcctgtcgct tgcggtattc ggaatcttgc 1140accgctttcg ctggagcgcg acgatgatcg gcctgtcgct tgcggtattc ggaatcttgc 1140
acgccctcgc tcaagccttc gtcactggtc ccgccaccaa acgtttcggc gagaagcagg 1200acgccctcgc tcaagccttc gtcactggtc ccgccaccaa acgtttcggc gagaagcagg 1200
ccattatcgc cggcatggcg gccgacgcgc tgggctacgt cttgctggcg ttcgcgacgc 1260ccattatcgc cggcatggcg gccgacgcgc tgggctacgt cttgctggcg ttcgcgacgc 1260
gaggctggat ggccttcccc attatgattc ttctcgcttc cggcggcatc gggatgcccg 1320gaggctggat ggccttcccc attatgattc ttctcgcttc cggcggcatc gggatgcccg 1320
cgttgcaggc catgctgtcc aggcaggtag atgacgacca tcagggacag cttcaaggat 1380cgttgcaggc catgctgtcc aggcaggtag atgacgacca tcagggacag cttcaaggat 1380
cgctcgcggc tcttaccagc ctaacttcga tcactggacc gctgatcgtc acggcgattt 1440cgctcgcggc tcttaccagc ctaacttcga tcactggacc gctgatcgtc acggcgattt 1440
atgccgcctc ggcgagcaca tggaacgggt tggcatggat tgtaggcgcc gccctatacc 1500atgccgcctc ggcgagcaca tggaacgggt tggcatggat tgtaggcgcc gccctatacc 1500
ttgtctgcct ccccgcgttg cgtcgcggtg catggagccg ggccacctcg acctgaatgg 1560ttgtctgcct ccccgcgttg cgtcgcggtg catggagccg ggccacctcg acctgaatgg 1560
aagccggcgg cacctcgcta acggattcac cactccaaga attggagcca atcaattctt 1620aagccggcgg cacctcgcta acggattcac cactccaaga attggagcca atcaattctt 1620
gcggagaact gtgaatgcgc aaaccaaccc ttggcagaac atatccatcg cgtccgccat 1680gcggagaact gtgaatgcgc aaaccaaccc ttggcagaac atatccatcg cgtccgccat 1680
ctccagcagc cgcacgcggc gcatctcggg cagcgttggg tcctggccac gggtgcgcat 1740ctccagcagc cgcacgcggc gcatctcggg cagcgttggg tcctggccac gggtgcgcat 1740
gatcgtgctc ctgtcgttga ggacccggct aggctggcgg ggttgcctta ctggttagca 1800gatcgtgctc ctgtcgttga ggacccggct aggctggcgg ggttgcctta ctggttagca 1800
gaatgaatca ccgatacgcg agcgaacgtg aagcgactgc tgctgcaaaa cgtctgcgac 1860gaatgaatca ccgatacgcg agcgaacgtg aagcgactgc tgctgcaaaa cgtctgcgac 1860
ctgagcaaca gattggtcac ccttgctatg gctgtaacga agaaggtatc 1910ctgagcaaca gattggtcac ccttgctatg gctgtaacga agaaggtatc 1910
<210>4<210>4
<211>134<211>134
<212>PRT<212>PRT
<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)
<400>4<400>4
Arg His Arg Arg Tyr Gln Asp Gln Trp Arg Gln Tyr Cys Asn Ser LeuArg His Arg Arg Tyr Gln Asp Gln Trp Arg Gln Tyr Cys Asn Ser Leu
1 5 10 151 5 10 15
Val Gln Gly Ile Thr Leu Ser Lys Ala Arg Leu His His Ala Met SerVal Gln Gly Ile Thr Leu Ser Lys Ala Arg Leu His His Ala Met Ser
20 25 3020 25 30
Cys Ala Pro Asp Lys Glu Leu Cys Phe Val Leu Phe Glu His Phe GlnCys Ala Pro Asp Lys Glu Leu Cys Phe Val Leu Phe Glu His Phe Gln
35 40 4535 40 45
Val Tyr Val Ala Leu Ala Glu Gly Phe Asn Asn His Thr Ile Glu TyrVal Tyr Val Ala Leu Ala Glu Gly Phe Asn Asn His Thr Ile Glu Tyr
50 55 6050 55 60
Tyr Val Glu Thr Arg Asn Gly Asp Asp Lys Arg Leu Ile Ala Gln AlaTyr Val Glu Thr Arg Asn Gly Asp Asp Lys Arg Leu Ile Ala Gln Ala
65 70 75 8065 70 75 80
Thr Leu Ala Ser Asp Gly Thr Val Asp Gly Arg Ile Ser Asn Arg SerThr Leu Ala Ser Asp Gly Thr Val Asp Gly Arg Ile Ser Asn Arg Ser
85 90 9585 90 95
Arg Glu Gln Val Leu Glu His Tyr Leu Ala Ile Ile Ala Ser Val TyrArg Glu Gln Val Leu Glu His Tyr Leu Ala Ile Ile Ala Ser Val Tyr
100 105 110100 105 110
Asp Arg Leu Tyr Asp Ala Met Glu His Asp Gln Pro Val Asp Leu SerAsp Arg Leu Tyr Asp Ala Met Glu His Asp Gln Pro Val Asp Leu Ser
115 120 125115 120 125
His Leu Ala Leu Ala HisHis Leu Ala Leu Ala His
130130
<210>5<210>5
<211>405<211>405
<212>DNA<212>DNA
<213>产气肠杆菌(E.aerogenes)<213> Enterobacter aerogenes (E.aerogenes)
<400>5<400>5
cgtcaccgcc gctatcagga tcagtggcgc cagtactgca attcgctggt tcagggcatc 60cgtcaccgcc gctatcagga tcagtggcgc cagtactgca attcgctggt tcagggcatc 60
accctgtcaa aagcgcgttt gcatcatgcg atgagctgcg cgccggacaa agagctgtgc 120accctgtcaa aagcgcgttt gcatcatgcg atgagctgcg cgccggacaa agagctgtgc 120
ttcgtcctgt ttgaacattt tcaggtgtat gtcgcgctgg cggaagggtt caacaaccac 180ttcgtcctgt ttgaacattt tcaggtgtat gtcgcgctgg cggaagggtt caacaaccac 180
accatcgagt actacgtcga aacgcgcaat ggtgatgata agcgattgat tgctcaggca 240accatcgagt actacgtcga aacgcgcaat ggtgatgata agcgattgat tgctcaggca 240
acgctggcat ccgacggtac cgttgacggc cggatcagca accgttcgcg cgaacaggtg 300acgctggcat ccgacggtac cgttgacggc cggatcagca accgttcgcg cgaacaggtg 300
ctggaacatt acctggccat tattgccagc gtctatgacc gtctgtatga cgccatggaa 360ctggaacatt acctggccat tattgccagc gtctatgacc gtctgtatga cgccatggaa 360
cacgaccagc cggtggattt aagccatctg gcgctggccc attaa 405cacgaccagc cggtggattt aagccatctg gcgctggccc attaa 405
<210>6<210>6
<211>1693<211>1693
<212>DNA<212>DNA
<213>6<213>6
<400>人工序列<400> artificial sequence
ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg ataggctccg cccccctgac 60ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg ataggctccg cccccctgac 60
gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga 120gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga 120
taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt 180taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt 180
accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc 240accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc 240
tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc 300tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc 300
cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta 360cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta 360
agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat 420agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat 420
gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca 480gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca 480
gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct 540gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct 540
tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt 600tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt 600
acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct 660acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct 660
cagtggaacg aaaactcacg ttaagggatt ttggtcatga acaataaaac tgtctgctta 720cagtggaacg aaaactcacg ttaagggatt ttggtcatga acaataaaac tgtctgctta 720
cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt cttgctctag 780cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt cttgctctag 780
gccgcgatta aattccaaca tggatgctga tttatatggg tataaatggg ctcgcgataa 840gccgcgatta aattccaaca tggatgctga tttatatggg tataaatggg ctcgcgataa 840
tgtcgggcaa tcaggtgcga caatctatcg attgtatggg aagcccgatg cgccagagtt 900tgtcgggcaa tcaggtgcga caatctatcg attgtatggg aagcccgatg cgccagagtt 900
gtttctgaaa catggcaaag gtagcgttgc caatgatgtt acagatgaga tggtcagact 960gtttctgaaa catggcaaag gtagcgttgc caatgatgtt acagatgaga tggtcagact 960
aaactggctg acggaattta tgcctcttcc gaccatcaag cattttatcc gtactcctga 1020aaactggctg acggaattta tgcctcttcc gaccatcaag cattttatcc gtactcctga 1020
tgatgcatgg ttactcacca ctgcgatccc cgggaaaaca gcattccagg tattagaaga 1080tgatgcatgg ttactcacca ctgcgatccc cgggaaaaca gcattccagg tattagaaga 1080
atatcctgat tcaggtgaaa atattgttga tgcgctggca gtgttcctgc gccggttgca 1140atatcctgat tcaggtgaaa atattgttga tgcgctggca gtgttcctgc gccggttgca 1140
ttcgattcct gtttgtaatt gtccttttaa cagcgatcgc gtatttcgtc tcgctcaggc 1200ttcgattcct gtttgtaatt gtccttttaa cagcgatcgc gtatttcgtc tcgctcaggc 1200
gcaatcacga atgaataacg gtttggttga tgcgagtgat tttgatgacg agcgtaatgg 1260gcaatcacga atgaataacg gtttggttga tgcgagtgat tttgatgacg agcgtaatgg 1260
ctggcctgtt gaacaagtct ggaaagaaat gcataaactt ttgccattct caccggattc 1320ctggcctgtt gaacaagtct ggaaagaaat gcataaactt ttgccattct caccggattc 1320
agtcgtcact catggtgatt tctcacttga taaccttatt tttgacgagg ggaaattaat 1380agtcgtcact catggtgatt tctcacttga taaccttatt tttgacgagg ggaaattaat 1380
aggttgtatt gatgttggac gagtcggaat cgcagaccga taccaggatc ttgccatcct 1440aggttgtatt gatgttggac gagtcggaat cgcagaccga taccaggatc ttgccatcct 1440
atggaactgc ctcggtgagt tttctccttc attacagaaa cggctttttc aaaaatatgg 1500atggaactgc ctcggtgagt tttctccttc attacagaaa cggctttttc aaaaatgg 1500
tattgataat cctgatatga ataaattgca gtttcatttg atgctcgatg agtttttcta 1560tattgataat cctgatatga ataaattgca gtttcatttg atgctcgatg agtttttcta 1560
agaattaatt catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 1620agaattaatt catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 1620
ttccgcgcac atttccccga aaagtgccac ctgtatgacg ccatggaaca cgaccagccg 1680ttccgcgcac atttccccga aaagtgccac ctgtatgacg ccatggaaca cgaccagccg 1680
gtggatttaa gcc 1693gtggatttaa gcc 1693
<210>7<210>7
<211>40<211>40
<212>DNA<212> DNA
<213>人工序列<213> Artificial sequence
<400>7<400>7
aatctctgct tcgtgcaacg catccaacgg tagaaaacct 40aatctctgct tcgtgcaacg catccaacgg tagaaaacct 40
<210>8<210>8
<211>40<211>40
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>8<400>8
gataccttct tcgttacagc catagcaagg gtgaccaatc 40gataccttct tcgttacagc catagcaagg gtgaccaatc 40
<210>9<210>9
<211>40<211>40
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>9<400>9
ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg 40ctgcaattcg ctggttcagg gcatcaccct gtcaaaagcg 40
<210>10<210>10
<211>40<211>40
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>10<400>10
ggcttaaatc caccggctgg tcgtgttcca tggcgtcata 40ggcttaaatc caccggctgg tcgtgttcca tggcgtcata 40
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101152311A CN101608170B (en) | 2008-06-19 | 2008-06-19 | Hydrogen-producing engineering bacteria and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101152311A CN101608170B (en) | 2008-06-19 | 2008-06-19 | Hydrogen-producing engineering bacteria and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101608170A CN101608170A (en) | 2009-12-23 |
CN101608170B true CN101608170B (en) | 2011-06-29 |
Family
ID=41482080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008101152311A Expired - Fee Related CN101608170B (en) | 2008-06-19 | 2008-06-19 | Hydrogen-producing engineering bacteria and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101608170B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2880819A1 (en) | 2012-08-02 | 2014-02-06 | University Of Central Florida Research Foundation, Inc. | Compositions and methods for genetic constructs |
-
2008
- 2008-06-19 CN CN2008101152311A patent/CN101608170B/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
赵洪新等.产气肠杆菌(E.aerogenes IAMl138)甲酸氢酶基因的克隆及高效产氢工程菌的构建.《2007年中国微生物学会学术年会》.2007,173-174. * |
Also Published As
Publication number | Publication date |
---|---|
CN101608170A (en) | 2009-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10961551B2 (en) | Process for producing at least one metabolite of interest by conversion of a pentose in a microorganism | |
CN112501102B (en) | A Recombinant Escherichia coli Bacteria Efficiently Produces Ectrahydropyrimidine | |
Raj et al. | Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues | |
CN102757975B (en) | Method for increasing oxytetracycline yield of streptomyces rimosus | |
CN104774817A (en) | Fructosyl transferase and coding gene and application thereof | |
CN112921047A (en) | Shewanella electrogenesis strain for over-expressing cytochrome protein and construction method and application thereof | |
Zhang et al. | irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses | |
CN101608170B (en) | Hydrogen-producing engineering bacteria and its application | |
CN110499274A (en) | A kind of genetically engineered rhodococcus and its construction method and application | |
CN106947776A (en) | Multiple-effect modulin CcpA and its purposes in lifting fermenting performance | |
CN101608171A (en) | A hydrogen-producing engineering bacterium and its application | |
CN104046635B (en) | Application and usage method of nfiS gene for specific response of adversity signal | |
CN111996157B (en) | A genetically engineered bacterium for efficient production of 1,3-propanediol and its construction method and application | |
US10934521B2 (en) | Genetically modified microorganisms | |
CN113046286B (en) | A kind of Shewanella strain promoting biofilm formation and construction method and application | |
CN110305892B (en) | Method for verifying feasibility of inserting CRISPR-Cas9 system mediated target gene into Candida utilis | |
CN116121288B (en) | Vector for cloning pseudomonas putida large fragment DNA and application thereof | |
CN102559507B (en) | Cell for preparing competent cell and use thereof, novel escherichia coli and use thereof, and method for preparing competent cell | |
CN104152482A (en) | RecET recombination system expression plasmids for zymomonas mobilis, as well as construction method and applications thereof | |
JP2015104373A (en) | [NiFe] -hydrogenase expression system | |
CN101633690B (en) | Hydrogen production associated protein, coding genes thereof and application thereof | |
CN113122563A (en) | Method for constructing R-3-aminobutyric acid production strain | |
CN103525854A (en) | Construction method for high-gene-knockout-efficiency Aspergillus chevalieri var. intermedius mutant engineering bacterial strain | |
CN111394349B (en) | Rhodosporidium toruloides RNA polymerase III type promoter and application thereof | |
CN113272438A (en) | Recombinant yeast and method for producing ethanol using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110629 Termination date: 20120619 |