CN101603511B - 一种垂直风力发电机 - Google Patents

一种垂直风力发电机 Download PDF

Info

Publication number
CN101603511B
CN101603511B CN2009100411597A CN200910041159A CN101603511B CN 101603511 B CN101603511 B CN 101603511B CN 2009100411597 A CN2009100411597 A CN 2009100411597A CN 200910041159 A CN200910041159 A CN 200910041159A CN 101603511 B CN101603511 B CN 101603511B
Authority
CN
China
Prior art keywords
flange
blade
generator
bearing
king
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100411597A
Other languages
English (en)
Other versions
CN101603511A (zh
Inventor
邓允河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Yatu New Energy Technology Co ltd
Original Assignee
GUANGZHOU YATU WIND EQUIPMENT MANUFACTURING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2009100411597A priority Critical patent/CN101603511B/zh
Application filed by GUANGZHOU YATU WIND EQUIPMENT MANUFACTURING Co Ltd filed Critical GUANGZHOU YATU WIND EQUIPMENT MANUFACTURING Co Ltd
Priority to JP2012519866A priority patent/JP2012533276A/ja
Priority to PCT/CN2009/001041 priority patent/WO2011006284A1/zh
Priority to EP09847209.5A priority patent/EP2455610B1/en
Priority to KR1020127002453A priority patent/KR101415100B1/ko
Priority to US13/384,239 priority patent/US8546972B2/en
Priority to CA2768266A priority patent/CA2768266C/en
Priority to AU2009349979A priority patent/AU2009349979B2/en
Priority to RU2012105064/06A priority patent/RU2511985C2/ru
Publication of CN101603511A publication Critical patent/CN101603511A/zh
Application granted granted Critical
Publication of CN101603511B publication Critical patent/CN101603511B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/38Structural association of synchronous generators with exciting machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/88Arrangement of components within nacelles or towers of mechanical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/212Rotors for wind turbines with vertical axis of the Darrieus type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/916Mounting on supporting structures or systems on a stationary structure with provision for hoisting onto the structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

一种垂直风力发电机,包括塔柱,一个以上的发电机单元,二片以上的叶片,励磁控制装置,旋转整流装置,双向变频器,第一、第二、第三、第四、第五、第六、第七、第八、第九法兰,第一、第二、第三轴承,冷却系统、起重机及升降系统;发电机单元包括支架、发电机及励磁机;支架包括外支架和内支架,发电机包括定子及转子,励磁机包括励磁机定子及励磁机转子;利用本发明的结构,能减少垂直风力发电机的制造成本;能快速的启动发电机;能自动调整风力发电机的功率,并提高风能的利用率;能对发电机起到好的冷却效果,延长发电机的使用寿命;便于维修,降低维修成本和维修时间。

Description

一种垂直风力发电机
技术领域
本发明涉及一种垂直风力发电机。
背景技术
现在,不可再生能源的资源越来越少,甚至有些能源已经消耗完,因此,像波能、可燃冰、煤层气、微生物,这些能源将成为人类广泛应用的新能源,而风能这种再生型能源在很多的地区和设备上已经开始使用,其技术已经慢慢的走向成熟。现代风力发电机主要有水平轴风力发电机和垂直轴风力发电机。垂直轴式的与水平轴式的产品不同,在垂直轴风力发电机中,转轴安装在垂直轴上,与地面垂直,垂直轴风力发电机工作时不受风向的影响,因此当风向改变时无需调整。
其中,Darrieus涡轮机是属于垂直风力发电机的一种,该涡轮机包括垂直转轴、位于转轴顶部的顶部转子中心、叶片、位于转轴底部的底部转子中心、与转轴连接的变速箱、与变速箱连接的发电机组成。叶片的上端连接在顶部转子中心,叶片下端连接在底部中心上,叶片旋转起来后带动垂直转轴旋转,转轴经过底部设有的变速箱后将动力传递到发电机,从而使发电机发电。由于该种风力发电机巨大,转轴一般比较高,为了加强其稳固性,从转轴顶部拉索至底面,虽然转轴得到了加固,但是其占地面积比较大,不利于土地的有效利用;另外,该风力发电过程中动力传动链过长,动d力在传递过程中能量损失很大,不利于能量的有效利用;再者,发电装置中包括了变速箱、发电机、传动轴等多套部件才能完成发电,结构较为复杂,发电装置一旦发电装置发生故障,在检修和修理方面十分困难,往往需要在发电机旁搭建塔式起重机才能起吊大型部件,如此维修耗费大,并且维修时间长,直接影响到风力发电机的工作效率。
在本申请人申请号为200910038122.9的一种垂直风力发电机中,其包括塔柱、发电机和两片以上的叶片,在塔柱上设有一个以上的发电装置;发电装置由设置于塔柱上的第一下法兰盘和第一上法兰盘、第一轴承座、第一轴承、第一发电机、发电机 中心柱、第二轴承、第二轴承座、第二下法兰盘和第二上法兰盘组成;第一下法兰盘与塔柱相固定,第一上法兰盘位于第一下法兰盘上且与第一下法兰盘固定连接,第一轴承座固定在第一上法兰盘上,第一轴承由第一外圈、第一钢珠组和第一内圈构成,第一内圈固定在第一轴承座上,第一外圈和第一钢珠组可绕第一内圈转动;第一发电机包括第一内定子和第一外转子,第一内定子位于第一内圈上,第一外转子位于第一外圈上且与第一外圈固定连接;发电机中心柱与第一内定子固定连接;发电机中心柱上方依次设有第二轴承、第二轴承座、第二下法兰盘和第二上法兰盘,第二上法兰盘与塔柱相固定,第二下法兰盘位于第二上法兰盘下方且与第二上法兰盘固定连接,第二轴承座位于第二下法兰盘下方且与第二下法兰盘固定连接,第二轴承由第二外圈、第二钢珠组和第二内圈构成,第二内圈位于第二轴承座下方且与第二轴承座固定连接,第二外圈和第二钢珠组可绕第二内圈转动;叶片的上端与第二外圈固定连接,叶片的下端与第一外圈固定连接。该种发明结构简单安全、占地面积少、成本低,且对风能的利用率相当高;但是对轴承要求比较高,轴承的外圈大小需要与发电机外转子相当,发电机越大所需要的轴承的直径越大,大型轴承造成了生产成本高,一个直径为5米的轴承大约需要30-40万,而一个直径为3米的轴承则需要十几万,另一方面,大型轴承也不易于装配。
在风力发电机中,风能利用率的高与低主要取决于叶片的构造及结构;目前,垂直风力发电机的叶片形状千姿百态,像扇形结构、帆形结构、φ形结构等等,在这些结构中,φ形结构对风能的利用率最高,但由于风速和风力的变化是无常的,造成叶片迎风面的大小无法控制,因此,很难防止因风速过大而引起垂直风力发电机的失效甚至损毁。
发电机在工作时会产生热量,特别是大功率的发电机,如果不对发电机进行冷却,则会造成发电机被烧毁,减少了发电机的使用寿命。目前,采用的冷却方法一般为水冷或在发电机的一端安装风扇。采用水冷,则需要布置许多的水路,结构复杂,难以达到水路密封的要求,造成电机的绝缘损坏,影响电机的使用寿命;在中国专利号为200520032333.9中公开了一种外转子式节能风力发电机,包括外转子、定子、固定轴及轴承,定子固定在固定轴上,外转子是由壳体和内壁上装的磁铁经上下端盖固装在轴承上,所述壳体两端有散热孔,这种结构,由于发电机的一部分热量通过散热孔散出,在整个结构中没有热量交换,因此,散热效果差。
随着对风力发电机的进一步研究发现,风力发电机工作时,叶片受到很大的风力,因此,要求叶片需要较大的承受能力,有一种垂直风力发电机,包括一个以上的发电机单元;所述的发电机单元包括立柱、发电机及二个以上的叶片;所述的发电机包括定子和转子,定子设在立柱上,转子设在定子外;所述的转子下端设有第一法兰,且与转子相连接;立柱上第一法兰下端设有第一轴承,第一轴承的外圈与第一法兰相连接;所述的转子上端设有第二法兰,第二法兰与转子相连接;所述的立柱上第二法兰上端设有第二轴承,第二轴承的外圈与第二法连相连接;在立柱上第二轴承上方设有第三轴承,所述叶片的上端与第三轴承的外圈相连接,叶片的下端与第二轴承的外圈相连接。这种结构的垂直风力发电机,叶片的运动通过第二轴承和第二法兰带动转子旋转,转子的转矩由叶片提供,并且主要由叶片的下端提供;由于叶片的下端连有负载发电机,当垂直风力发电机工作时,叶片下端的变形小,叶片上端的变形大,这样,使叶片上端和下端的受力大小不同,因此,叶片很容易损坏。
发明内容
本发明的目的是为了提供一种垂直风力发电机,利用本发明的结构,能减少垂直风力发电机的制造成本;当发电机启动困难时,能快速的启动发电机;能调节叶片迎风面的大小,以便自动调整风力发电机的功率,防止因风速过大引起风力发电机的失效,并提高风能的利用率;能对发电机起到好的冷却效果,提高发电机的稳定性,延长发电机的使用寿命;便于维修,降低维修成本和维修时间,方便对发电机的检测。
为达到上述目的,一种垂直风力发电机包括塔柱、一个以上的发电机单元及二片以上的叶片;所述塔柱的中心轴线与水平面垂直。
所述的发电机单元包括支架、发电机及励磁机;所述的支架包括外支架和内支架;所述的发电机包括定子及转子,定子固定套设在塔柱上,转子设在定子外,且固设在内支架上,所述的定子上设有发电机定子绕组,转子上设有发电机转子绕组。
所述的励磁机包括励磁机定子及励磁机转子,励磁机定子固定套设在塔柱上,励磁机转子设在励磁机定子外,且固设在内支架上,所述励磁机定子上设有励磁机定子绕组,励磁机转子上设有励磁机转子绕组。
所述的支架内设有励磁控制装置及旋转整流装置,发电机定子绕组通过励磁控制装置与励磁机定子绕组联接,发电机转子绕组通过旋转整流装置与励磁机转子绕组联接;所述的发电机定子绕组联接有双向变频器;双向变频器的另一端联接有电网,且双向变频器与励磁控制装置联接。
所述的支架下端设有上下两端横截面不同的第一法兰,第一法兰下端设有第一轴承,第一轴承的外圈与第一法兰的小端相连接,第一轴承的内圈固定套设在塔柱上,第一法兰的大端与支架的下端相连接;所述的支架上端设有上下两端横截面不同的第二法兰,第二法兰的上端设有第二轴承,第二轴承的外圈与第二法连的小端相连接,第二轴承的内圈固定套设在塔柱上,第二法兰的大端与支架的上端相连接;所述第二轴承的上方设有第三轴承,第三轴承的内圈固定套设在塔柱上。
所述叶片包括一个以上的叶片单元,所述叶片单元的横截面为中间大两端小的橄榄形,且两小端中的其中一端为弧状,另一端为尖端;所述的叶片单元包括骨架及叶身,叶身安装在骨架上,在叶片单元的径向方向上,叶身的一端设有第一叶尖,叶身的另一端设有第二叶尖,第一叶尖的尾部为所述叶片单元的弧状,第二叶尖的尾部为所述叶片单元的尖端,第一叶尖的头部伸入到叶身内,第二叶尖的头部伸入到叶身内;所述骨架和第一叶尖之间设有带动第一叶尖沿叶片单元径向方向运动的第一运动装置,骨架和第二叶尖之间设有带动第二叶尖沿叶片单元径向方向运动的第二运动装置;所述的第一叶尖与叶身之间设有第一导轨组,第二叶尖与叶身之间设有第二导轨组,所述的叶片单元连接后呈弧形;所述叶片的上端与第三轴承的外圈相连接,叶片的下端与第二轴承的外圈相连接。
所述的发电机单元上设有冷却系统,所述的冷却系统包括风叶、冷却器、密封盘及风扇;所述外支架和内支架之间设有支架风道;所述的定子、转子、励磁机定子和励磁机转子上设有风道;内支架的下端部上设有出风口,内支架的上端部上设有进风口;支架风道与出风口和进风口相通;所述的风叶倾斜的设在外支架的外壁上;所述的密封盘设在塔柱上,且位于内支架的上端部内;风扇设在密封盘上,冷却器设在风扇的上方。
所述的塔柱顶部设有起重机。
所述的塔柱为空心塔柱,塔柱内设有升降系统。
上述结构,与现有技术相比,本发明仅依靠塔柱支撑发电机单元及叶片,使得整个垂直风力发电机所占用的地面积少;较以往通过复杂的传动机构以及使用巨大的垂直转轴来传动能量,本发明设计的叶片、轴承的外圈和发电机的外转子相互固定成一整体的结构,使得发电机转子相当于叶片的一部分,叶片的转速就是发电机转子的转速,极大降低了能量在传输过程中的损耗,提高了风能的利用率;较现有的塔架式垂直风力发电机,本发明由空心的塔柱支承发电机单元及叶片,既保证了风力发电机的稳固,又降低了钢材的用量,并且本发明有效简化了风力发电机的传动机构,极大降低了垂直风力发电机的生产成本和风电的成本。
设置励磁机,能够根据发电机负荷的变化相应的调节励磁电流,以维持发电机中电压为恒定值;能提高发电机并列运行的静态稳定性;提高发电机并列运行的暂态稳定性;当发电机内部出现故障时,进行灭磁,以减小故障损失程度;能够根据运行要求对发电机实行最大励磁限制及最小励磁限制。
将第一法兰和第二法兰设置成上下两端横截面不同,且第一法兰的小端与第一轴承的外圈相连接,第二法兰的小端与第二轴承外圈相连接,这样,能够减小轴承的尺寸,且能在市场上购买到标注的轴承,因此,降低了垂直风力发电机的制造成本,并且便于安装。
由于在第一叶尖和骨架之间设有第一运动装置,在第二叶尖和骨架之间设有第二运动装置,在第一叶尖与叶身之间设有第一导轨组,在第二叶尖与叶身之间设有第二导轨组,因此,叶片能根据风力的大小调节迎风面的大小,这样,能自动调整风力发电机的功率,防止风速过大而引起垂直风力发电机的失效;由于叶片单元的横截面为中间大两端小的橄榄形,且两小端中的其中一端为弧状,另一端为尖端,所述的叶片单元连接后呈弧形,因此,这种结构的叶片对风能的利用率高。
上述结构的冷却系统工作时,风扇工作形成风流,冷风通过励磁机转子、励磁机定子、转子和定子的风道,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口进入到支架风道内,在这里通过外支架外壁与外界空气进行热交换,热风变成冷风,然后风流通过进风口进入冷却器,在这里进行进一步的冷却,然后经风扇流入到风力发电机的内腔中,形成内循环。在外支架外,由于设置了风叶,且风叶倾斜的设置在外支架的外壁上,当支架旋转时,风叶也跟随一起旋转,这时,在风叶上形成上下的风压差,使得靠近发电机的外界空气形成从高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,且结构简单。
设置起重机,维修人员和检测人员能够在起重机上作业,避免需要大型设备到现 场对风力发电机进行维修和检测,大大减少了维修成本,节约了维修时间。
由于本发明的塔柱为空心,并且在塔柱内部设有升降机构,使得对垂直风力发电机的维修和检测变得简单安全。
作为改进,所述的塔柱上第二法兰上方设有第三法兰,第三法兰与第二法兰相连接;所述塔柱上第三法兰上方设有第四法兰,第四法兰与所述的第三轴承的外圈相连接;所述的第三法兰和第四法兰之间设有传递转矩的连接件,连接件的上端与第四法兰相连接,连接件的下端与第三法兰相连接;所述的叶片上端与第四法兰相连接,叶片的下端与第三法兰相连接。
上述结构的垂直风力发电机,由于设置了第三法兰和第四法兰,在第三法兰和第四法兰之间设置了传递转矩的连接件,连接件的上端与第四法兰相连接,连接件的下端与第三法兰相连接,这样,发电机转子的转矩不仅有来自叶片下端的传递,还有来自连接件的传递,而连接件的转矩主要由叶片的运动通过叶片的上端传递给连接件,因此,当垂直发电机在工作时,叶片上端和下端的受力得到了平衡,使得叶片不易因变形而扭曲和损坏,提高了叶片和垂直风力发电机的使用寿命。
作为具体化,所述的连接件为空心管,所述空心管套设在塔柱外,空心管的上端与第四法兰相连接,空心管的下端与第三法兰相连接。采用空心管作为连接件,其结构简单,制造方便;并且空心管跟随第三法兰和第四法兰一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率。
作为改进,所述的连接件包括二根以上的连接杆,所述连接杆的上端与第四法兰相连接,连接杆的下端与第三法兰相连接,所述的连接杆设置在塔柱外且与塔柱横截面同心的圆周上;所述的连接杆上沿塔柱横截面方向上设有加强筋。采用这种结构,其结构简单,且能减轻垂直风力发电机的重量。设置加强筋增强了由连接杆构成的连接件的强度。
作为改进,所述的定子下端面上设有定子托座,定子托座固定套设在塔柱上;所述的励磁机定子下端面上设有励磁机定子托座,励磁机定子托座固定套设在塔柱上;所述的第一轴承内圈下端面上设有第一轴承托座,第一轴承托座固定套设在塔柱上;所述的第二轴承内圈下端面上设有第二轴承托座,第二轴承托座固定套设在塔柱上;所述的第三轴承内圈下端面上设有第三轴承托座,第三轴承托座固定套设在塔柱上。
设置定子托座,能提高发电机定子安装在塔柱上的位置准确性和牢固性;设置励 磁机定子托座能提高励磁机定子安装在塔柱上的位置准确性和牢固性;设置第一轴承托座提高了第一轴承在塔柱上安装位置的准确性和牢固性;设置第二轴承托座提高了第二轴承在塔柱上安装位置的准确性和牢固性;设置第三轴承托座提高了第三轴承在塔柱上安装位置的准确性和牢固性。
作为改进,所述的转子上设有阻尼绕组,阻尼绕组包括端环和阻尼条,阻尼条安装在端环上。所述的阻尼绕组相当于转子的绕组,当发电机启动困难时,发电机作为电动机使用,这样就能实现电动机的异步启动,提高垂直风力发电机的发电效率。
作为具体化,所述的第一法兰呈锥台型、喇叭型、“凸”字型或台阶型;第二法兰呈锥台型、喇叭型、“凸”字型或台阶型。采用锥台型或喇叭形,第一法兰的大端到小端的横截面为均匀过渡,第二法兰的大端到小端的横截面为均匀过渡,在第一法兰和第二法兰内不会产生明显的内应力,因此,第一法兰和第二法兰的强度高,能够承受较大的力,同时,减小了轴承外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,法兰能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间。
作为改进,所述的支架和第一法兰之间设有第五法兰,第五法兰的上端面与支架相连接,下端面与第一法兰的大端相连接;所述的支架与第二法兰之间设有第六法兰,第六法兰的上端面与第二法兰的大端相连接,下端面与支架相连接;所述第二轴承的外圈外套设有第七法兰,第七法兰的上端面与第三法兰相连接,下端面与第二法兰的小端相连接。
设置第五法兰,便于第一法兰和支架的连接;设置第六法兰,便于第二法兰和支架的连接;设置第七法兰,第七法兰的内表面和第二轴承的外表面为过盈配合,这样,第二法兰和第三法兰只要与第七法兰连接即可,不需要在第二轴承的外圈加工螺孔或者进行焊接,因此,减小了轴承的加工成本,增大了第二轴承外圈的强度,并且简化了安装程序。
作为改进,所述的叶片下端与第三法兰之间设有第八法兰,叶片上端与第四法兰之间设有第九法兰。
设置第八、第九法兰,便于叶片与第三法兰和第四法兰的连接。
作为具体化,所述的第一运动装置为第一液压系统,第二运动装置为第二液压系统;所述的第一液压系统包括第一液压泵、第一液压阀、第一液压管及第一液压缸; 所述的第一液压缸包括第一液压缸体、第一活塞、第一活塞杆及第一密封装置,所述的第一液压缸体远离第一活塞杆的一端与骨架连接,第一活塞杆远离第一液压缸体的一端与第一叶尖连接;所述的第二液压系统包括第二液压泵、第二液压阀、第二液压管及第二液压缸;所述的第二液压缸包括第二液压缸体、第二活塞、第二活塞杆及第二密封装置,所述的第二液压缸体远离第二活塞杆的一端与骨架连接,第二活塞杆远离第二液压缸体的一端与第二叶尖连接。
采用液压系统作为运动系统,其传动的平稳性好,能使用在大功率的运动件上,且能实现无极调速。
作为改进,所述的第一运动装置为第一气压系统,第一气压系统包括第一空气压缩机及第一气压缸,第一气压缸包括第一气压缸体、第一气压活塞、第一气压活塞杆及第一气压密封装置,所述的第一气压缸体安装在骨架上,第一气压活塞杆远离第一气压缸体的一端与第一叶尖相连接;所述的第二运动装置为第二气压系统,第二气压系统包括第二空气压缩机及第二气压缸,第二气压缸包括第二气压缸体、第二气压活塞、第二气压活塞杆及第二气压密封装置,所述的第二气压缸体安装在骨架上,第二气压活塞杆远离第二气压缸体的一端与第二叶尖相连接。
采用气压缸系统作为运动装置,由于其动力介质为气体,因此,质量轻,介质的资源丰富,无污染;由于气体的黏度小,因此,气体与气压缸体的阻力小。
作为改进,所述的第一运动装置包括第一丝杆、第一螺母、第一电机、两个以上的第一直线轴承及第一轴承座,所述的第一轴承座安装在叶身上,第一直线轴承安装在第一轴承座上,所述的第一螺母安装在第一叶尖上,所述第一丝杆的一端与第一电机相连接,所述第一丝杆与第一螺母相啮合,所述的第一电机和第一丝杆之间设有第一联轴器;所述的第二运动装置包括第二丝杆、第二螺母、第二电机、两个以上的第二直线轴承及第二轴承座,所述的第二轴承座安装在叶身上,第二直线轴承安装在第二轴承座上,所述的第二螺母安装在第二叶尖上,所述第二丝杆的一端与第二电机相连接,所述第二丝杆与第二螺母相啮合,所述的第二电机和第二丝杆之间设有第二联轴器。
采用丝杆、螺母、直线轴承作为运动装置,其传动精度高。
作为改进,所述的叶身靠近第一叶尖的端部上设有第一密封条,在叶身靠近第二叶尖的端部设有第二密封条;所述的骨架和叶身之间设有叶片加强筋。
设置密封条,能防止雨水、尘埃进入到叶片单元内;垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。设置叶片加强筋,增大了骨架和叶身的连接强度。
作为改进,所述的冷却器上连接有外部冷却器,外部冷却器设在塔柱内。
上述结构的工作过程为:外部冷却器将冷却液通过进夜管输送到冷却器中,在冷却器中进行热交换,然后变成热水经出液管流入到外部冷却器进行冷却,然后如上述过程继续循环,增加外部冷却器能提高内循环中的风流在冷却器的冷却效果,从而提高了对发电机的冷却效果,增大发电机的使用寿命。
作为具体化,所述起重机包括回转塔架、起重臂、平衡臂、平衡重、起重小车、小车行走机构、吊钩、拉索、起升机构和控制系统;所述回转塔架设在塔柱顶部上,起重臂和平衡臂安装在回转塔架上,平衡重安装在平衡臂的一端,小车行走机构设置在起重臂上,起重小车设置于小车行走机构上,吊钩设置于起重小车下方,吊钩与所述拉索的一端连接,拉索的另一端与起升机构相连接;所述小车行走机构为设置于起重臂上的导轨,所述起重小车设在所述导轨上;在所述回转塔架顶端与平衡臂之间设有平衡臂拉杆,平衡臂拉杆一端与回转塔架顶端固定连接,平衡臂拉杆另一端与平衡臂固定连接;在所述回转塔架顶端与起重臂之间设有起重臂拉杆,起重臂拉杆一端与回转塔架顶端固定连接,起重臂拉杆另一端与起重臂固定连接。
上述结构的起重机,由于设置了回转塔架、起重臂、起重小车、小车行走机构、吊钩、拉索及起升机构,因此,操作人员能够在起重臂上对垂直风力发电机进行安装、维修和检测,不需要另外搭建塔架或起重设备,这样,节约了成本和时间;由于设置了平衡臂和平衡重,平衡了起重臂一端的重量,保证了起重机的结构稳定和提高了起重机的起重负载;由于设置了回转塔架,回转塔架能够旋转360°,由于设置有起重小车,起重小车能够在小车行走机构上运动,这样,能够调节吊钩与发电机在水平方向上的距离,由于设置了起升机构、拉索及吊钩,吊钩由起升机构通过拉索能在垂直方向上运动,因此,操作人员能在风力发电机的任何地方进行作业,有效的节约了操作时间。上述的导轨的结构简单,制造方便。平衡臂拉杆和起重臂拉杆保证了起重机的结构稳定和提高了起重机的起重负载。
作为具体化,所述的升降系统为升降电梯,所述升降电梯包括轿厢和轿厢升降机构。
对于垂直风力发电机的检测与维修,操作人员可通过乘坐升降电梯的轿厢进行对风力发电机的检测和维修,使得维修变得更为方便,同时极大减少了维修成本和缩短了维修时间。
作为改进,所述的第一轴承、第二轴承和第三轴承的外圈上设有刹车装置。
垂直风力发电机转子的旋转速度是跟随风速的大小而改变的,风速越大,发电机转子的旋转速度越大,输出的电量越大,但发电机有其自身的极限功率,当实际功率大于极限功率时,发电机有可能会被烧毁,因此,需要控制发电机转子的转速,设置刹车装置,有效的控制了发电机转子的转速。
附图说明
图1为一个发电机单元的垂直风力发电机立体视图;
图2为一个发电机单元的垂直风力发电机主视图;
图3为一个发电机单元的垂直风力发电机剖视图;
图4为图3中F的局部放大图;
图5为叶片的立体视图;
图6为叶片第一种形式的截面图;
图7为叶片第一种形式第一叶尖和第二叶尖伸入到叶身的截面图;
图8为图6中A的局部放大图;
图9为第一液压系统的结构示意图;
图10为发电机作为电动机启动的结构图;
图11为连接件第一种形式的结构示意图;
图12为连接件第二种形式的结构示意图;
图13为阻尼绕组安装在发电机转子上的结构图;
图14为阻尼绕组的立体图;
图15为风叶安装在外支架外壁上的结构示意图;
图16为励磁机安装在发电机下方的结构示意图;
图17为起重机的立体视图;
图18为第一法兰和第二法兰第二种形式的立体视图;
图19为第一法兰和第二法兰第二种形式的剖视图;
图20为第一法兰和第二法兰第三种形式的立体视图;‘
图21为第一法兰和第二法兰第四种形式的立体视图;
图22为叶片第二种形式的截面图;
图23为叶片第二种形式第一叶尖和第二叶尖伸入到叶身的截面图;
图24为图22中B的局部放大图;
图25为第一气压系统的结构示意图;
图26为叶片第三种形式的截面图;
图27为叶片第三种形式第一叶尖和第二叶尖伸入到叶身的截面图;
图28为图26中C的局部放大图;
图29为第丝杆、螺母传动系统的结构示意图;
图30为两个发电机单元的立体视图;
图31为两个发电机单元的主视图;
图32为两个发电机单元的剖视图。
具体实施方式
下面结合附图和具体实施方式对本发明进行进一步详细的说明。
第一实施方式
如图1至图3所示的垂直风力发电机,包括塔柱1、一个以上的发电机单元2、二片以上的叶片3、第一轴承4、第二轴承5、第三轴承6、第一法兰7、第二法兰8、第三法兰9、第四法兰10、第五法兰11、第六法兰12、第七法兰13,在本实施方式中,发电机单元2为一个,叶片3为两片,塔柱1的中心轴线与水平面垂直,所述的塔柱1为空心结构。
如图3和图4所示,所述的发电机单元2包括支架201、发电机202及励磁机203。
见图3和图4所示,所述的支架201由外支架2011和内支架2012构成,外支架2011设在内支架2012之外,外支架2011和内支架2012之间形成支架风道2013。
见图3和图4所示,所述的发电机202包括定子2021和转子2022,定子2021固定套装在塔柱1的外壁上,转子2022设在定子2021外,且固定安装在内支架2012的内壁上,定子2021内设有发电机定子绕组(未示出),转子2022内设有发电机转 子绕组(未示出),定子2021和转子2022之间具有气隙14,所述的定子2021和转子2022内设有风道15;在转子2022上安装了阻尼绕组38,如图13和图14所示,阻尼绕组38包括端环381和阻尼条382,阻尼条382安装在端环381上。
见图3和图4所示,所述的励磁机203包括励磁机定子2031和励磁机转子2032,励磁机定子2031固定套装在塔柱1的外壁上,励磁机转子2032设在励磁机定子2031外,且固定安装在内支架2012的内壁上,励磁机定子2031内设有励磁机定子绕组(未示出),励磁机转子2032内设有励磁机转子绕组(未示出),励磁机定子2031和励磁机转子2032之间具有气隙14,所述的励磁机定子2031和励磁机转子2032内设有风道15;如图3和图4所示,所述的励磁机203安装在发电机202的上方,当然,见图16所示,励磁机203还可安装在发电机202的下方。
如图10所示,发电机定子绕组通过双向变频器15与电网17联接,发电机定子绕组通过双向变频器15和励磁机控制装置16与励磁机定子绕组联接;发电机转子绕组通过旋转整流装置161与励磁机转子绕组联接。
如图3所示,在发电机定子2021的下端面上设有定子托座2023,定子托座2023固定套装在塔柱1的外壁上,定子托座2023起到承托定子2021的作用,提高了定子2021安装在塔柱1上的牢固性及位置准确性;在励磁机定子2031的下端面上设有励磁机定子托座2033,励磁机定子托座2033固定套装在塔柱1的外壁上,励磁机定子托座2033起到承托励磁机定子2031的作用,提高了励磁机定子2031安装在塔柱1上的牢固性及位置准确性。
如图3和图4所示,所述的第五法兰11、第一法兰7、第一轴承4从上至下依次设在支架201的下方;第五法兰11的上端面通过焊接与支架201的下端面连接;所述的第一法兰7的上下两端横截面不相等,如图4所示,第一法兰7呈锥台形,如图18和19所示,第一法兰7呈喇叭形,如图20所示,第一法兰7为“凸”字型,如图21所示,第一法兰7为台阶型,当然,第一法兰7不限于上述四种结构,所述的第一法兰7的大端通过螺栓或焊接与第五法兰11连接,第一法兰7的小端通过螺栓或焊接或过盈配合与第一轴承4的外圈连接;所述的第一轴承4的内圈固定套装在塔柱1的外壁上,在第一轴承4内圈的下端面设有设有第一轴承托座18,第一轴承托座18固定套装在塔柱1外壁上。
采用锥台型或喇叭形的第一法兰7,第一法兰7的大端到小端的横截面为均匀过 渡,在第一法兰7内不会产生明显的内应力,因此,强度高,能够承受较大的力,同时,减小了第一轴承4外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第一法兰7能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第五法兰11,方便了第一法兰7和支架201的连接;所述的第一轴承托座18用于承托第一轴承4及其作用在第一轴承4上的所有部件,因此,提高了第一轴承4的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图3和图4所示,第六法兰12、第二法兰8、第二轴承5从下至上依次设在支架201的上方;第六法兰12通过焊接连接在支架201的上端面上,所述的第六法兰12的上下两端横截面不相等,如图3和图4所示,第二法兰8呈锥台形,如图18和图19所示,第二法兰8呈喇叭形,如图20所示,第二法兰8为“凸”字型,如图21所示,第二法兰8为台阶型,当然,第二法兰8不限于上述四种结构,所述的第二法兰8的大端通过螺栓或焊接连接在第六法兰12上;所述第二轴承8的内圈固定套装在塔柱1的外壁上;所述的第七法兰13采用过盈配合套设在第二轴承5外圈的外壁上,第七法兰13的下端面通过螺栓或焊接连接在第二法兰8的小端上;在第二轴承5的内圈下端面上设有第二轴承托座19,第二轴承托座19固定套装在塔柱1的外壁上。
采用锥台型或喇叭形的第二法兰8,第二法兰8的大端到小端的横截面为均匀过渡,在第二法兰8内不会产生明显的内应力,因此,第二法兰8的强度高,能够承受较大的力,同时,减小了第二轴承5外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第二法兰8能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第六法兰12,方便了第二法兰8和支架201的连接;所述的第二轴承托座19用于承托第二轴承5及其作用在第二轴承5上的所有部件,因此,提高了第二轴承5的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图3所示,所述的第三轴承6的内圈固定套装在塔柱1的外壁上,且位于第二轴承5的上方,在第三轴承6内圈的下端面上设有第三轴承托座20,第三轴承托座20固定套装在塔柱1的外壁上,第三轴承托座20用于承托第三轴承6及其作用在第三轴承6上的所有部件,因此,提高了第三轴承6的安装牢固性和位置准确性,并且, 也提高了发电机结构的稳定性。
所述的第七法兰13的上端面上通过螺栓或焊接连接了第三法兰9,在第三轴承6的外圈通过螺栓或焊接连接了第四法兰10,在第三法兰9和第四法兰10之间设有传递转矩的连接件23,如图12所示,所示的连接件23为空心管,如图11所示,所述的连接件23包括二根以上的连接杆231,所述连接杆231的上端与第四法兰10相连接,连接杆231的下端与第三法兰9相连接,所述的连接杆231设置在塔柱1外且与塔柱1横截面同心的圆周上,在连接杆231上焊接了加强筋232,以增强连接件23的强度;采用空心管作为连接件23,其结构简单,制造方便,生产成本低,并且空心管跟随第三法兰9和第四法兰10一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率,因此,大大提高了风力发电机的发电效率;用多根连接杆231作为连接件,其结构简单,且能减轻垂直风力发电机的重量;如图3所示,在第三法兰9的外圆周面上连接了两个第八法兰21,在第四法兰10的外圆周面上连接了两个第九法兰22,所述叶片3的下端通过第八法兰21与第三法兰9连接,叶片3的上端通过第九法兰22与第四法兰10连接。设置第八法兰21和第九法兰22,方便叶片3的安装、拆卸和维修。
如图5至图6所示的垂直风力发电机叶片3,所述的叶片3由三个叶片单元31组成;如图6,叶片单元31的横截面为中间大两端小的橄榄形,且两小端中其中一端为弧状,另一端为尖端,叶片单元31采用这种横截面结构,对风能的利用率高。所述的叶片单元31包括骨架101、叶身102、第一叶尖103及第二叶尖104;叶身102安装在骨架103上,骨架103处在叶身102内;所述的第一叶尖103设在叶身102沿叶片单元31的径向方向上的一端,第一叶尖103的尾部1031为所述的弧状,第一叶尖103的头部1032伸入到叶身102内;所述的第二叶尖104设在叶身102沿叶片单元31的径向方向上与第一叶尖103相对的一端,第二叶尖104的尾部1041为所述的尖端,第二叶尖104的头部1042伸入到叶身102内;如图6和图8,在叶身102和第一叶尖103之间设有第一导轨组(未示出),在叶身102和第二叶尖104之间设有第二导轨组32;在骨架101和第一叶尖103之间设有第一液压系统30,骨架101和第二叶尖104之间设有第二液压系统40,所述的第一液压系统30包括第一液压泵(未示出)、第一液压阀(未示出)、第一液压管(未示出)及第一液压缸301,如图9所示,所述的第一液压缸301包括第一液压缸体302、第一活塞303、第一活塞杆 304及第一密封装置305,第一活塞303安装在第一液压缸体302内,第一活塞杆304的一端与第一活塞303相连接,另一端与第一叶尖103连接在一起,第一液压缸体302固定在骨架101上,第一密封装置305安装在第一液压缸体302的两端,所述的第二液压系统40包括第二液压泵(未示出)、第二液压阀(未示出)、第二液压管(未示出)及第二液压缸401,所述的第二液压缸401包括第二液压缸体402、第二活塞(未示出)、第二活塞杆403及第二密封装置(未示出),第二活塞安装在第二液压缸体402内,第二活塞杆403的一端与第二活塞相连接,另一端与第二叶尖104连接在一起,第二液压缸体402固定在骨架101上,第二密封装置安装在第二液压缸体402的两端;采用液压系统作为运动装置,能够使用在大功率的设备上,其传动的平稳性好,在运动时,能进行无极变速,并且由于液压缸体内的介质是液压油,能进行自动润滑,这样,液压系统的使用寿命长,因此,叶片的使用寿命也长。在骨架101和叶身102之间还安装有叶片加强筋50,这样,能增大骨架101和叶身102之间的连接强度;在叶身102的靠近第一叶尖103的一端部安装有第一密封条60,在叶身102靠近第二叶尖104的一端部安装有第二密封条70,这样,能防止雨水、尘埃进入到叶片单元31内,垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。
如图4所示,在发电机单元2内设有冷却系统,包括风叶24、冷却器25、密封盘26、风扇27及设在发电机定子2021、转子2022、励磁机定子2031和励磁机转子2032上的风道15;如图15所示,所述的风叶24倾斜的安装在外支架2011的外壁上,每片风叶24呈弧形状,密封盘26固定套装在塔柱1的外壁上,且位于内支架2012上端内部励磁机203的上方,风扇27安装在密封盘26上;冷却器25安装在密封盘26上,且设在风扇27的上方;在内支架2012的下端部上开有出风口29,内支架2012的上端部上开有进风口33,进风口33位于密封盘26的上方,所述的出风口29、进风口33与支架风道2013是相通的;在塔柱1内设有外部冷却器34,冷却器25通过进液管35和出液管36与外冷却器34相连接。
如图17所示,在所述塔柱1顶部设有起重机80,所述起重机80包括回转塔架801、起重臂802、平衡臂803、平衡重804、起重小车805、导轨806、吊钩807、拉索808、起升机构809和控制系统(未示出)。所述回转塔架801与塔柱1顶部连接,起重臂802和平衡臂803安装在回转塔架801上,回转塔架801可以360°转动;平 衡重804安装在平衡臂803的一端;导轨806设置在起重臂802上,起重小车805设置于导轨806上,起重小车805可在导轨806上前后运动;吊钩807设置于起重小车805下方,吊钩807与拉索808的一端连接,拉索808的另一端与起升机构809相连接,由起升机构809控制吊钩807的升降。另外,在所述回转塔架801顶端与平衡臂803之间设有平衡臂拉杆810,平衡臂拉杆810一端与回转塔架801顶端固定连接,平衡臂拉杆810另一端与平衡臂803固定连接;在所述回转塔架801顶端与起重臂802之间设有起重臂拉杆811,起重臂拉杆811一端与回转塔架801顶端固定连接,起重臂拉杆811另一端与起重臂802固定连接;平衡臂拉杆810和起重臂拉杆811保证了起重机80的结构稳定和提高了起重机80的起重负载。
如图3所示,在所述塔柱1内部设有升降系统,所述的升降系统为升降电梯37,所述升降电梯37包括轿厢371和轿厢升降机构372,轿厢371由轿厢升降机构372实现升降。
所述的第一轴承4、第二轴承5和第三轴承6的外圈设有刹车装置(未示出)。
上面所述的垂直风力发电机运转的过程主要包括风力发电机发电、对发电机的冷却、发电机作为电动机的启动及对垂直风力发电机的维修、检测几大部分。下面分别说明几大部分的工作原理。
垂直风力发电机发电的工作原理:叶片3在风力的推动下开始旋转,叶片3旋转后产生转矩,叶片3所产生的转矩通过叶片3的上端传给第四法兰10及通过叶片3的下端传给第三法兰9,此时,第三法兰9和第四法兰10跟随叶片3一起旋转,传递给第四法兰10上的转矩通过连接件23传递给第三法兰9,第三法兰9依次通过第七法兰13、第二法兰8和第六法兰12将转矩传给支架201,支架201带动转子2022和励磁机转子2032旋转,使转子2022绕着定子2021旋转,励磁机转子2032绕励磁机定子2031旋转,励磁机转子2032在旋转过程中,励磁机转子2032中的励磁机转子绕组产生交流电流,然后,经旋转整流装置161将交流电流转变为直流电流输送到发电机转子2022的转子绕组中,发电机转子绕组通入直流电后产生磁场,由于发电机转子2022的旋转作用,发电机转子绕组将产生接近于正弦分布的磁场,发电机定子2021上的发电机定子绕组做相对于发电机转子绕组做切割磁场线运动,并在发电机定子绕组内感应出三相交流电势,从而达到发电的目的。此结构,由于设置了第三法兰9、第四法兰10和连接件23,叶片3所产生的转矩不仅通过叶片3的下端传到 第三法兰9上,还通过叶片3的上端传到第四法兰10,第四法兰10通过连接件23将转矩传给第三法兰9,这样,就平衡了叶片3上端和下端的受力大小,使得叶片3不易变形,因此,叶片3不易损坏,提高了垂直风力发电机的寿命。如图6所示,叶片3在旋转过程中,当风力小时,第一叶尖103和第二叶尖104为打开状态,这样,叶片3迎风面的面积大,垂直风力发电机的功率大;如图7,当风力变大时,第一叶尖103在第一液压系统30的作用下沿第一导轨组向骨架101方向上运动,第一叶尖103收缩,同时,第二叶尖104在第二液压系统40的作用下沿第二导轨组2向骨架101方向运动,第二叶尖104收缩,此时,叶片3的迎风面的面积减小,垂直风力发电机的功率得到自动的调整,采用这种结构,能防止因风速过大而引起垂直风力发电机功率过大而失效。
冷却系统的工作原理为:风扇27工作形成风流,冷风经励磁机转子2032、励磁机定子2031、转子2022和定子2021的风道15到达发电机的下端,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口29进入到支架风道2013内,在这里通过外支架2011与外界空气进行热交换,使风流中的热风变成冷风,然后风流通过进风口33进入冷却器25,在这里风流被进一步的冷却,然后经风扇27流入到风力发电机的内腔中,形成内循环。在转子外支架2011外,由于设置了风叶24,且风叶24倾斜的安装在外支架2011的外壁上,当支架201旋转时,风叶24也跟随一起旋转,这时,在风叶24上形成上下的风压差,使得靠近发电机的外界空气形成从高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,提高了发电机的使用寿命。
外部冷却器34和冷却器25的工作过程为:外部冷却器34将冷却液通过进夜管35输送到冷却器25中,在冷却器25中与内循环中的风进行热交换,然后变成热水经出液管36流入到外部冷却器34进行冷却,然后如上述过程继续循环,这样提高内循环中的风流在冷却器25中的冷却效果,从而提高了对发电机的冷却效果,提高了发电机的使用寿命。
发电机作为电动机的启动的工作过程为:(1)电动机运行:如图10所示,风力发电机在低风速或者启动困难时,励磁控制装置16与电网17断开,励磁机定子绕组中的电流为零,发电机运行在电动模式,发电机定子绕组与电网17连接,电网17通过双向变频器15向发电机定子绕组提供交流电流,这时在定子2021和转子2022 的气隙14内产生一个旋转磁场,旋转磁场与发电机转子绕组及阻尼绕组38产生相对运动,发电机转子绕组切割磁力线在发电机转子绕组和阻尼绕组38内产生感应电动势,发电机转子绕组和阻力绕组闭合后在发电机转子绕组和阻尼绕组38内出现感应电流,旋转磁场与感应电流相互作用而产生电磁转矩使发电机的转子2022旋转起来,实现异步运行,从而解决了风力发电机在低风速或者启动困难的问题。发电机在作为电动机运行时,通过调节双向变频器15的输出频率,来调节发电机作为电动机的转速。(2)发电机运行:当风速变大后,发电机转速满足切入风速时,首先让发电机以上述的电动机状态运行,并且带动励磁机转子2032旋转,励磁机转子绕组中感应出交流电,经过旋转整流装置161的整流后,将直流的电流输入到发电机转子绕组中,发电机定子绕组感应出三相交流电。此时,控制双向变频器15暂时停止工作,发电机退出电动机工作状态,由叶片3产生的转矩驱动支架201旋转,支架201带动发电机转子2022和励磁机转子2032旋转,并让励磁控制装置16投入工作,发电机开始以同步发电机运行。从电动机转变为发电机后,重新让双向变频器15投入工作,发电机定子绕组中三相交流电经过双向变频器15整流、滤波后,接入电网17,实行发电机运行。当风速改变时,发电机的转速也随之变化,发电机定子绕组中感应电流的频率也跟着改变,此时可以调节双向变频器15的工作参数,保证输出的频率不变,实现变速恒频运行。当发电机运行在发电机状态时,通过调节励磁控制装置16的电流输出,来调节发电机转子绕组所获得的励磁电流,从而实现发电机输出功率的调节。(3)当风速超出一定范围时,励磁控制装置16与电网17之间连接断开,双向变频器15与发电机之间也断开,发电系统不消耗电能,也不输出电能,同时,刹车装置也能限制发电机的转速,避免风力发电机被损坏。
对垂直风力发电机的维修、检测的通过升降系统和起重机80来实现的,其实现过程为:操作人员通过升降系统能到达塔柱1中的任何一个发电机单元2,还能够达到起重机80,操作人员能够在起重机80中的吊钩807上进行操作,所述的吊钩807通过拉索808与起升机构809连接,这样,能够调节吊钩807在垂直方向的位置,在导轨806上设了起重小车805,起重小车805能在导轨806上滑动,这样,能够调节吊钩807在水平方向的位置,由于回转塔架801能360°旋转,因此,操作人员能在垂直风力发电机上的任何地方进行维修和检测,不需要另外搭建维修塔架和其他的大型设备,大大节约了维修成本和维修、检测时间。
第二实施方式
如图1至图3所示的垂直风力发电机,包括塔柱1、一个以上的发电机单元2、二片以上的叶片3、第一轴承4、第二轴承5、第三轴承6、第一法兰7、第二法兰8、第三法兰9、第四法兰10、第五法兰11、第六法兰12、第七法兰13,在本实施方式中,发电机单元2为一个,叶片3为两片,塔柱1的中心轴线与水平面垂直,所述的塔柱1为空心结构。
如图3和图4所示,所述的发电机单元2包括支架201、发电机202及励磁机203。
见图3和图4所示,所述的支架201由外支架2011和内支架2012构成,外支架2011设在内支架2012之外,外支架2011和内支架2012之间形成支架风道2013。
见图3和图4所示,所述的发电机202包括定子2021和转子2022,定子2021固定套装在塔柱1的外壁上,转子2022设在定子2021外,且固定安装在内支架2012的内壁上,定子2021内设有发电机定子绕组(未示出),转子2022内设有发电机转子绕组(未示出),定子2021和转子2022之间具有气隙14,所述的定子2021和转子2022内设有风道15;在转子2022上安装了阻尼绕组38,如图13和图14所示,阻尼绕组38包括端环381和阻尼条382,阻尼条382安装在端环381上。
见图3和图4所示,所述的励磁机203包括励磁机定子2031和励磁机转子2032,励磁机定子2031固定套装在塔柱1的外壁上,励磁机转子2032设在励磁机定子2031外,且固定安装在内支架2012的内壁上,励磁机定子2031内设有励磁机定子绕组(未示出),励磁机转子2032内设有励磁机转子绕组(未示出),励磁机定子2031和励磁机转子2032之间具有气隙14,所述的励磁机定子2031和励磁机转子2032内设有风道15;如图3和图4所示,所述的励磁机203安装在发电机202的上方,当然,见图16所示,励磁机203还可安装在发电机202的下方。
如图10所示,发电机定子绕组通过双向变频器15与电网17联接,发电机定子绕组通过双向变频器15和励磁机控制装置16与励磁机定子绕组联接;发电机转子绕组通过旋转整流装置161与励磁机转子绕组联接。
如图3所示,在发电机定子2021的下端面上设有定子托座2023,定子托座2023固定套装在塔柱1的外壁上,定子托座2023起到承托定子2021的作用,提高了定子 2021安装在塔柱1上的牢固性及位置准确性;在励磁机定子2031的下端面上设有励磁机定子托座2033,励磁机定子托座2033固定套装在塔柱1的外壁上,励磁机定子托座2033起到承托励磁机定子2031的作用,提高了励磁机定子2031安装在塔柱1上的牢固性及位置准确性。
如图3和图4所示,所述的第五法兰11、第一法兰7、第一轴承4从上至下依次设在支架201的下方;第五法兰11的上端面通过焊接与支架201的下端面连接;所述的第一法兰7的上下两端横截面不相等,如图4所示,第一法兰7呈锥台形,如图18和19所示,第一法兰7呈喇叭形,如图20所示,第一法兰7为“凸”字型,如图21所示,第一法兰7为台阶型,当然,第一法兰7不限于上述四种结构,所述的第一法兰7的大端通过螺栓或焊接与第五法兰11连接,第一法兰7的小端通过螺栓或焊接或过盈配合与第一轴承4的外圈连接;所述的第一轴承4的内圈固定套装在塔柱1的外壁上,在第一轴承4内圈的下端面设有设有第一轴承托座18,第一轴承托座18固定套装在塔柱1外壁上。
采用锥台型或喇叭形的第一法兰7,第一法兰7的大端到小端的横截面为均匀过渡,在第一法兰7内不会产生明显的内应力,因此,增强了第一法兰的强度,能够承受较大的力,同时,减小了第一轴承4外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第一法兰7能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第五法兰11,方便了第一法兰7和支架201的连接;所述的第一轴承托座18用于承托第一轴承4及其作用在第一轴承4上的所有部件,因此,提高了第一轴承4的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图3和图4所示,第六法兰12、第二法兰8、第二轴承5从下至上依次设在支架201的上方;第六法兰12通过焊接连接在支架201的上端面上,所述的第六法兰12的上下两端横截面不相等,如图3和图4所示,第二法兰8呈锥台形,如图18和图19所示,第二法兰8呈喇叭形,如图20所示,第二法兰8为“凸”字型,如图21所示,第二法兰8为台阶型,当然,第二法兰8不限于上述四种结构,所述的第二法兰8的大端通过螺栓或焊接连接在第六法兰12上;所述第二轴承8的内圈固定套装在塔柱1的外壁上;所述的第七法兰13采用过盈配合套设在第二轴承5外圈的外壁上,第七法兰13的下端面通过螺栓或焊接连接在第二法兰8的小端上;在第二 轴承5的内圈下端面上设有第二轴承托座19,第二轴承托座19固定套装在塔柱1的外壁上。
采用锥台型或喇叭形的第二法兰8,第二法兰8的大端到小端的横截面为均匀过渡,在第二法兰8内不会产生明显的内应力,因此,增大了第二法兰的强度,能够承受较大的力,同时,减小了第二轴承5外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第二法兰8能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第六法兰12,方便了第二法兰8和支架201的连接;所述的第二轴承托座19用于承托第二轴承5及其作用在第二轴承5上的所有部件,因此,提高了第二轴承5的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图3所示,所述的第三轴承6的内圈固定套装在塔柱1的外壁上,且位于第二轴承5的上方,在第三轴承6内圈的下端面上设有第三轴承托座20,第三轴承托座20固定套装在塔柱1的外壁上,第三轴承托座20用于承托第三轴承6及其作用在第三轴承6上的所有部件,因此,提高了第三轴承6的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
所述的第七法兰13的上端面上通过螺栓或焊接连接了第三法兰9,在第三轴承6的外圈通过螺栓或焊接连接了第四法兰10,在第三法兰9和第四法兰10之间设有传递转矩的连接件23,如图12所示,所示的连接件23为空心管,如图11所示,所述的连接件23包括二根以上的连接杆231,所述连接杆231的上端与第四法兰10相连接,连接杆231的下端与第三法兰9相连接,所述的连接杆231设置在塔柱1外且与塔柱1横截面同心的圆周上,在连接杆231上焊接了加强筋232,以增强连接件23的强度;采用空心管作为连接件23,其结构简单,制造方便,生产成本低,并且空心管跟随第三法兰9和第四法兰10一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率,因此,大大提高了风力发电机的发电效率;用多根连接杆231作为连接件,其结构简单,且能减轻垂直风力发电机的重量;如图3所示,在第三法兰9的外圆周面上连接了两个第八法兰21,在第四法兰10的外圆周面上连接了两个第九法兰22,所述叶片3的下端通过第八法兰21与第三法兰9连接,叶片3的上端通过第九法兰22与第四法兰10连接。设置第八法兰21和第九法兰22,方便叶片3的安装、拆卸和维修。
如图5、图22至图25所示的垂直风力发电机叶片3,所述的叶片3由三个叶片单元31组成;如图22,叶片单元31的横截面为中间大两端小的橄榄形,且两小端中其中一端为弧状,另一端为尖端,叶片单元31采用这种横截面结构,对风能的利用率高。所述的叶片单元31包括骨架101、叶身102、第一叶尖103及第二叶尖104;叶身102安装在骨架103上,骨架103处在叶身102内;所述的第一叶尖103设在叶身102沿叶片单元31的径向方向上的一端,第一叶尖103的尾部1031为所述的弧状,第一叶尖103的头部1032伸入到叶身102内;所述的第二叶尖104设在叶身102沿叶片单元31的径向方向上与第一叶尖103相对的一端,第二叶尖104的尾部1041为所述的尖端,第二叶尖104的头部1042伸入到叶身102内;如图22和图25,在叶身102和第一叶尖103之间设有第一导轨组(未示出),在叶身102和第二叶尖104之间设有第二导轨组32;在骨架101和第一叶尖103之间设有第一气压系统95,骨架101和第二叶尖104之间设有第二气压系统96,所述的第一气压系统95包括第一空气压缩机(未示出)及第一气压缸111,如图25所示,所述的第一气压缸111包括第一气压缸体112、第一气压活塞113、第一气压活塞杆114及第一气压密封装置115,第一气压活塞113安装在第一气压液压缸体112内,第一气压活塞杆114的一端与第一气压活塞113相连接,另一端与第一叶尖103连接在一起,第一气压缸体112固定在骨架101上,第一密封装置115安装在第一气压缸体112的两端,所述的第二气压系统96包括第二空气压缩机(未示出)及第二气压缸121,所述的第二气压缸121包括第二气压缸体122、第二气压活塞(未示出)、第二气压活塞杆123及第二气压密封装置(未示出),第二气压活塞安装在第二气压液压缸体122内,第二气压活塞杆123的一端与第二气压活塞相连接,另一端与第二叶尖104连接在一起,第二气压缸体122固定在骨架101上,第二密封装置安装在第二气压缸体122的两端;采用气压缸系统作为运动装置,由于其动力介质为气体,因此,质量轻,介质的资源丰富,无污染,由于气体的黏度小,因此,气体与气压缸体的阻力小。在骨架101和叶身102之间还安装有叶片加强筋50,这样,能增大骨架101和叶身102之间的连接强度;在叶身102的靠近第一叶尖103的一端部安装有第一密封条60,在叶身102的靠近第二叶尖104的一端部安装有第一密封条70,这样,能防止雨水、尘埃进入到叶片单元内,垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。
如图4所示,在发电机单元2内设有冷却系统,包括风叶24、冷却器25、密封盘26、风扇27及设在发电机定子2021、转子2022、励磁机定子2031和励磁机转子2032上的风道15;如图15所示,所述的风叶24倾斜的安装在外支架2011的外壁上,每片风叶24呈弧形,密封盘26固定套装在塔柱1的外壁上,且位于内支架2012上端内部励磁机203的上方,风扇27安装在密封盘26上;冷却器25安装在密封盘26上,且设在风扇27的上方;在内支架2012的下端部上开有出风口29,内支架2012的上端部上开有进风口33,进风口33位于密封盘26的上方,所述的出风口29、进风口33与支架风道2013是相通的;在塔柱1内设有外部冷却器34,冷却器25通过进液管35和出液管36与外冷却器34相连接。
如图17所示,在所述塔柱1顶部设有起重机80,所述起重机80包括回转塔架801、起重臂802、平衡臂803、平衡重804、起重小车805、导轨806、吊钩807、拉索808、起升机构809和控制系统(未示出)。所述回转塔架801与塔柱1顶部连接,起重臂802和平衡臂803安装在回转塔架801上,回转塔架801可以360°转动;平衡重804安装在平衡臂803的一端;导轨806设置在起重臂802上,起重小车805设置于导轨806上,起重小车805可在导轨806上前后运动;吊钩807设置于起重小车805下方,吊钩807与拉索808的一端连接,拉索808的另一端与起升机构809相连接,由起升机构809控制吊钩807的升降。另外,在所述回转塔架801顶端与平衡臂803之间设有平衡臂拉杆810,平衡臂拉杆810一端与回转塔架801顶端固定连接,平衡臂拉杆810另一端与平衡臂803固定连接;在所述回转塔架801顶端与起重臂802之间设有起重臂拉杆811,起重臂拉杆811一端与回转塔架801顶端固定连接,起重臂拉杆811另一端与起重臂802固定连接;平衡臂拉杆810和起重臂拉杆811保证了起重机80的结构稳定和提高了起重机80的起重负载。
如图3所示,在所述塔柱1内部设有升降系统,所述的升降系统为升降电梯37,所述升降电梯37包括轿厢371和轿厢升降机构372,轿厢371由轿厢升降机构372实现升降。
所述的第一轴承4、第二轴承5和第三轴承6的外圈设有刹车装置(未示出)。
上面所述的垂直风力发电机运转的过程主要包括风力发电机发电、对发电机的冷却、发电机作为电动机的启动及对垂直风力发电机的维修、检测几大部分。下面分别说明几大部分的工作原理。
垂直风力发电机发电的工作原理:叶片3在风力的推动下开始旋转,叶片3旋转后产生转矩,叶片3所产生的转矩通过叶片3的上端传给第四法兰10及通过叶片3的下端传给第三法兰9,此时,第三法兰9和第四法兰10跟随叶片3一起旋转,传递给第四法兰10上的转矩通过连接件23传递给第三法兰9,第三法兰9依次通过第七法兰13、第二法兰8和第六法兰12将转矩传给支架201,支架201带动转子2022和励磁机转子2032旋转,使转子2022绕着定子2021旋转,励磁机转子2032绕励磁机定子2031旋转,励磁机转子2032在旋转过程中,励磁机转子2032中的励磁机转子绕组产生交流电流,然后,经旋转整流装置161将交流电流转变为直流电流输送到发电机转子2022的转子绕组中,发电机转子绕组通入直流电后产生磁场,由于发电机转子2022的旋转作用,发电机转子绕组将产生接近于正弦分布的磁场,发电机定子2021上的发电机定子绕组做相对于发电机转子绕组做切割磁场线运动,并在发电机定子绕组内感应出三相交流电势,从而达到发电的目的。此结构,由于设置了第三法兰9、第四法兰10和连接件23,叶片3所产生的转矩不仅通过叶片3的下端传到第三法兰9上,还通过叶片3的上端传到第四法兰10,第四法兰10通过连接件23将转矩传给第三法兰9,这样,就平衡了叶片3上端和下端的受力大小,使得叶片3不易变形,因此,叶片3不易损坏,提高了垂直风力发电机的寿命。如图6所示,叶片3在旋转过程中,当风力小时,第一叶尖103和第二叶尖104为打开状态,这样,叶片3迎风面的面积大,垂直风力发电机的功率大;如图7,当风力变大时,第一叶尖103在第一气压系统95的作用下沿第一导轨组向骨架101方向上运动,第一叶尖103收缩,同时,第二叶尖104在第二气压系统96的作用下沿第二导轨组2向骨架101方向运动,第二叶尖104收缩,此时,叶片3的迎风面的面积减小,垂直发电机的功率得到自动的调整,采用这种结构,能防止因风速过大而引起垂直风力发电机失效。
冷却系统的工作原理为:风扇27工作形成风流,冷风经励磁机转子2032、励磁机定子2031、转子2022和定子2021的风道15到达发电机的下端,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口29进入到支架风道2013内,在这里通过外支架2011与外界空气进行热交换,使风流中的热风变成冷风,然后风流通过进风口33进入冷却器25,在这里风流被进一步的冷却,然后经风扇27流入到风力发电机的内腔中,形成内循环。在转子外支架2011外,由于设置了风叶24,且 风叶24倾斜的安装在外支架2011的外壁上,当支架201旋转时,风叶24也跟随一起旋转,这时,在风叶24上形成上下的风压差,使得靠近发电机的外界空气形成从高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,提高了发电机的使用寿命。
外部冷却器34和冷却器25的工作过程为:外部冷却器34将冷却液通过进夜管35输送到冷却器25中,在冷却器25中与内循环中的风进行热交换,然后变成热水经出液管36流入到外部冷却器34进行冷却,然后如上述过程继续循环,这样提高内循环中的风流在冷却器25中的冷却效果,从而提高了对发电机的冷却效果,提高了发电机的使用寿命。
发电机作为电动机的启动的工作过程为:(1)电动机运行:如图10所示,风力发电机在低风速或者启动困难时,励磁控制装置16与电网17断开,励磁机定子绕组中的电流为零,发电机运行在电动模式,发电机定子绕组与电网17连接,电网17通过双向变频器15向发电机定子绕组提供交流电流,这时在定子2021和转子2022的气隙14内产生一个旋转磁场,旋转磁场与发电机转子绕组及阻尼绕组38产生相对运动,发电机绕组切割磁力线在发电机转子绕组和阻尼绕组38内产生感应电动势,发电机转子绕组和阻力绕组闭合后在发电机转子绕组和阻尼绕组38内出现感应电流,旋转磁场与感应电流相互作用而产生电磁转矩使发电机的转子2022旋转起来,实现异步运行,从而解决了风力发电机在低风速或者启动困难的问题。发电机在作为电动机运行时,通过调节双向变频器15的输出频率,来调节发电机作为电动机的转速。(2)发电机运行:当风速变大后,发电机转速满足切入风速时,首先让发电机以上述的电动机状态运行,并且带动励磁机转子2032旋转,励磁机转子绕组中感应出交流电,经过旋转整流装置161的整流后,将直流的电流输入到发电机转子绕组中,发电机定子绕组感应出三相交流电。此时,控制双向变频器15暂时停止工作,发电机退出电动机工作状态,由叶片3产生的转矩驱动支架201旋转,支架201带动发电机转子2022和励磁机转子2032旋转,并让励磁控制装置16投入工作,发电机开始以同步发电机运行。从电动机转变为发电机后,重新让双向变频器15投入工作,发电机定子绕组中三相交流电经过双向变频器15整流、滤波后,接入电网17,实行发电机运行。当风速改变时,发电机的转速也随之变化,发电机定子绕组中感应电流的频率也跟着改变,此时可以调节双向变频器15的工作参数,保证输出的频率不变, 实现变速恒频运行。当发电机运行在发电机状态时,通过调节励磁控制装置16的电流输出,来调节发电机转子绕组所获得的励磁电流,从而实现发电机输出功率的调节。(3)当风速超出一定范围时,励磁控制装置16与电网17之间连接断开,双向变频器15与发电机之间也断开,发电系统不消耗电能,也不输出电能,同时,刹车装置也能限制发电机的转速,避免风力发电机被损坏。
对垂直风力发电机的维修、检测的通过升降系统和起重机80来实现的,其实现过程为:操作人员通过升降系统能到达塔柱1中的任何一个发电机单元2,还能够达到起重机90,操作人员能够在起重机90中的吊钩807上进行操作,所述的吊钩807通过拉索808与起升机构809连接,这样,能够调节吊钩807在垂直方向的位置,在导轨806上设了起重小车805,起重小车805能在导轨806上滑动,这样,能够调节吊钩807在水平方向的位置,由于回转塔架801能360°旋转,因此,操作人员能在垂直风力发电机上的任何地方进行维修和检测,不需要另外搭建维修塔架和其他的大型设备,大大节约了维修成本和维修、检测时间。
第三实施方式
如图1至图3所示的垂直风力发电机,包括塔柱1、一个以上的发电机单元2、二片以上的叶片3、第一轴承4、第二轴承5、第三轴承6、第一法兰7、第二法兰8、第三法兰9、第四法兰10、第五法兰11、第六法兰12、第七法兰13,在本实施方式中,发电机单元2为一个,叶片3为两片,塔柱1的中心轴线与水平面垂直,所述的塔柱1为空心结构。
如图3和图4所示,所述的发电机单元2包括支架201、发电机202及励磁机203。
见图3和图4所示,所述的支架201由外支架2011和内支架2012构成,外支架2011设在内支架2012之外,外支架2011和内支架2012之间形成支架风道2013。
见图3和图4所示,所述的发电机202包括定子2021和转子2022,定子2021固定套装在塔柱1的外壁上,转子2022设在定子2021外,且固定安装在内支架2012的内壁上,定子2021内设有发电机定子绕组(未示出),转子2022内设有发电机转子绕组(未示出),定子2021和转子2022之间具有气隙14,所述的定子2021和转子2022内设有风道15;在转子2022上安装了阻尼绕组38,如图13和图14所示, 阻尼绕组38包括端环381和阻尼条382,阻尼条382安装在端环381上。
见图3和图4所示,所述的励磁机203包括励磁机定子2031和励磁机转子2032,励磁机定子2031固定套装在塔柱1的外壁上,励磁机转子2032设在励磁机定子2031外,且固定安装在内支架2012的内壁上,励磁机定子2031内设有励磁机定子绕组(未示出),励磁机转子2032内设有励磁机转子绕组(未示出),励磁机定子2031和励磁机转子2032之间具有气隙14,所述的励磁机定子2031和励磁机转子2032内设有风道15;如图3和图4所示,所述的励磁机203安装在发电机202的上方,当然,见图16所示,励磁机203还可安装在发电机202的下方。
如图10所示,发电机定子绕组通过双向变频器15与电网17联接,发电机定子绕组通过双向变频器15和励磁机控制装置16与励磁机定子绕组联接;发电机转子绕组通过旋转整流装置161与励磁机转子绕组联接。
如图3所示,在发电机定子2021的下端面上设有定子托座2023,定子托座2023固定套装在塔柱1的外壁上,定子托座2023起到承托定子2021的作用,提高了定子2021安装在塔柱1上的牢固性及位置准确性;在励磁机定子2031的下端面上设有励磁机定子托座2033,励磁机定子托座2033固定套装在塔柱1的外壁上,励磁机定子托座2033起到承托励磁机定子2031的作用,提高了励磁机定子2031安装在塔柱1上的牢固性及位置准确性。
如图3和图4所示,所述的第五法兰11、第一法兰7、第一轴承4从上至下依次设在支架201的下方;第五法兰11的上端面通过焊接与支架201的下端面连接;所述的第一法兰7的上下两端横截面不相等,如图4所示,第一法兰7呈锥台形,如图18和19所示,第一法兰7呈喇叭形,如图20所示,第一法兰7为“凸”字型,如图21所示,第一法兰7为台阶型,当然,第一法兰7不限于上述四种结构,所述的第一法兰7的大端通过螺栓或焊接与第五法兰11连接,第一法兰7的小端通过螺栓或焊接或过盈配合与第一轴承4的外圈连接;所述的第一轴承4的内圈固定套装在塔柱1的外壁上,在第一轴承4内圈的下端面设有设有第一轴承托座18,第一轴承托座18固定套装在塔柱1外壁上。
采用锥台型或喇叭形的第一法兰7,第一法兰7的大端到小端的横截面为均匀过渡,在第一法兰7内不会产生明显的内应力,因此,增强了第一法兰的强度,能够承受较大的力,同时,减小了第一轴承4外圈的尺寸,降低了垂直风力发电机的成本; 采用“凸”字型或台阶型,第一法兰7能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第五法兰11,方便了第一法兰7和支架201的连接;所述的第一轴承托座18用于承托第一轴承4及其作用在第一轴承4上的所有部件,因此,提高了第一轴承4的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图3和图4所示,第六法兰12、第二法兰8、第二轴承5从下至上依次设在支架201的上方;第六法兰12通过焊接连接在支架201的上端面上,所述的第六法兰12的上下两端横截面不相等,如图3和图4所示,第二法兰8呈锥台形,如图18和图19所示,第二法兰8呈喇叭形,如图20所示,第二法兰8为“凸”字型,如图21所示,第二法兰8为台阶型,当然,第二法兰8不限于上述四种结构,所述的第二法兰8的大端通过螺栓或焊接连接在第六法兰12上;所述第二轴承8的内圈固定套装在塔柱1的外壁上;所述的第七法兰13采用过盈配合套设在第二轴承5外圈的外壁上,第七法兰13的下端面通过螺栓或焊接连接在第二法兰8的小端上;在第二轴承5的内圈下端面上设有第二轴承托座19,第二轴承托座19固定套装在塔柱1的外壁上。
采用锥台型或喇叭形的第二法兰8,第二法兰8的大端到小端的横截面为均匀过渡,在第二法兰8内不会产生明显的内应力,因此,增强了第二法兰的强度,能够承受较大的力,同时,减小了第二轴承5外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第二法兰8能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第六法兰12,方便了第二法兰8和支架201的连接;所述的第二轴承托座19用于承托第二轴承5及其作用在第二轴承5上的所有部件,因此,提高了第二轴承5的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图3所示,所述的第三轴承6的内圈固定套装在塔柱1的外壁上,且位于第二轴承5的上方,在第三轴承6内圈的下端面上设有第三轴承托座20,第三轴承托座20固定套装在塔柱1的外壁上,第三轴承托座20用于承托第三轴承6及其作用在第三轴承6上的所有部件,因此,提高了第三轴承6的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
所述的第七法兰13的上端面上通过螺栓或焊接连接了第三法兰9,在第三轴承 6的外圈通过螺栓或焊接连接了第四法兰10,在第三法兰9和第四法兰10之间设有传递转矩的连接件23,如图12所示,所示的连接件23为空心管,如图11所示,所述的连接件23包括二根以上的连接杆231,所述连接杆231的上端与第四法兰10相连接,连接杆231的下端与第三法兰9相连接,所述的连接杆231设置在塔柱1外且与塔柱1横截面同心的圆周上,在连接杆231上焊接了加强筋232,以增强连接件23的强度;采用空心管作为连接件23,其结构简单,制造方便,生产成本低,并且空心管跟随第三法兰9和第四法兰10一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率,因此,大大提高了风力发电机的发电效率;用多根连接杆231作为连接件,其结构简单,且能减轻垂直风力发电机的重量;如图3所示,在第三法兰9的外圆周面上连接了两个第八法兰21,在第四法兰10的外圆周面上连接了两个第九法兰22,所述叶片3的下端通过第八法兰21与第三法兰9连接,叶片3的上端通过第九法兰22与第四法兰10连接。设置第八法兰21和第九法兰22,方便叶片3的安装、拆卸和维修。
如图5、图26至图29所示的垂直风力发电机叶片3,所述的叶片由三个叶片单元31组成;如图26,叶片单元31的横截面为中间大两端小的橄榄形,且两小端中其中一端为弧状,另一端为尖端,叶片单元31采用这种横截面结构,对风能的利用率高。所述的叶片单元31包括骨架101、叶身102、第一叶尖103及第二叶尖104;叶身102安装在骨架103上,骨架103处在叶身102内;所述的第一叶尖103设在叶身102沿叶片单元31的径向方向上的一端,第一叶尖103的尾部1031为所述的弧状,第一叶尖103的头部1032伸入到叶身102内;所述的第二叶尖104设在叶身102沿叶片单元31的径向方向上与第一叶尖103相对的一端,第二叶尖104的尾部1041为所述的尖端,第二叶尖104的头部1042伸入到叶身102内;如图26和图29,在叶身102和第一叶尖103之间设有第一导轨组(未示出),在叶身102和第二叶尖104之间设有第二导轨组32;如图26所示,在骨架101和第一叶尖103之间设有包括第一丝杆2100、第一螺母2200、第一电机2300、两个以上的第一直线轴承2400及与第一直线轴承数量相等的第一轴承座2500的第一运动装置,所述的第一直线轴承2400为两个,相对应的第一轴承座2500也为两个,所述的第一轴承座2500安装在叶身102上,第一直线轴承2400安装在第一轴承座2500内,所述的第一螺母2200安装在第一叶尖103上,所述第一丝杆2100的一端与第一电机2300相连接,第一丝 杆2100穿过第一直线轴承2400,第一丝杆2100与第一螺母2200相啮合,所述的第一电机2300和第一丝杆2100之间设有第一联轴器2600;如图26和图29所示,在骨架101和第二叶尖104之间设有包括第二丝杆3100、第二螺母3200、第二电机3300、两个以上的第二直线轴承3400及与第二直线轴承数量相等的第二轴承座3500的第二运动装置,所述的第二直线轴承3400为两个,相对应的第二轴承座3500也为两个,所述的第二轴承座3500安装在叶身102上,第二直线轴承3400安装在第二轴承座3500内,所述的第二螺母3200安装在第二叶尖104上,所述第二丝杆3100的一端与第二电机3300相连接,第二丝杆3100穿过第二直线轴承3400,第二丝杆3100与第二螺母3200相啮合,所述的第二电机3300和第二丝杆3100之间设有第二联轴器3600;采用丝杆、螺母、直线轴承作为运动装置,其传动精度高。如图26,在骨架101和叶身102之间还安装有加强筋50,这样,能增大骨架101和叶身102之间的连接强度;在叶身102的靠近第一叶尖103的一端部安装有第一密封条60,在叶身102的靠近第二叶尖104的一端部安装有第一密封条70,这样,能防止雨水、尘埃进入到叶片单元内,垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。
如图4所示,在发电机单元2内设有冷却系统,包括风叶24、冷却器25、密封盘26、风扇27及设在发电机定子2021、转子2022、励磁机定子2031和励磁机转子2032上的风道15;如图15所示,所述的风叶24倾斜的安装在外支架2011的外壁上,每片风叶24呈弧形,密封盘26固定套装在塔柱1的外壁上,且位于内支架2012上端内部励磁机203的上方,风扇27安装在密封盘26上;冷却器25安装在密封盘26上,且设在风扇27的上方;在内支架2012的下端部上开有出风口29,内支架2012的上端部上开有进风口33,进风口33位于密封盘26的上方,所述的出风口28、进风口33与支架风道2013是相通的;在塔柱1内设有外部冷却器34,冷却器25通过进液管35和出液管36与外冷却器34相连接。
如图17所示,在所述塔柱1顶部设有起重机80,所述起重机80包括回转塔架801、起重臂802、平衡臂803、平衡重804、起重小车805、导轨806、吊钩807、拉索808、起升机构809和控制系统(未示出)。所述回转塔架801与塔柱1顶部连接,起重臂802和平衡臂803安装在回转塔架801上,回转塔架801可以360°转动;平衡重804安装在平衡臂803的一端;导轨806设置在起重臂802上,起重小车805 设置于导轨806上,起重小车805可在导轨806上前后运动;吊钩807设置于起重小车805下方,吊钩807与拉索808的一端连接,拉索808的另一端与起升机构809相连接,由起升机构809控制吊钩807的升降。另外,在所述回转塔架801顶端与平衡臂803之间设有平衡臂拉杆810,平衡臂拉杆810一端与回转塔架801顶端固定连接,平衡臂拉杆810另一端与平衡臂803固定连接;在所述回转塔架801顶端与起重臂802之间设有起重臂拉杆811,起重臂拉杆811一端与回转塔架801顶端固定连接,起重臂拉杆811另一端与起重臂802固定连接;平衡臂拉杆810和起重臂拉杆811保证了起重机80的结构稳定和提高了起重机80的起重负载。
如图3所示,在所述塔柱1内部设有升降系统,所述的升降系统为升降电梯37,所述升降电梯37包括轿厢371和轿厢升降机构372,轿厢371由轿厢升降机构372实现升降。
所述的第一轴承4、第二轴承5和第三轴承6的外圈设有刹车装置(未示出)。
上面所述的垂直风力发电机运转的过程主要包括风力发电机发电、对发电机的冷却、发电机作为电动机的启动及对垂直风力发电机的维修、检测几大部分。下面分别说明几大部分的工作原理。
垂直风力发电机发电的工作原理:叶片3在风力的推动下开始旋转,叶片3旋转后产生转矩,叶片3所产生的转矩通过叶片3的上端传给第四法兰10及通过叶片3的下端传给第三法兰9,此时,第三法兰9和第四法兰10跟随叶片3一起旋转,传递给第四法兰10上的转矩通过连接件23传递给第三法兰9,第三法兰9依次通过第七法兰13、第二法兰8和第六法兰12将转矩传给支架201,支架201带动转子2022和励磁机转子2032旋转,使转子2022绕着定子2021旋转,励磁机转子2032绕励磁机定子2031旋转,励磁机转子2032在旋转过程中,励磁机转子2032中的励磁机转子绕组产生交流电流,然后,经旋转整流装置161将交流电流转变为直流电流输送到发电机转子2022的转子绕组中,发电机转子绕组通入直流电后产生磁场,由于发电机转子2022的旋转作用,发电机绕组将产生接近于正弦分布的磁场,发电机定子2021上的发电机定子绕组做相对于发电机转子绕组做切割磁场线运动,并在发电机定子绕组内感应出三相交流电势,从而达到发电的目的。此结构,由于设置了第三法兰9、第四法兰10和连接件23,叶片3所产生的转矩不仅通过叶片3的下端传到第三法兰9上,还通过叶片3的上端传到第四法兰10,第四法兰10通过连接件23将转矩传给 第三法兰9,这样,就平衡了叶片3上端和下端的受力大小,使得叶片3不易变形,因此,叶片3不易损坏,提高了垂直风力发电机的寿命。如图6所示,叶片3在旋转过程中,当风力小时,第一叶尖103和第二叶尖104为打开状态,这样,叶片3迎风面的面积大,垂直风力发电机的功率大;如图7,当风力变大时,第一叶尖103在第一运动装置的作用下沿第一导轨组向骨架101方向上运动,第一叶尖103收缩,同时,第二叶尖104在第二运动装置的作用下沿第二导轨组2向骨架101方向运动,第二叶尖104收缩,此时,叶片3的迎风面的面积减小,垂直发电机的功率得到自动的调整,采用这种结构,能防止因风速过大而引起垂直风力发电机失效。
冷却系统的工作原理为:风扇27工作形成风流,冷风经励磁机转子2032、励磁机定子2031、转子2022和定子2021的风道15到达发电机的下端,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口29进入到支架风道2013内,在这里通过外支架2011与外界空气进行热交换,使风流中的热风变成冷风,然后风流通过进风口33进入冷却器25,在这里风流被进一步的冷却,然后经风扇27流入到风力发电机的内腔中,形成内循环。在转子外支架2011外,由于设置了风叶24,且风叶24倾斜的安装在外支架2011的外壁上,当支架201旋转时,风叶24也跟随一起旋转,这时,在风叶24上形成上下的风压差,使得靠近发电机的外界空气形成从高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,提高了发电机的使用寿命。
外部冷却器34和冷却器25的工作过程为:外部冷却器34将冷却液通过进夜管35输送到冷却器25中,在冷却器25中与内循环中的风进行热交换,然后变成热水经出液管36流入到外部冷却器34进行冷却,然后如上述过程继续循环,这样提高内循环中的风流在冷却器25中的冷却效果,从而提高了对发电机的冷却效果,增大发电机的使用寿命。
发电机作为电动机的启动的工作过程为:(1)电动机运行:如图10所示,风力发电机在低风速或者启动困难时,励磁控制装置16与电网17断开,励磁机定子绕组中的电流为零,发电机运行在电动模式,发电机定子绕组与电网17连接,电网17通过双向变频器15向发电机定子绕组提供交流电流,这时在定子2021和转子2022的气隙14内产生一个旋转磁场,旋转磁场与发电机转子绕组及阻尼绕组38产生相对运动,发电机绕组切割磁力线在发电机转子绕组和阻尼绕组38内产生感应电动势, 发电机转子绕组和阻力绕组闭合后在发电机转子绕组和阻尼绕组38内出现感应电流,旋转磁场与感应电流相互作用而产生电磁转矩使发电机的转子2022旋转起来,实现异步运行,从而解决了风力发电机在低风速或者启动困难的问题。发电机在作为电动机运行时,通过调节双向变频器15的输出频率,来调节发电机作为电动机的转速。(2)发电机运行:当风速变大后,发电机转速满足切入风速时,首先让发电机以上述的电动机状态运行,并且带动励磁机转子2032旋转,励磁机转子绕组中感应出交流电,经过旋转整流装置161的整流后,将直流的电流输入到发电机转子绕组中,发电机定子绕组感应出三相交流电。此时,控制双向变频器15暂时停止工作,发电机退出电动机工作状态,由叶片3产生的转矩驱动支架201旋转,支架201带动发电机转子2022和励磁机转子2032旋转,并让励磁控制装置16投入工作,发电机开始以同步发电机运行。从电动机转变为发电机后,重新让双向变频器15投入工作,发电机定子绕组中三相交流电经过双向变频器15整流、滤波后,接入电网17,实行发电机运行。当风速改变时,发电机的转速也随之变化,发电机定子绕组中感应电流的频率也跟着改变,此时可以调节双向变频器15的工作参数,保证输出的频率不变,实现变速恒频运行。当发电机运行在发电机状态时,通过调节励磁控制装置16的电流输出,来调节发电机转子绕组所获得的励磁电流,从而实现发电机输出功率的调节。(3)当风速超出一定范围时,励磁控制装置16与电网17之间连接断开,双向变频器15与发电机之间也断开,发电系统不消耗电能,也不输出电能,同时,刹车装置也能限制发电机的转速,避免风力发电机被损坏。
对垂直风力发电机的维修、检测的通过升降系统和起重机80来实现的,其实现过程为:操作人员通过升降系统能到达塔柱1中的任何一个发电机单元2,还能够达到起重机90,操作人员能够在起重机90中的吊钩807上进行操作,所述的吊钩807通过拉索808与起升机构809连接,这样,能够调节吊钩807在垂直方向的位置,在导轨806上设了起重小车805,起重小车805能在导轨806上滑动,这样,能够调节吊钩807在水平方向的位置,由于回转塔架801能360°旋转,因此,操作人员能在垂直风力发电机上的任何地方进行维修和检测,不需要另外搭建维修塔架和其他的大型设备,大大节约了维修成本和维修、检测时间。
第四实施方式
如图320至图322所示的垂直风力发电机,包括塔柱1、一个以上的发电机单元2、二片以上的叶片3、第一轴承4、第二轴承5、第三轴承6、第一法兰7、第二法兰8、第三法兰9、第四法兰10、第五法兰11、第六法兰12、第七法兰13,在本实施方式中,发电机单元2为两个,叶片3为两片,塔柱1的中心轴线与水平面垂直,所述的塔柱1为空心结构。采用两个发电机单元2,增大了发电量,且两个发电单元2都安装在塔柱1上,大大减少了占地面积,节约了土地资源。
如图32和图4所示,所述的发电机单元2包括支架201、发电机202及励磁机203。
见图32和图4所示,所述的支架201由外支架2011和内支架2012构成,外支架2011设在内支架2012之外,外支架2011和内支架2012之间形成支架风道2013。
见图32和图4所示,所述的发电机202包括定子2021和转子2022,定子2021固定套装在塔柱1的外壁上,转子2022设在定子2021外,且固定安装在内支架2012的内壁上,定子2021内设有发电机定子绕组(未示出),转子2022内设有发电机转子绕组(未示出),定子2021和转子2022之间具有气隙14,所述的定子2021和转子2022内设有风道15;在转子2022上安装了阻尼绕组38,如图13和图14所示,阻尼绕组38包括端环381和阻尼条382,阻尼条382安装在端环381上。
见图32和图4所示,所述的励磁机203包括励磁机定子2031和励磁机转子2032,励磁机定子2031固定套装在塔柱1的外壁上,励磁机转子2032设在励磁机定子2031外,且固定安装在内支架2012的内壁上,励磁机定子2031内设有励磁机定子绕组(未示出),励磁机转子2032内设有励磁机转子绕组(未示出),励磁机定子2031和励磁机转子2032之间具有气隙14,所述的励磁机定子2031和励磁机转子2032内设有风道15;如图32所示,所述的励磁机203安装在发电机202的上方,当然,见图16所示,励磁机203还可安装在发电机202的下方。
如图10所示,发电机定子绕组通过双向变频器15与电网17联接,发电机定子绕组通过双向变频器15和励磁机控制装置16与励磁机定子绕组联接;发电机转子绕组通过旋转整流装置161与励磁机转子绕组联接。
如图32所示,在发电机定子2021的下端面上设有定子托座2023,定子托座2023固定套装在塔柱1的外壁上,定子托座2023起到承托定子2021的作用,提高了定子2021安装在塔柱1上的牢固性及位置准确性;在励磁机定子2031的下端面上设有励 磁机定子托座2033,励磁机定子托座2033固定套装在塔柱1的外壁上,励磁机定子托座2033起到承托励磁机定子2031的作用,提高了励磁机定子2031安装在塔柱1上的牢固性及位置准确性。
如图32和图4所示,所述的第五法兰11、第一法兰7、第一轴承4从上至下依次设在支架201的下方;第五法兰11的上端面通过焊接与支架201的下端面连接;所述的第一法兰7的上下两端横截面不相等,如图4所示,第一法兰7呈锥台形,如图18和19所示,第一法兰7呈喇叭形,如图20所示,第一法兰7为“凸”字型,如图21所示,第一法兰7为台阶型,当然,第一法兰7不限于上述四种结构,所述的第一法兰7的大端通过螺栓或焊接与第五法兰11连接,第一法兰7的小端通过螺栓或焊接或过盈配合与第一轴承4的外圈连接;所述的第一轴承4的内圈固定套装在塔柱1的外壁上,在第一轴承4内圈的下端面设有设有第一轴承托座18,第一轴承托座18固定套装在塔柱1外壁上。
采用锥台型或喇叭形的第一法兰7,第一法兰7的大端到小端的横截面为均匀过渡,在第一法兰7内不会产生明显的内应力,因此,增强了第一法兰的强度,能够承受较大的力,同时,减小了第一轴承4外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第一法兰7能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第五法兰11,方便了第一法兰7和支架201的连接;所述的第一轴承托座18用于承托第一轴承4及其作用在第一轴承4上的所有部件,因此,提高了第一轴承4的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图32和图4所示,第六法兰12、第二法兰8、第二轴承5从下至上依次设在支架201的上方;第六法兰12通过焊接连接在支架201的上端面上,所述的第六法兰12的上下两端横截面不相等,如图32和图4所示,第二法兰8呈锥台形,如图18和图19所示,第二法兰8呈喇叭形,如图20所示,第二法兰8为“凸”字型,如图21所示,第二法兰8为台阶型,当然,第二法兰8不限于上述四种结构,所述的第二法兰8的大端通过螺栓或焊接连接在第六法兰12上;所述第二轴承8的内圈固定套装在塔柱1的外壁上;所述的第七法兰13采用过盈配合套设在第二轴承5外圈的外壁上,第七法兰13的下端面通过螺栓或焊接连接在第二法兰8的小端上;在第二轴承5的内圈下端面上设有第二轴承托座19,第二轴承托座19固定套装在塔柱 1的外壁上。
采用锥台型或喇叭形的第二法兰8,第二法兰8的大端到小端的横截面为均匀过渡,在第二法兰8内不会产生明显的内应力,因此,增强的第二法兰的强度,能够承受较大的力,同时,减小了第二轴承5外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第二法兰8能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第六法兰12,方便了第二法兰8和支架201的连接;所述的第二轴承托座19用于承托第二轴承5及其作用在第二轴承5上的所有部件,因此,提高了第二轴承5的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图32所示,所述的第三轴承6的内圈固定套装在塔柱1的外壁上,且位于第二轴承5的上方,在第三轴承6内圈的下端面上设有第三轴承托座20,第三轴承托座20固定套装在塔柱1的外壁上,第三轴承托座20用于承托第三轴承6及其作用在第三轴承6上的所有部件,因此,提高了第三轴承6的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
所述的第七法兰13的上端面上通过螺栓或焊接连接了第三法兰9,在第三轴承6的外圈通过螺栓或焊接连接了第四法兰10,在第三法兰9和第四法兰10之间设有传递转矩的连接件23,如图12所示,所示的连接件23为空心管,如图11所示,所述的连接件23包括二根以上的连接杆231,所述连接杆231的上端与第四法兰10相连接,连接杆231的下端与第三法兰9相连接,所述的连接杆231设置在塔柱1外且与塔柱1横截面同心的圆周上,在连接杆231上焊接了加强筋232,以增强连接件23的强度;采用空心管作为连接件23,其结构简单,制造方便,生产成本低,并且空心管跟随第三法兰9和第四法兰10一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率,因此,大大提高了风力发电机的发电效率;用多根连接杆231作为连接件,其结构简单,且能减轻垂直风力发电机的重量;如图32所示,在第三法兰9的外圆周面上连接了两个第八法兰21,在第四法兰10的外圆周面上连接了两个第九法兰22,所述叶片3的下端通过第八法兰21与第三法兰9连接,叶片3的上端通过第九法兰22与第四法兰10连接。设置第八法兰21和第九法兰22,方便叶片3的安装、拆卸和维修。
如图5至图6所示的垂直风力发电机叶片3,所述的叶片3由三个叶片单元31 组成;如图6,叶片单元31的横截面为中间大两端小的橄榄形,且两小端中其中一端为弧状,另一端为尖端,叶片单元31采用这种横截面结构,对风能的利用率高。所述的叶片单元31包括骨架101、叶身102、第一叶尖103及第二叶尖104;叶身102安装在骨架103上,骨架103处在叶身102内;所述的第一叶尖103设在叶身102沿叶片单元31的径向方向上的一端,第一叶尖103的尾部1031为所述的弧状,第一叶尖103的头部1032伸入到叶身102内;所述的第二叶尖104设在叶身102沿叶片单元31的径向方向上与第一叶尖103相对的一端,第二叶尖104的尾部1041为所述的尖端,第二叶尖104的头部1042伸入到叶身102内;如图6和图8,在叶身102和第一叶尖103之间设有第一导轨组(未示出),在叶身102和第二叶尖104之间设有第二导轨组32;在骨架101和第一叶尖103之间设有第一液压系统30,骨架101和第二叶尖104之间设有第二液压系统40,所述的第一液压系统30包括第一液压泵(未示出)、第一液压阀(未示出)、第一液压管(未示出)及第一液压缸301,如图9所示,所述的第一液压缸301包括第一液压缸体302、第一活塞303、第一活塞杆304及第一密封装置305,第一活塞303安装在第一液压缸体302内,第一活塞杆304的一端与第一活塞303相连接,另一端与第一叶尖103连接在一起,第一液压缸体302固定在骨架101上,第一密封装置305安装在第一液压缸体302的两端,所述的第二液压系统40包括第二液压泵(未示出)、第二液压阀(未示出)、第二液压管(未示出)及第二液压缸401,所述的第二液压缸401包括第二液压缸体402、第二活塞(未示出)、第二活塞杆403及第二密封装置(未示出),第二活塞安装在第二液压缸体402内,第二活塞杆403的一端与第二活塞相连接,另一端与第二叶尖104连接在一起,第二液压缸体402固定在骨架101上,第二密封装置安装在第二液压缸体402的两端;采用液压系统作为运动装置,能够使用在大功率的设备上,其传动的平稳性好,在运动时,能进行无极变速,并且由于液压缸体内的介质是液压油,能进行自动润滑,这样,液压系统的使用寿命长,因此,叶片的使用寿命也长。在骨架101和叶身102之间还安装有叶片加强筋50,这样,能增大骨架101和叶身102之间的连接强度;在叶身102的靠近第一叶尖103的一端部安装有第一密封条60,在叶身102靠近第二叶尖104的一端部安装有第二密封条70,这样,能防止雨水、尘埃进入到叶片单元31内,垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。
如图4所示,在发电机单元2内设有冷却系统,包括风叶24、冷却器25、密封盘26、风扇27及设在发电机定子2021、转子2022、励磁机定子2031和励磁机转子2032上的风道15;如图15所示,所述的风叶24倾斜的安装在外支架2011的外壁上,密封盘26固定套装在塔柱1的外壁上,且位于内支架2012上端内部励磁机203的上方,风扇27安装在密封盘26上;冷却器25安装在密封盘26上,且设在风扇27的上方;在内支架2012的下端部上开有出风口29,内支架2012的上端部上开有进风口33,进风口33位于密封盘26的上方,所述的出风口28、进风口33与支架风道2013是相通的;在塔柱1内设有外部冷却器34,冷却器25通过进液管35和出液管36与外冷却器34相连接。
如图17所示,在所述塔柱1顶部设有起重机80,所述起重机80包括回转塔架801、起重臂802、平衡臂803、平衡重804、起重小车805、导轨806、吊钩807、拉索808、起升机构809和控制系统(未示出)。所述回转塔架801与塔柱1顶部连接,起重臂802和平衡臂803安装在回转塔架801上,回转塔架801可以360°转动;平衡重804安装在平衡臂803的一端;导轨806设置在起重臂802上,起重小车805设置于导轨806上,起重小车805可在导轨806上前后运动;吊钩807设置于起重小车805下方,吊钩807与拉索808的一端连接,拉索808的另一端与起升机构809相连接,由起升机构809控制吊钩807的升降。另外,在所述回转塔架801顶端与平衡臂803之间设有平衡臂拉杆810,平衡臂拉杆810一端与回转塔架801顶端固定连接,平衡臂拉杆810另一端与平衡臂803固定连接;在所述回转塔架801顶端与起重臂802之间设有起重臂拉杆811,起重臂拉杆811一端与回转塔架801顶端固定连接,起重臂拉杆811另一端与起重臂802固定连接;平衡臂拉杆810和起重臂拉杆811保证了起重机80的结构稳定和提高了起重机80的起重负载。
如图32所示,在所述塔柱1内部设有升降系统,所述的升降系统为升降电梯37,所述升降电梯37包括轿厢371和轿厢升降机构372,轿厢371由轿厢升降机构372实现升降。
所述的第一轴承4、第二轴承5和第三轴承6的外圈设有刹车装置(未示出)。
上面所述的垂直风力发电机运转的过程主要包括风力发电机发电、对发电机的冷却、发电机作为电动机的启动及对垂直风力发电机的维修、检测几大部分。下面分别说明几大部分的工作原理。
垂直风力发电机发电的工作原理:叶片3在风力的推动下开始旋转,叶片3旋转后产生转矩,叶片3所产生的转矩通过叶片3的上端传给第四法兰10及通过叶片3的下端传给第三法兰9,此时,第三法兰9和第四法兰10跟随叶片3一起旋转,传递给第四法兰10上的转矩通过连接件23传递给第三法兰9,第三法兰9依次通过第七法兰13、第二法兰8和第六法兰12将转矩传给支架201,支架201带动转子2022和励磁机转子2032旋转,使转子2022绕着定子2021旋转,励磁机转子2032绕励磁机定子2031旋转,励磁机转子2032在旋转过程中,励磁机转子2032中的励磁机转子绕组产生交流电流,然后,经旋转整流装置161将交流电流转变为直流电流输送到发电机转子2022的转子绕组中,发电机转子绕组通入直流电后产生磁场,由于发电机转子2022的旋转作用,发电机绕组将产生接近于正弦分布的磁场,发电机定子2021上的发电机定子绕组做相对于发电机转子绕组做切割磁场线运动,并在发电机定子绕组内感应出三相交流电势,从而达到发电的目的。此结构,由于设置了第三法兰9、第四法兰10和连接件23,叶片3所产生的转矩不仅通过叶片3的下端传到第三法兰9上,还通过叶片3的上端传到第四法兰10,第四法兰10通过连接件23将转矩传给第三法兰9,这样,就平衡了叶片3上端和下端的受力大小,使得叶片3不易变形,因此,叶片3不易损坏,提高了垂直风力发电机的寿命。如图6所示,叶片3在旋转过程中,当风力小时,第一叶尖103和第二叶尖104为打开状态,这样,叶片3迎风面的面积大,垂直风力发电机的功率大;如图7,当风力变大时,第一叶尖103在第一液压系统30的作用下沿第一导轨组向骨架101方向上运动,第一叶尖103收缩,同时,第二叶尖104在第二液压系统40的作用下沿第二导轨组2向骨架101方向运动,第二叶尖104收缩,此时,叶片3的迎风面的面积减小,垂直发电机的功率得到自动的调整,采用这种结构,能防止因风速过大而引起垂直风力发电机失效。
冷却系统的工作原理为:风扇27工作形成风流,冷风经励磁机转子2032、励磁机定子2031、转子2022和定子2021的风道15到达发电机的下端,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口29进入到支架风道2013内,在这里通过外支架2011与外界空气进行热交换,使风流中的热风变成冷风,然后风流通过进风口33进入冷却器25,在这里风流被进一步的冷却,然后经风扇27流入到风力发电机的内腔中,形成内循环。在转子外支架2011外,由于设置了风叶24,且风叶24倾斜的安装在外支架2011的外壁上,当支架201旋转时,风叶24也跟随一 起旋转,这时,在风叶24上形成上下的风压差,使得靠近发电机的外界空气形成从高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,提高了发电机的使用寿命。
外部冷却器34和冷却器25的工作过程为:外部冷却器34将冷却液通过进夜管35输送到冷却器25中,在冷却器25中与内循环中的风进行热交换,然后变成热水经出液管36流入到外部冷却器34进行冷却,然后如上述过程继续循环,这样提高内循环中的风流在冷却器25中的冷却效果,从而提高了对发电机的冷却效果,增大发电机的使用寿命。
发电机作为电动机的启动的工作过程为:(1)电动机运行:如图10所示,风力发电机在低风速或者启动困难时,励磁控制装置16与电网17断开,励磁机定子绕组中的电流为零,发电机运行在电动模式,发电机定子绕组与电网17连接,电网17通过双向变频器15向发电机定子绕组提供交流电流,这时在定子2021和转子2022的气隙14内产生一个旋转磁场,旋转磁场与发电机转子绕组及阻尼绕组38产生相对运动,发电机绕组切割磁力线在发电机转子绕组和阻尼绕组38内产生感应电动势,发电机转子绕组和阻力绕组闭合后在发电机转子绕组和阻尼绕组38内出现感应电流,旋转磁场与感应电流相互作用而产生电磁转矩使发电机的转子2022旋转起来,实现异步运行,从而解决了风力发电机在低风速或者启动困难的问题。发电机在作为电动机运行时,通过调节双向变频器15的输出频率,来调节发电机作为电动机的转速。(2)发电机运行:当风速变大后,发电机转速满足切入风速时,首先让发电机以上述的电动机状态运行,并且带动励磁机转子2032旋转,励磁机转子绕组中感应出交流电,经过旋转整流装置161的整流后,将直流的电流输入到发电机转子绕组中,发电机定子绕组感应出三相交流电。此时,控制双向变频器15暂时停止工作,发电机退出电动机工作状态,由叶片3产生的转矩驱动支架201旋转,支架201带动发电机转子2022和励磁机转子2032旋转,并让励磁控制装置16投入工作,发电机开始以同步发电机运行。从电动机转变为发电机后,重新让双向变频器15投入工作,发电机定子绕组中三相交流电经过双向变频器15整流、滤波后,接入电网17,实行发电机运行。当风速改变时,发电机的转速也随之变化,发电机定子绕组中感应电流的频率也跟着改变,此时可以调节双向变频器15的工作参数,保证输出的频率不变,实现变速恒频运行。当发电机运行在发电机状态时,通过调节励磁控制装置16的电 流输出,来调节发电机转子绕组所获得的励磁电流,从而实现发电机输出功率的调节。(3)当风速超出一定范围时,励磁控制装置16与电网17之间连接断开,双向变频器15与发电机之间也断开,发电系统不消耗电能,也不输出电能,同时,刹车装置也能限制发电机的转速,避免风力发电机被损坏。
对垂直风力发电机的维修、检测的通过升降系统和起重机80来实现的,其实现过程为:操作人员通过升降系统能到达塔柱1中的任何一个发电机单元2,还能够达到起重机90,操作人员能够在起重机90中的吊钩807上进行操作,所述的吊钩807通过拉索808与起升机构809连接,这样,能够调节吊钩807在垂直方向的位置,在导轨806上设了起重小车805,起重小车805能在导轨806上滑动,这样,能够调节吊钩807在水平方向的位置,由于回转塔架801能360°旋转,因此,操作人员能在垂直风力发电机上的任何地方进行维修和检测,不需要另外搭建维修塔架和其他的大型设备,大大节约了维修成本和维修、检测时间。
第五实施方式
如图30至图32所示的垂直风力发电机,包括塔柱1、一个以上的发电机单元2、二片以上的叶片3、第一轴承4、第二轴承5、第三轴承6、第一法兰7、第二法兰8、第三法兰9、第四法兰10、第五法兰11、第六法兰12、第七法兰13,在本实施方式中,发电机单元2为两个,叶片3为两片,塔柱1的中心轴线与水平面垂直,所述的塔柱1为空心结构。采用两个发电机单元2,增大了发电量,且两个发电单元2都安装在塔柱1上,大大减少了占地面积,节约了土地资源。
如图32和图4所示,所述的发电机单元2包括支架201、发电机202及励磁机203。
见图32和图4所示,所述的支架201由外支架2011和内支架2012构成,外支架2011设在内支架2012之外,外支架2011和内支架2012之间形成支架风道2013。
见图32和图4所示,所述的发电机202包括定子2021和转子2022,定子2021固定套装在塔柱1的外壁上,转子2022设在定子2021外,且固定安装在内支架2012的内壁上,定子2021内设有发电机定子绕组(未示出),转子2022内设有发电机转子绕组(未示出),定子2021和转子2022之间具有气隙14,所述的定子2021和转子2022内设有风道15;在转子2022上安装了阻尼绕组38,如图13和图14所示, 阻尼绕组38包括端环381和阻尼条382,阻尼条382安装在端环381上。
见图32和图4所示,所述的励磁机203包括励磁机定子2031和励磁机转子2032,励磁机定子2031固定套装在塔柱1的外壁上,励磁机转子2032设在励磁机定子2031外,且固定安装在内支架2012的内壁上,励磁机定子2031内设有励磁机定子绕组(未示出),励磁机转子2032内设有励磁机转子绕组(未示出),励磁机定子2031和励磁机转子2032之间具有气隙14,所述的励磁机定子2031和励磁机转子2032内设有风道15;如图32所示,所述的励磁机203安装在发电机202的上方,当然,见图16所示,励磁机203还可安装在发电机202的下方。
如图10所示,发电机定子绕组通过双向变频器15与电网17联接,发电机定子绕组通过双向变频器15和励磁机控制装置16与励磁机定子绕组联接;发电机转子绕组通过旋转整流装置161与励磁机转子绕组联接。
如图32所示,在发电机定子2021的下端面上设有定子托座2023,定子托座2023固定套装在塔柱1的外壁上,定子托座2023起到承托定子2021的作用,提高了定子2021安装在塔柱1上的牢固性及位置准确性;在励磁机定子2031的下端面上设有励磁机定子托座2033,励磁机定子托座2033固定套装在塔柱1的外壁上,励磁机定子托座2033起到承托励磁机定子2031的作用,提高了励磁机定子2031安装在塔柱1上的牢固性及位置准确性。
如图32和图4所示,所述的第五法兰11、第一法兰7、第一轴承4从上至下依次设在支架201的下方;第五法兰11的上端面通过焊接与支架201的下端面连接;所述的第一法兰7的上下两端横截面不相等,如图4所示,第一法兰7呈锥台形,如图18和19所示,第一法兰7呈喇叭形,如图20所示,第一法兰7为“凸”字型,如图21所示,第一法兰7为台阶型,当然,第一法兰7不限于上述四种结构,所述的第一法兰7的大端通过螺栓或焊接与第五法兰11连接,第一法兰7的小端通过螺栓或焊接或过盈配合与第一轴承4的外圈连接;所述的第一轴承4的内圈固定套装在塔柱1的外壁上,在第一轴承4内圈的下端面设有设有第一轴承托座18,第一轴承托座18固定套装在塔柱1外壁上。
采用锥台型或喇叭形的第一法兰7,第一法兰7的大端到小端的横截面为均匀过渡,在第一法兰7内不会产生明显的内应力,因此,增大了第一法兰的强度,能够承受较大的力,同时,减小了第一轴承4外圈的尺寸,降低了垂直风力发电机的成本; 采用“凸”字型或台阶型,第一法兰7能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第五法兰11,方便了第一法兰7和支架201的连接;所述的第一轴承托座18用于承托第一轴承4及其作用在第一轴承4上的所有部件,因此,提高了第一轴承4的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图32和图4所示,第六法兰12、第二法兰8、第二轴承5从下至上依次设在支架201的上方;第六法兰12通过焊接连接在支架201的上端面上,所述的第六法兰12的上下两端横截面不相等,如图32和图4所示,第二法兰8呈锥台形,如图18和图19所示,第二法兰8呈喇叭形,如图20所示,第二法兰8为“凸”字型,如图21所示,第二法兰8为台阶型,当然,第二法兰8不限于上述四种结构,所述的第二法兰8的大端通过螺栓或焊接连接在第六法兰12上;所述第二轴承8的内圈固定套装在塔柱1的外壁上;所述的第七法兰13采用过盈配合套设在第二轴承5外圈的外壁上,第七法兰13的下端面通过螺栓或焊接连接在第二法兰8的小端上;在第二轴承5的内圈下端面上设有第二轴承托座19,第二轴承托座19固定套装在塔柱1的外壁上。
采用锥台型或喇叭形的第二法兰8,第二法兰8的大端到小端的横截面为均匀过渡,在第二法兰8内不会产生明显的内应力,因此,增大了第二法兰的强度,能够承受较大的力,同时,减小了第二轴承5外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第二法兰8能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第六法兰12,方便了第二法兰8和支架201的连接;所述的第二轴承托座19用于承托第二轴承5及其作用在第二轴承5上的所有部件,因此,提高了第二轴承5的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图32所示,所述的第三轴承6的内圈固定套装在塔柱1的外壁上,且位于第二轴承5的上方,在第三轴承6内圈的下端面上设有第三轴承托座20,第三轴承托座20固定套装在塔柱1的外壁上,第三轴承托座20用于承托第三轴承6及其作用在第三轴承6上的所有部件,因此,提高了第三轴承6的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
所述的第七法兰13的上端面上通过螺栓或焊接连接了第三法兰9,在第三轴承6 的外圈通过螺栓或焊接连接了第四法兰10,在第三法兰9和第四法兰10之间设有传递转矩的连接件23,如图12所示,所示的连接件23为空心管,如图11所示,所述的连接件23包括二根以上的连接杆231,所述连接杆231的上端与第四法兰10相连接,连接杆231的下端与第三法兰9相连接,所述的连接杆231设置在塔柱1外且与塔柱1横截面同心的圆周上,在连接杆231上焊接了加强筋232,以增强连接件23的强度;采用空心管作为连接件23,其结构简单,制造方便,生产成本低,并且空心管跟随第三法兰9和第四法兰10一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率,因此,大大提高了风力发电机的发电效率;用多根连接杆231作为连接件,其结构简单,且能减轻垂直风力发电机的重量;如图32所示,在第三法兰9的外圆周面上连接了两个第八法兰21,在第四法兰10的外圆周面上连接了两个第九法兰22,所述叶片3的下端通过第八法兰21与第三法兰9连接,叶片3的上端通过第九法兰22与第四法兰10连接。设置第八法兰21和第九法兰22,方便叶片3的安装、拆卸和维修。
如图5、图22至图25所示的垂直风力发电机叶片3,所述的叶片3由三个叶片单元31组成;如图22,叶片单元31的横截面为中间大两端小的橄榄形,且两小端中其中一端为弧状,另一端为尖端,叶片单元31采用这种横截面结构,对风能的利用率高。所述的叶片单元31包括骨架101、叶身102、第一叶尖103及第二叶尖104;叶身102安装在骨架103上,骨架103处在叶身102内;所述的第一叶尖103设在叶身102沿叶片单元31的径向方向上的一端,第一叶尖103的尾部1031为所述的弧状,第一叶尖103的头部1032伸入到叶身102内;所述的第二叶尖104设在叶身102沿叶片单元31的径向方向上与第一叶尖103相对的一端,第二叶尖104的尾部1041为所述的尖端,第二叶尖104的头部1042伸入到叶身102内;如图22和图25,在叶身102和第一叶尖103之间设有第一导轨组(未示出),在叶身102和第二叶尖104之间设有第二导轨组32;在骨架101和第一叶尖103之间设有第一气压系统95,骨架101和第二叶尖104之间设有第二气压系统96,所述的第一气压系统95包括第一空气压缩机(未示出)及第一气压缸111,如图25所示,所述的第一气压缸111包括第一气压缸体112、第一气压活塞113、第一气压活塞杆114及第一气压密封装置115,第一气压活塞113安装在第一气压缸体112内,第一气压活塞杆114的一端与第一气压活塞113相连接,另一端与第一叶尖103连接在一起,第一气压缸体112 固定在骨架101上,第一密封装置115安装在第一气压缸体112的两端,所述的第二气压系统96包括第二空气压缩机(未示出)及第二气压缸121,所述的第二气压缸121包括第二气压缸体122、第二气压活塞(未示出)、第二气压活塞杆123及第二气压密封装置(未示出),第二气压活塞安装在第二气压缸体122内,第二气压活塞杆123的一端与第二气压活塞相连接,另一端与第二叶尖104连接在一起,第二气压缸体122固定在骨架101上,第二密封装置安装在第二气压缸体122的两端;采用气压缸系统作为运动装置,由于其动力介质为气体,因此,质量轻,介质的资源丰富,无污染,由于气体的黏度小,因此,气体与气压缸体的阻力小。在骨架101和叶身102之间还安装有叶片加强筋50,这样,能增大骨架101和叶身102之间的连接强度;在叶身102的靠近第一叶尖103的一端部安装有第一密封条60,在叶身102的靠近第二叶尖104的一端部安装有第一密封条70,这样,能防止雨水、尘埃进入到叶片单元内,垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。
如图4所示,在发电机单元2内设有冷却系统,包括风叶24、冷却器25、密封盘26、风扇27及设在发电机定子2021、转子2022、励磁机定子2031和励磁机转子2032上的风道15;如图15所示,所述的风叶24倾斜的安装在外支架2011的外壁上,密封盘26固定套装在塔柱1的外壁上,且位于内支架2012上端内部励磁机203的上方,风扇27安装在密封盘26上;冷却器25安装在密封盘26上,且设在风扇27的上方;在内支架2012的下端部上开有出风口29,内支架2012的上端部上开有进风口33,进风口33位于密封盘26的上方,所述的出风口28、进风口33与支架风道2013是相通的;在塔柱1内设有外部冷却器34,冷却器25通过进液管35和出液管36与外冷却器34相连接。
如图17所示,在所述塔柱1顶部设有起重机80,所述起重机80包括回转塔架801、起重臂802、平衡臂803、平衡重804、起重小车805、导轨806、吊钩807、拉索808、起升机构809和控制系统(未示出)。所述回转塔架801与塔柱1顶部连接,起重臂802和平衡臂803安装在回转塔架801上,回转塔架801可以360°转动;平衡重804安装在平衡臂803的一端;导轨806设置在起重臂802上,起重小车805设置于导轨806上,起重小车805可在导轨806上前后运动;吊钩807设置于起重小车805下方,吊钩807与拉索808的一端连接,拉索808的另一端与起升机构809 相连接,由起升机构809控制吊钩807的升降。另外,在所述回转塔架801顶端与平衡臂803之间设有平衡臂拉杆810,平衡臂拉杆810一端与回转塔架801顶端固定连接,平衡臂拉杆810另一端与平衡臂803固定连接;在所述回转塔架801顶端与起重臂802之间设有起重臂拉杆811,起重臂拉杆811一端与回转塔架801顶端固定连接,起重臂拉杆811另一端与起重臂802固定连接;平衡臂拉杆810和起重臂拉杆811保证了起重机80的结构稳定和提高了起重机80的起重负载。
如图32所示,在所述塔柱1内部设有升降系统,所述的升降系统为升降电梯37,所述升降电梯37包括轿厢371和轿厢升降机构372,轿厢371由轿厢升降机构372实现升降。
所述的第一轴承4、第二轴承5和第三轴承6的外圈设有刹车装置(未示出)。
上面所述的垂直风力发电机运转的过程主要包括风力发电机发电、对发电机的冷却、发电机作为电动机的启动及对垂直风力发电机的维修、检测几大部分。下面分别说明几大部分的工作原理。
垂直风力发电机发电的工作原理:叶片3在风力的推动下开始旋转,叶片3旋转后产生转矩,叶片3所产生的转矩通过叶片3的上端传给第四法兰10及通过叶片3的下端传给第三法兰9,此时,第三法兰9和第四法兰10跟随叶片3一起旋转,传递给第四法兰10上的转矩通过连接件23传递给第三法兰9,第三法兰9依次通过第七法兰13、第二法兰8和第六法兰12将转矩传给支架201,支架201带动转子2022和励磁机转子2032旋转,使转子2022绕着定子2021旋转,励磁机转子2032绕励磁机定子2031旋转,励磁机转子2032在旋转过程中,励磁机转子2032中的励磁机转子绕组产生交流电流,然后,经旋转整流装置161将交流电流转变为直流电流输送到发电机转子2022的转子绕组中,发电机转子绕组通入直流电后产生磁场,由于发电机转子2022的旋转作用,发电机绕组将产生接近于正弦分布的磁场,发电机定子2021上的发电机定子绕组做相对于发电机转子绕组做切割磁场线运动,并在发电机定子绕组内感应出三相交流电势,从而达到发电的目的。此结构,由于设置了第三法兰9、第四法兰10和连接件23,叶片3所产生的转矩不仅通过叶片3的下端传到第三法兰9上,还通过叶片3的上端传到第四法兰10,第四法兰10通过连接件23将转矩传给第三法兰9,这样,就平衡了叶片3上端和下端的受力大小,使得叶片3不易变形,因此,叶片3不易损坏,提高了垂直风力发电机的寿命。如图6所示,叶片3在旋转 过程中,当风力小时,第一叶尖103和第二叶尖104为打开状态,这样,叶片3迎风面的面积大,垂直风力发电机的功率大;如图7,当风力变大时,第一叶尖103在第一气压系统95的作用下沿第一导轨组向骨架101方向上运动,第一叶尖103收缩,同时,第二叶尖104在第二气压系统96的作用下沿第二导轨组2向骨架101方向运动,第二叶尖104收缩,此时,叶片3的迎风面的面积减小,垂直发电机的功率得到自动的调整,采用这种结构,能防止因风速过大而引起垂直风力发电机失效。
冷却系统的工作原理为:风扇27工作形成风流,冷风经励磁机转子2032、励磁机定子2031、转子2022和定子2021的风道15到达发电机的下端,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口29进入到支架风道2013内,在这里通过外支架2011与外界空气进行热交换,使风流中的热风变成冷风,然后风流通过进风口33进入冷却器25,在这里风流被进一步的冷却,然后经风扇27流入到风力发电机的内腔中,形成内循环。在转子外支架2011外,由于设置了风叶24,且风叶24倾斜的安装在外支架2011的外壁上,当支架201旋转时,风叶24也跟随一起旋转,这时,在风叶24上形成上下的风压差,使得靠近发电机的外界空气形成从高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,提高了发电机的使用寿命。
外部冷却器34和冷却器25的工作过程为:外部冷却器34将冷却液通过进夜管35输送到冷却器25中,在冷却器25中与内循环中的风进行热交换,然后变成热水经出液管36流入到外部冷却器34进行冷却,然后如上述过程继续循环,这样提高内循环中的风流在冷却器25中的冷却效果,从而提高了对发电机的冷却效果,增大发电机的使用寿命。
发电机作为电动机的启动的工作过程为:(1)电动机运行:如图10所示,风力发电机在低风速或者启动困难时,励磁控制装置16与电网17断开,励磁机定子绕组中的电流为零,发电机运行在电动模式,发电机定子绕组与电网17连接,电网17通过双向变频器15向发电机定子绕组提供交流电流,这时在定子2021和转子2022的气隙14内产生一个旋转磁场,旋转磁场与发电机转子绕组及阻尼绕组38产生相对运动,发电机绕组切割磁力线在发电机转子绕组和阻尼绕组38内产生感应电动势,发电机转子绕组和阻力绕组闭合后在发电机转子绕组和阻尼绕组38内出现感应电流,旋转磁场与感应电流相互作用而产生电磁转矩使发电机的转子2022旋转起来, 实现异步运行,从而解决了风力发电机在低风速或者启动困难的问题。发电机在作为电动机运行时,通过调节双向变频器15的输出频率,来调节发电机作为电动机的转速。(2)发电机运行:当风速变大后,发电机转速满足切入风速时,首先让发电机以上述的电动机状态运行,并且带动励磁机转子2032旋转,励磁机转子绕组中感应出交流电,经过旋转整流装置161的整流后,将直流的电流输入到发电机转子绕组中,发电机定子绕组感应出三相交流电。此时,控制双向变频器15暂时停止工作,发电机退出电动机工作状态,由叶片3产生的转矩驱动支架201旋转,支架201带动发电机转子2022和励磁机转子2032旋转,并让励磁控制装置16投入工作,发电机开始以同步发电机运行。从电动机转变为发电机后,重新让双向变频器15投入工作,发电机定子绕组中三相交流电经过双向变频器15整流、滤波后,接入电网17,实行发电机运行。当风速改变时,发电机的转速也随之变化,发电机定子绕组中感应电流的频率也跟着改变,此时可以调节双向变频器15的工作参数,保证输出的频率不变,实现变速恒频运行。当发电机运行在发电机状态时,通过调节励磁控制装置16的电流输出,来调节发电机转子绕组所获得的励磁电流,从而实现发电机输出功率的调节。(3)当风速超出一定范围时,励磁控制装置16与电网17之间连接断开,双向变频器15与发电机之间也断开,发电系统不消耗电能,也不输出电能,同时,刹车装置也能限制发电机的转速,避免风力发电机被损坏。
对垂直风力发电机的维修、检测的通过升降系统和起重机80来实现的,其实现过程为:操作人员通过升降系统能到达塔柱1中的任何一个发电机单元2,还能够达到起重机90,操作人员能够在起重机90中的吊钩807上进行操作,所述的吊钩807通过拉索808与起升机构809连接,这样,能够调节吊钩807在垂直方向的位置,在导轨806上设了起重小车805,起重小车805能在导轨806上滑动,这样,能够调节吊钩807在水平方向的位置,由于回转塔架801能360°旋转,因此,操作人员能在垂直风力发电机上的任何地方进行维修和检测,不需要另外搭建维修塔架和其他的大型设备,大大节约了维修成本和维修、检测时间。
第六实施方式
如图30至图32所示的垂直风力发电机,包括塔柱1、一个以上的发电机单元2、二片以上的叶片3、第一轴承4、第二轴承5、第三轴承6、第一法兰7、第二法兰8、 第三法兰9、第四法兰10、第五法兰11、第六法兰12、第七法兰13,在本实施方式中,发电机单元2为两个,叶片3为两片,塔柱1的中心轴线与水平面垂直,所述的塔柱1为空心结构。采用两个发电机单元2,增大了发电量,且两个发电单元2都安装在塔柱1上,大大减少了占地面积,节约了土地资源。
如图32和图4所示,所述的发电机单元2包括支架201、发电机202及励磁机203。
见图32和图4所示,所述的支架201由外支架2011和内支架2012构成,外支架2011设在内支架2012之外,外支架2011和内支架2012之间形成支架风道2013。
见图32和图4所示,所述的发电机202包括定子2021和转子2022,定子2021固定套装在塔柱1的外壁上,转子2022设在定子2021外,且固定安装在内支架2012的内壁上,定子2021内设有发电机定子绕组(未示出),转子2022内设有发电机转子绕组(未示出),定子2021和转子2022之间具有气隙14,所述的定子2021和转子2022内设有风道15;在转子2022上安装了阻尼绕组38,如图13和图14所示,阻尼绕组38包括端环381和阻尼条382,阻尼条382安装在端环381上。
见图32和图4所示,所述的励磁机203包括励磁机定子2031和励磁机转子2032,励磁机定子2031固定套装在塔柱1的外壁上,励磁机转子2032设在励磁机定子2031外,且固定安装在内支架2012的内壁上,励磁机定子2031内设有励磁机定子绕组(未示出),励磁机转子2032内设有励磁机转子绕组(未示出),励磁机定子2031和励磁机转子2032之间具有气隙14,所述的励磁机定子2031和励磁机转子2032内设有风道15;如图32所示,所述的励磁机203安装在发电机202的上方,当然,见图16所示,励磁机203还可安装在发电机202的下方。
如图10所示,发电机定子绕组通过双向变频器15与电网17联接,发电机定子绕组通过双向变频器15和励磁机控制装置16与励磁机定子绕组联接;发电机转子绕组通过旋转整流装置161与励磁机转子绕组联接。
如图32所示,在发电机定子2021的下端面上设有定子托座2023,定子托座2023固定套装在塔柱1的外壁上,定子托座2023起到承托定子2021的作用,提高了定子2021安装在塔柱1上的牢固性及位置准确性;在励磁机定子2031的下端面上设有励磁机定子托座2033,励磁机定子托座2033固定套装在塔柱1的外壁上,励磁机定子托座2033起到承托励磁机定子2031的作用,提高了励磁机定子2031安装在塔柱1 上的牢固性及位置准确性。
如图32和图4所示,所述的第五法兰11、第一法兰7、第一轴承4从上至下依次设在支架201的下方;第五法兰11的上端面通过焊接与支架201的下端面连接;所述的第一法兰7的上下两端横截面不相等,如图4所示,第一法兰7呈锥台形,如图18和19所示,第一法兰7呈喇叭形,如图20所示,第一法兰7为“凸”字型,如图21所示,第一法兰7为台阶型,当然,第一法兰7不限于上述四种结构,所述的第一法兰7的大端通过螺栓或焊接与第五法兰11连接,第一法兰7的小端通过螺栓或焊接或过盈配合与第一轴承4的外圈连接;所述的第一轴承4的内圈固定套装在塔柱1的外壁上,在第一轴承4内圈的下端面设有设有第一轴承托座18,第一轴承托座18固定套装在塔柱1外壁上。
采用锥台型或喇叭形的第一法兰7,第一法兰7的大端到小端的横截面为均匀过渡,在第一法兰7内不会产生明显的内应力,因此,增大了第一法兰的强度,能够承受较大的力,同时,减小了第一轴承4外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第一法兰7能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第五法兰11,方便了第一法兰7和支架201的连接;所述的第一轴承托座18用于承托第一轴承4及其作用在第一轴承4上的所有部件,因此,提高了第一轴承4的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图32和图4所示,第六法兰12、第二法兰8、第二轴承5从下至上依次设在支架201的上方;第六法兰12通过焊接连接在支架201的上端面上,所述的第六法兰12的上下两端横截面不相等,如图32和图4所示,第二法兰8呈锥台形,如图18和图19所示,第二法兰8呈喇叭形,如图20所示,第二法兰8为“凸”字型,如图21所示,第二法兰8为台阶型,当然,第二法兰8不限于上述四种结构,所述的第二法兰8的大端通过螺栓或焊接连接在第六法兰12上;所述第二轴承8的内圈固定套装在塔柱1的外壁上;所述的第七法兰13采用过盈配合套设在第二轴承5外圈的外壁上,第七法兰13的下端面通过螺栓或焊接连接在第二法兰8的小端上;在第二轴承5的内圈下端面上设有第二轴承托座19,第二轴承托座19固定套装在塔柱1的外壁上。
采用锥台型或喇叭形的第二法兰8,第二法兰8的大端到小端的横截面为均匀过 渡,在第二法兰8内不会产生明显的内应力,因此,增大了第二法兰的强度,能够承受较大的力,同时,减小了第二轴承5外圈的尺寸,降低了垂直风力发电机的成本;采用“凸”字型或台阶型,第二法兰8能够用普通的设备进行加工,加工工序简单,因此,降低了法兰的加工成本和加工时间;设置第六法兰12,方便了第二法兰8和支架201的连接;所述的第二轴承托座19用于承托第二轴承5及其作用在第二轴承5上的所有部件,因此,提高了第二轴承5的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
如图32所示,所述的第三轴承6的内圈固定套装在塔柱1的外壁上,且位于第二轴承5的上方,在第三轴承6内圈的下端面上设有第三轴承托座20,第三轴承托座20固定套装在塔柱1的外壁上,第三轴承托座20用于承托第三轴承6及其作用在第三轴承6上的所有部件,因此,提高了第三轴承6的安装牢固性和位置准确性,并且,也提高了发电机结构的稳定性。
所述的第七法兰13的上端面上通过螺栓或焊接连接了第三法兰9,在第三轴承6的外圈通过螺栓或焊接连接了第四法兰10,在第三法兰9和第四法兰10之间设有传递转矩的连接件23,如图12所示,所示的连接件23为空心管,如图11所示,所述的连接件23包括二根以上的连接杆231,所述连接杆231的上端与第四法兰10相连接,连接杆231的下端与第三法兰9相连接,所述的连接杆231设置在塔柱1外且与塔柱1横截面同心的圆周上,在连接杆231上焊接了加强筋232,以增强连接件23的强度;采用空心管作为连接件23,其结构简单,制造方便,生产成本低,并且空心管跟随第三法兰9和第四法兰10一起旋转时,不会在空心管处形成旋转阻力而影响风力发电机的功率,因此,大大提高了风力发电机的发电效率;用多根连接杆231作为连接件,其结构简单,且能减轻垂直风力发电机的重量;如图32所示,在第三法兰9的外圆周面上连接了两个第八法兰21,在第四法兰10的外圆周面上连接了两个第九法兰22,所述叶片3的下端通过第八法兰21与第三法兰9连接,叶片3的上端通过第九法兰22与第四法兰10连接。设置第八法兰21和第九法兰22,方便叶片3的安装、拆卸和维修。
如图5、图26至图29所示的垂直风力发电机叶片3,所述的叶片由三个叶片单元31组成;如图26,叶片单元31的横截面为中间大两端小的橄榄形,且两小端中其中一端为弧状,另一端为尖端,叶片单元31采用这种横截面结构,对风能的利用 率高。所述的叶片单元31包括骨架101、叶身102、第一叶尖103及第二叶尖104;叶身102安装在骨架103上,骨架103处在叶身102内;所述的第一叶尖103设在叶身102沿叶片单元31的径向方向上的一端,第一叶尖103的尾部1031为所述的弧状,第一叶尖103的头部1032伸入到叶身102内;所述的第二叶尖104设在叶身102沿叶片单元31的径向方向上与第一叶尖103相对的一端,第二叶尖104的尾部1041为所述的尖端,第二叶尖104的头部1042伸入到叶身102内;如图26和图29,在叶身102和第一叶尖103之间设有第一导轨组(未示出),在叶身102和第二叶尖104之间设有第二导轨组32;如图26所示,在骨架101和第一叶尖103之间设有包括第一丝杆2100、第一螺母2200、第一电机2300、两个以上的第一直线轴承2400及与第一直线轴承数量相等的第一轴承座2500的第一运动装置,所述的第一直线轴承2400为两个,相对应的第一轴承座2500也为两个,所述的第一轴承座2500安装在叶身102上,第一直线轴承2400安装在第一轴承座2500内,所述的第一螺母2200安装在第一叶尖103上,所述第一丝杆2100的一端与第一电机2300相连接,第一丝杆2100穿过第一直线轴承2400,第一丝杆2100与第一螺母2200相啮合,所述的第一电机2300和第一丝杆2100之间设有第一联轴器2600;如图26和图29所示,在骨架101和第二叶尖104之间设有包括第二丝杆3100、第二螺母3200、第二电机3300、两个以上的第二直线轴承3400及与第二直线轴承数量相等的第二轴承座3500的第二运动装置,所述的第二直线轴承3400为两个,相对应的第二轴承座3500也为两个,所述的第二轴承座3500安装在叶身102上,第二直线轴承3400安装在第二轴承座3500内,所述的第二螺母3200安装在第二叶尖104上,所述第二丝杆3100的一端与第二电机3300相连接,第二丝杆3100穿过第二直线轴承3400,第二丝杆3100与第二螺母3200相啮合,所述的第二电机3300和第二丝杆3100之间设有第二联轴器3600;采用丝杆、螺母、直线轴承作为运动装置,其传动精度高。如图26,在骨架101和叶身102之间还安装有加强筋50,这样,能增大骨架101和叶身102之间的连接强度;在叶身102的靠近第一叶尖103的一端部安装有第一密封条60,在叶身102的靠近第二叶尖104的一端部安装有第一密封条70,这样,能防止雨水、尘埃进入到叶片单元内,垂直风力发电机在工作时,能防止在叶片单元横截面两端形成对流而影响垂直风力发电机的工作效率。
如图4所示,在发电机单元2内设有冷却系统,包括风叶24、冷却器25、密封 盘26、风扇27及设在发电机定子2021、转子2022、励磁机定子2031和励磁机转子2032上的风道15;如图15所示,所述的风叶24倾斜的安装在外支架2011的外壁上,密封盘26固定套装在塔柱1的外壁上,且位于内支架2012上端内部励磁机203的上方,风扇27安装在密封盘26上;冷却器25安装在密封盘26上,且设在风扇27的上方;在内支架2012的下端部上开有出风口29,内支架2012的上端部上开有进风口33,进风口33位于密封盘26的上方,所述的出风口28、进风口33与支架风道2013是相通的;在塔柱1内设有外部冷却器34,冷却器25通过进液管35和出液管36与外冷却器34相连接。
如图17所示,在所述塔柱1顶部设有起重机80,所述起重机80包括回转塔架801、起重臂802、平衡臂803、平衡重804、起重小车805、导轨806、吊钩807、拉索808、起升机构809和控制系统(未示出)。所述回转塔架801与塔柱1顶部连接,起重臂802和平衡臂803安装在回转塔架801上,回转塔架801可以360°转动;平衡重804安装在平衡臂803的一端;导轨806设置在起重臂802上,起重小车805设置于导轨806上,起重小车805可在导轨806上前后运动;吊钩807设置于起重小车805下方,吊钩807与拉索808的一端连接,拉索808的另一端与起升机构809相连接,由起升机构809控制吊钩807的升降。另外,在所述回转塔架801顶端与平衡臂803之间设有平衡臂拉杆810,平衡臂拉杆810一端与回转塔架801顶端固定连接,平衡臂拉杆810另一端与平衡臂803固定连接;在所述回转塔架801顶端与起重臂802之间设有起重臂拉杆811,起重臂拉杆811一端与回转塔架801顶端固定连接,起重臂拉杆811另一端与起重臂802固定连接;平衡臂拉杆810和起重臂拉杆811保证了起重机80的结构稳定和提高了起重机80的起重负载。
如图32所示,在所述塔柱1内部设有升降系统,所述的升降系统为升降电梯37,所述升降电梯37包括轿厢371和轿厢升降机构372,轿厢371由轿厢升降机构372实现升降。
所述的第一轴承4、第二轴承5和第三轴承6的外圈设有刹车装置(未示出)。
上面所述的垂直风力发电机运转的过程主要包括风力发电机发电、对发电机的冷却、发电机作为电动机的启动及对垂直风力发电机的维修、检测几大部分。下面分别说明几大部分的工作原理。
垂直风力发电机发电的工作原理:叶片3在风力的推动下开始旋转,叶片3旋 转后产生转矩,叶片3所产生的转矩通过叶片3的上端传给第四法兰10及通过叶片3的下端传给第三法兰9,此时,第三法兰9和第四法兰10跟随叶片3一起旋转,传递给第四法兰10上的转矩通过连接件23传递给第三法兰9,第三法兰9依次通过第七法兰13、第二法兰8和第六法兰12将转矩传给支架201,支架201带动转子2022和励磁机转子2032旋转,使转子2022绕着定子2021旋转,励磁机转子2032绕励磁机定子2031旋转,励磁机转子2032在旋转过程中,励磁机转子2032中的励磁机转子绕组产生交流电流,然后,经旋转整流装置161将交流电流转变为直流电流输送到发电机转子2022的转子绕组中,发电机转子绕组通入直流电后产生磁场,由于发电机转子2022的旋转作用,发电机绕组将产生接近于正弦分布的磁场,发电机定子2021上的发电机定子绕组做相对于发电机转子绕组做切割磁场线运动,并在发电机定子绕组内感应出三相交流电势,从而达到发电的目的。此结构,由于设置了第三法兰9、第四法兰10和连接件23,叶片3所产生的转矩不仅通过叶片3的下端传到第三法兰9上,还通过叶片3的上端传到第四法兰10,第四法兰10通过连接件23将转矩传给第三法兰9,这样,就平衡了叶片3上端和下端的受力大小,使得叶片3不易变形,因此,叶片3不易损坏,提高了垂直风力发电机的寿命。如图6所示,叶片3在旋转过程中,当风力小时,第一叶尖103和第二叶尖104为打开状态,这样,叶片3迎风面的面积大,垂直风力发电机的功率大;如图7,当风力变大时,第一叶尖103在第一运动装置的作用下沿第一导轨组向骨架101方向上运动,第一叶尖103收缩,同时,第二叶尖104在第二运动装置的作用下沿第二导轨组2向骨架101方向运动,第二叶尖104收缩,此时,叶片3的迎风面的面积减小,垂直发电机的功率得到自动的调整,采用这种结构,能防止因风速过大而引起垂直风力发电机失效。
冷却系统的工作原理为:风扇27工作形成风流,冷风经励磁机转子2032、励磁机定子2031、转子2022和定子2021的风道15到达发电机的下端,起到冷却励磁机和发电机的作用,此时,冷风变成热风,经出风口29进入到支架风道2013内,在这里通过外支架2011与外界空气进行热交换,使风流中的热风变成冷风,然后风流通过进风口33进入冷却器25,在这里风流被进一步的冷却,然后经风扇27流入到风力发电机的内腔中,形成内循环。在转子外支架2011外,由于设置了风叶24,且风叶24倾斜的安装在外支架2011的外壁上,当支架201旋转时,风叶24也跟随一起旋转,这时,在风叶24上形成上下的风压差,使得靠近发电机的外界空气形成从 高压向低压流动的风流,即形成外部循环,这样能提高内循环中的风流与外界进行热交换的效率,因此,提高了对发电机的冷却效果,提高了发电机的使用寿命。
外部冷却器34和冷却器25的工作过程为:外部冷却器34将冷却液通过进夜管35输送到冷却器25中,在冷却器25中与内循环中的风进行热交换,然后变成热水经出液管36流入到外部冷却器34进行冷却,然后如上述过程继续循环,这样提高内循环中的风流在冷却器25中的冷却效果,从而提高了对发电机的冷却效果,增大发电机的使用寿命。
发电机作为电动机的启动的工作过程为:(1)电动机运行:如图10所示,风力发电机在低风速或者启动困难时,励磁控制装置16与电网17断开,励磁机定子绕组中的电流为零,发电机运行在电动模式,发电机定子绕组与电网17连接,电网17通过双向变频器15向发电机定子绕组提供交流电流,这时在定子2021和转子2022的气隙14内产生一个旋转磁场,旋转磁场与发电机转子绕组及阻尼绕组38产生相对运动,发电机绕组切割磁力线在发电机转子绕组和阻尼绕组38内产生感应电动势,发电机转子绕组和阻力绕组闭合后在发电机转子绕组和阻尼绕组38内出现感应电流,旋转磁场与感应电流相互作用而产生电磁转矩使发电机的转子2022旋转起来,实现异步运行,从而解决了风力发电机在低风速或者启动困难的问题。发电机在作为电动机运行时,通过调节双向变频器15的输出频率,来调节发电机作为电动机的转速。(2)发电机运行:当风速变大后,发电机转速满足切入风速时,首先让发电机以上述的电动机状态运行,并且带动励磁机转子2032旋转,励磁机转子绕组中感应出交流电,经过旋转整流装置161的整流后,将直流的电流输入到发电机转子绕组中,发电机定子绕组感应出三相交流电。此时,控制双向变频器15暂时停止工作,发电机退出电动机工作状态,由叶片3产生的转矩驱动支架201旋转,支架201带动发电机转子2022和励磁机转子2032旋转,并让励磁控制装置16投入工作,发电机开始以同步发电机运行。从电动机转变为发电机后,重新让双向变频器15投入工作,发电机定子绕组中三相交流电经过双向变频器15整流、滤波后,接入电网17,实行发电机运行。当风速改变时,发电机的转速也随之变化,发电机定子绕组中感应电流的频率也跟着改变,此时可以调节双向变频器15的工作参数,保证输出的频率不变,实现变速恒频运行。当发电机运行在发电机状态时,通过调节励磁控制装置16的电流输出,来调节发电机转子绕组所获得的励磁电流,从而实现发电机输出功率的调节。 (3)当风速超出一定范围时,励磁控制装置16与电网17之间连接断开,双向变频器15与发电机之间也断开,发电系统不消耗电能,也不输出电能,同时,刹车装置也能限制发电机的转速,避免风力发电机被损坏。
对垂直风力发电机的维修、检测的通过升降系统和起重机80来实现的,其实现过程为:操作人员通过升降系统能到达塔柱1中的任何一个发电机单元2,还能够达到起重机90,操作人员能够在起重机90中的吊钩807上进行操作,所述的吊钩807通过拉索808与起升机构809连接,这样,能够调节吊钩807在垂直方向的位置,在导轨806上设了起重小车805,起重小车805能在导轨806上滑动,这样,能够调节吊钩807在水平方向的位置,由于回转塔架801能360°旋转,因此,操作人员能在垂直风力发电机上的任何地方进行维修和检测,不需要另外搭建维修塔架和其他的大型设备,大大节约了维修成本和维修、检测时间。

Claims (17)

1.一种垂直风力发电机,包括塔柱、一个以上的发电机单元及二片以上的叶片;
其特征在于:所述塔柱的中心轴线与水平面垂直;
所述的发电机单元包括支架、发电机及励磁机;
所述的支架包括外支架和内支架;
所述的发电机包括定子及转子,定子固定套设在塔柱上,转子设在定子外,且固设在内支架上,所述的定子上设有发电机定子绕组,转子上设有发电机转子绕组;
所述的励磁机包括励磁机定子及励磁机转子,励磁机定子固定套设在塔柱上,励磁机转子设在励磁机定子外,且固设在内支架上,所述励磁机定子上设有励磁机定子绕组,励磁机转子上设有励磁机转子绕组;
所述的支架内设有励磁控制装置及旋转整流装置,发电机定子绕组通过励磁控制装置与励磁机定子绕组联接,发电机转子绕组通过旋转整流装置与励磁机转子绕组联接;所述的发电机定子绕组联接有双向变频器;双向变频器的另一端联接有电网,且双向变频器与励磁控制装置联接;
所述的支架下端设有上下两端横截面不同的第一法兰,第一法兰下端设有第一轴承,第一轴承的外圈与第一法兰的小端相连接,第一轴承的内圈固定套设在塔柱上,第一法兰的大端与支架的下端相连接;
所述的支架上端设有上下两端横截面不同的第二法兰,第二法兰的上端设有第二轴承,第二轴承的外圈与第二法兰的小端相连接,第二轴承的内圈固定套设在塔柱上,第二法兰的大端与支架的上端相连接;
所述第二轴承的上方设有第三轴承,第三轴承的内圈固定套设在塔柱上; 
所述叶片包括一个以上的叶片单元,所述叶片单元的横截面为中间大两端小的橄榄形,且两小端中的其中一端为弧状,另一端为尖端;所述的叶片单元包括骨架及叶身,叶身安装在骨架上,在叶片单元的径向方向上,叶身的一端设有第一叶尖,叶身的另一端设有第二叶尖,第一叶尖的尾部为所述叶片单元的弧状,第二叶尖的尾部为所述叶片单元的尖端,第一叶尖的头部伸入到叶身内,第二叶尖的头部伸入到叶身内;所述骨架和第一叶尖之间设有带动第一叶尖沿叶片单元径向方向运动的第一运动装置,骨架和第二叶尖之间设有带动第二叶尖沿叶片单元径向方向运动的第二运动装置;所述的第一叶尖与叶身之间设有第一导轨组,第二叶尖与叶身之间设有第二导轨组,所述的叶片单元连接后呈弧形;所述叶片的上端与第三轴承的外圈相连接,叶片的下端与第二轴承的外圈相连接;
所述的发电机单元上设有冷却系统,所述的冷却系统包括风叶、冷却器、密封盘及风扇;所述外支架和内支架之间设有支架风道;所述的定子、转子、励磁机定子和励磁机转子上设有风道;内支架的下端部上设有出风口,内支架的上端部上设有进风口;支架风道与出风口和进风口相通;所述的风叶倾斜的设在外支架的外壁上;所述的密封盘设在塔柱上,且位于内支架的上端部内;风扇设在密封盘上,冷却器设在风扇的上方;
所述的塔柱顶部设有起重机;
所述的塔柱为空心塔柱,塔柱内设有升降系统。
2.根据权利要求1所述的垂直风力发电机,其特征在于:所述的塔柱上第二法兰上方设有第三法兰,第三法兰与第二法兰相连接;所述塔柱上第三法兰上方设有第四法兰,第四法兰与所述的第三轴承的外圈相连接; 
所述的第三法兰和第四法兰之间设有传递转矩的连接件,连接件的上端与第四法兰相连接,连接件的下端与第三法兰相连接;
所述的叶片上端与第四法兰相连接,叶片的下端与第三法兰相连接。
3.根据权利要求2所述的垂直风力发电机,其特征在于:所述的连接件为空心管,所述空心管套设在塔柱外,空心管的上端与第四法兰相连接,空心管的下端与第三法兰相连接。
4.根据权利要求2所述的垂直风力发电机,其特征在于:所述的连接件包括二根以上的连接杆,所述连接杆的上端与第四法兰相连接,连接杆的下端与第三法兰相连接,所述的连接杆设置在塔柱外且与塔柱横截面同心的圆周上;所述的连接杆上沿塔柱横截面方向上设有加强筋。
5.根据权利要求1所述的垂直风力发电机,其特征在于:所述的定子下端面上设有定子托座,定子托座固定套设在塔柱上;所述的励磁机定子下端面上设有励磁机定子托座,励磁机定子托座固定套设在塔柱上;所述的第一轴承内圈下端面上设有第一轴承托座,第一轴承托座固定套设在塔柱上;所述的第二轴承内圈下端面上设有第二轴承托座,第二轴承托座固定套设在塔柱上;所述的第三轴承内圈下端面上设有第三轴承托座,第三轴承托座固定套设在塔柱上。
6.根据权利要求1所述的垂直风力发电机,其特征在于:所述的转子上设有阻尼绕组,阻尼绕组包括端环和阻尼条,阻尼条安装在端环上。
7.根据权利要求1所述的垂直风力发电机,其特征在于:所述的第一法兰呈锥台型、喇叭型、“凸”字型或台阶型;第二法兰呈锥台型、喇叭型、“凸”字型或台阶型。
8.根据权利要求1或2所述的垂直风力发电机,其特征在于:所述的支架和第一法兰之间设有第五法兰,第五法兰的上端面与支架相连接,下端 面与第一法兰的大端相连接;所述的支架与第二法兰之间设有第六法兰,第六法兰的上端面与第二法兰的大端相连接,下端面与支架相连接;所述第二轴承的外圈外套设有第七法兰,第七法兰的上端面与第三法兰相连接,下端面与第二法兰的小端相连接。
9.根据权利要求2至5任一项所述的垂直风力发电机,其特征在于:所述的叶片下端与第三法兰之间设有第八法兰,叶片上端与第四法兰之间设有第九法兰。
10.根据权利要求1所述的垂直风力发电机,其特征在于:所述的第一运动装置为第一液压系统,第二运动装置为第二液压系统;所述的第一液压系统包括第一液压泵、第一液压阀、第一液压管及第一液压缸;所述的第一液压缸包括第一液压缸体、第一活塞、第一活塞杆及第一密封装置,所述的第一液压缸体远离第一活塞杆的一端与骨架连接,第一活塞杆远离第一液压缸体的一端与第一叶尖连接;所述的第二液压系统包括第二液压泵、第二液压阀、第二液压管及第二液压缸;所述的第二液压缸包括第二液压缸体、第二活塞、第二活塞杆及第二密封装置,所述的第二液压缸体远离第二活塞杆的一端与骨架连接,第二活塞杆远离第二液压缸体的一端与第二叶尖连接。
11.根据权利要求1所述的垂直风力发电机,其特征在于:所述的第一运动装置为第一气压系统,第一气压系统包括第一空气压缩机及第一气压缸,第一气压缸包括第一气压缸体、第一气压活塞、第一气压活塞杆及第一气压密封装置,所述的第一气压缸体安装在骨架上,第一气压活塞杆远离第一气压缸体的一端与第一叶尖相连接;所述的第二运动装置为第二气压系统,第二气压系统包括第二空气压缩机及第二气压缸,第二气压缸包括第二气压缸体、第二气压活塞、第二气压活塞杆及第二气压密封 装置,所述的第二气压缸体安装在骨架上,第二气压活塞杆远离第二气压缸体的一端与第二叶尖相连接。
12.根据权利要求1所述的垂直风力发电机,其特征在于:所述的第一运动装置包括第一丝杆、第一螺母、第一电机、两个以上的第一直线轴承及第一轴承座,所述的第一轴承座安装在叶身上,第一直线轴承安装在第一轴承座上,所述的第一螺母安装在第一叶尖上,所述第一丝杆的一端与第一电机相连接,所述第一丝杆与第一螺母相啮合,所述的第一电机和第一丝杆之间设有第一联轴器;所述的第二运动装置包括第二丝杆、第二螺母、第二电机、两个以上的第二直线轴承及第二轴承座,所述的第二轴承座安装在叶身上,第二直线轴承安装在第二轴承座上,所述的第二螺母安装在第二叶尖上,所述第二丝杆的一端与第二电机相连接,所述第二丝杆与第二螺母相啮合,所述的第二电机和第二丝杆之间设有第二联轴器。
13.根据权利要求1所述的垂直风力发电机,其特征在于:所述的叶身靠近第一叶尖的端部上设有第一密封条,在叶身靠近第二叶尖的端部设有第二密封条;所述的骨架和叶身之间设有叶片加强筋。
14.根据权利要求1所述的垂直风力发电机,其特征在于:所述的冷却器上连接有外部冷却器,外部冷却器设在塔柱内。
15.根据权利要求1所述的垂直风力发电机,其特征在于:所述起重机包括回转塔架、起重臂、平衡臂、平衡重、起重小车、小车行走机构、吊钩、拉索、起升机构和控制系统;
所述回转塔架设在塔柱顶部上,起重臂和平衡臂安装在回转塔架上,平衡重安装在平衡臂的一端,小车行走机构设置在起重臂上,起重小车设置于小车行走机构上,吊钩设置于起重小车下方,吊钩与所述拉索的 一端连接,拉索的另一端与起升机构相连接;
所述小车行走机构为设置于起重臂上的导轨,所述起重小车设在所述导轨上;
在所述回转塔架顶端与平衡臂之间设有平衡臂拉杆,平衡臂拉杆一端与回转塔架顶端固定连接,平衡臂拉杆另一端与平衡臂固定连接;在所述回转塔架顶端与起重臂之间设有起重臂拉杆,起重臂拉杆一端与回转塔架顶端固定连接,起重臂拉杆另一端与起重臂固定连接。
16.根据权利要求1所述的垂直风力发电机,其特征在于:所述的升降系统为升降电梯,所述升降电梯包括轿厢和轿厢升降机构。
17.根据权利要求1所述的垂直风力发电机,其特征在于:所述的第一轴承、第二轴承和第三轴承的外圈上设有刹车装置。 
CN2009100411597A 2009-07-16 2009-07-16 一种垂直风力发电机 Expired - Fee Related CN101603511B (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN2009100411597A CN101603511B (zh) 2009-07-16 2009-07-16 一种垂直风力发电机
PCT/CN2009/001041 WO2011006284A1 (zh) 2009-07-16 2009-09-17 一种垂直风力发电机
EP09847209.5A EP2455610B1 (en) 2009-07-16 2009-09-17 Vertical wind power generator
KR1020127002453A KR101415100B1 (ko) 2009-07-16 2009-09-17 수직 풍력발전기
JP2012519866A JP2012533276A (ja) 2009-07-16 2009-09-17 垂直風力発電装置
US13/384,239 US8546972B2 (en) 2009-07-16 2009-09-17 Vertical wind power generator
CA2768266A CA2768266C (en) 2009-07-16 2009-09-17 A vertical wind power generator with a crane
AU2009349979A AU2009349979B2 (en) 2009-07-16 2009-09-17 Vertical wind power generator
RU2012105064/06A RU2511985C2 (ru) 2009-07-16 2009-09-17 Вертикальный ветровой электрогенератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100411597A CN101603511B (zh) 2009-07-16 2009-07-16 一种垂直风力发电机

Publications (2)

Publication Number Publication Date
CN101603511A CN101603511A (zh) 2009-12-16
CN101603511B true CN101603511B (zh) 2011-07-27

Family

ID=41469379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100411597A Expired - Fee Related CN101603511B (zh) 2009-07-16 2009-07-16 一种垂直风力发电机

Country Status (9)

Country Link
US (1) US8546972B2 (zh)
EP (1) EP2455610B1 (zh)
JP (1) JP2012533276A (zh)
KR (1) KR101415100B1 (zh)
CN (1) CN101603511B (zh)
AU (1) AU2009349979B2 (zh)
CA (1) CA2768266C (zh)
RU (1) RU2511985C2 (zh)
WO (1) WO2011006284A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461285B (en) * 2008-06-26 2012-07-25 Converteam Technology Ltd Vertical axis wind turbines
WO2011156949A1 (zh) * 2010-06-13 2011-12-22 Sun Shouquan 涵道式风力发电机
CN101913700B (zh) * 2010-07-26 2011-11-02 铁道第三勘察设计院集团有限公司 聚风增压风能光能水处理装置
CN101950977A (zh) * 2010-09-01 2011-01-19 北京清能华福风电技术有限公司 一种实现永磁风力发电机组低风速起动的方法
DE102010055687B4 (de) * 2010-12-22 2015-01-15 Airbus Defence and Space GmbH Windkraft-Hybridrotor
CN102251937B (zh) * 2011-06-30 2013-03-13 邓允河 一种垂直轴风力发电机规避强风引起失速的装置及方法
CN102392795B (zh) * 2011-10-29 2013-05-08 邓允河 垂直轴风力发电机储能发电系统及方法
US8985948B2 (en) 2012-02-21 2015-03-24 Clean Green Energy LLC Fluid driven vertical axis turbine
ITBO20120453A1 (it) * 2012-08-28 2014-03-01 Ride Tek Engineering S R L Generatore eolico ad asse verticale
CN103835886A (zh) * 2013-04-01 2014-06-04 洛阳希诺能源科技有限公司 在寒冷地区应用的垂直轴风机
WO2014196981A1 (en) * 2013-06-07 2014-12-11 Ge Aviation Systems Llc Turbofan engine with generator
RU2529990C1 (ru) * 2013-10-25 2014-10-10 Александр Владимирович Губанов Поливиндротор модифицированный
JP2016160873A (ja) * 2015-03-04 2016-09-05 株式会社エコ・テクノロジー 風力発電装置
FR3041388B1 (fr) * 2015-09-17 2018-05-18 Nenuphar Eolienne a axe vertical et procedes de montage et de demontage
CN106787535A (zh) * 2016-12-16 2017-05-31 卧龙电气集团股份有限公司 一种双压多转速立式电动机
ES2687782A1 (es) * 2017-04-28 2018-10-29 Gamesa Innovation & Technology, S.L. Método y sistema de evaluación de un sistema pararrayos de un aerogenerador que comprende una pluralidad de palas fabricadas con un compuesto reforzado con fibra de carbono
WO2019213748A1 (en) 2018-05-05 2019-11-14 LiftWerx Holdings Inc. Nacelle mountable lift system for a wind turbine
CN108386315B (zh) * 2018-05-09 2023-07-25 尹宏章 特大型高效风能发电装置
JP6449509B1 (ja) * 2018-06-08 2019-01-09 株式会社グローバルエナジー 縦軸風車、その縦長ブレード及び風力発電装置
CN109538422B (zh) * 2018-11-29 2023-10-27 中国科学院广州能源研究所 一种波浪能和风能互补能量供应平台
EP3705445A1 (en) * 2019-03-04 2020-09-09 Siemens Gamesa Renewable Energy A/S Overhead travelling crane assembly
CN116480540B (zh) * 2023-06-07 2023-11-07 华能新能源股份有限公司山西分公司 一种风力发电机检修辅助装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334241A1 (de) * 1988-03-26 1989-09-27 Heidelberg Motor Gesellschaft Fuer Energiekonverter Mbh Vorrichtung zur Nutzbarmachung von Windenergie
DE4117838A1 (de) * 1991-05-29 1992-12-03 Juergen Schatz Verfahren und einrichtung zur energetischen nutzung gasfoermiger stoffstroeme, insbesondere langsam fliessender stoffstroeme
CN1683783A (zh) * 2004-04-13 2005-10-19 王和平 一种垂直轴风力发电机
CN200988745Y (zh) * 2006-12-30 2007-12-12 新疆风能有限责任公司 一种专用于风力发电机安装的吊装装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7514750A (nl) * 1975-12-18 1977-06-21 Stichting Reactor Centrum Windmoleninstallatie voor het opwekken van energie.
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
JPS61113980U (zh) * 1985-12-18 1986-07-18
US5146096A (en) * 1990-06-25 1992-09-08 Mcconachy Harry R Efficient high tower wind generating system
RU2000469C1 (ru) * 1992-05-06 1993-09-07 Волосов Д.Р., Русецкий B.C., Рафаилов А.Г., Резниченко В.И., Артемьев А.В. Ветроколесо
FR2747380B1 (fr) * 1996-04-16 1998-05-22 Potain Sa Procede et dispositif pour l'acces securise a un poste de conduite eleve, notamment sur une grue a tour
JP2003214323A (ja) * 2002-01-25 2003-07-30 Ebara Corp 垂直軸風車
JP2003293936A (ja) * 2002-04-01 2003-10-15 Mitsubishi Heavy Ind Ltd 垂直軸風車
JP3451085B1 (ja) * 2002-09-20 2003-09-29 常夫 野口 風力発電用の風車
GB0420242D0 (en) * 2004-09-13 2004-10-13 Proven Eng Prod Cross flow release turbine
ES2316200B1 (es) * 2004-12-21 2010-01-11 GAMESA INNOVATION & TECHNOLOGY, S.L. Aerogenerador con grua desmontable y pescante auxiliar y procedimiento de montaje de dicha grua.
EP1857671A1 (en) * 2005-03-07 2007-11-21 Intellectual Property Bank Corp. Blade for vertical shaft windmill and lift type vertical shaft windmill
JP2006316751A (ja) * 2005-05-16 2006-11-24 Takumi Hashizume ダリウス・サボニウス式風力発電装置
WO2007140397A2 (en) * 2006-05-30 2007-12-06 Analytical Design Service Corporation Vertical axis wind system
JP4728206B2 (ja) * 2006-09-29 2011-07-20 新高能源科技股▲フン▼有限公司 二軸式垂直軸風力タービン
CN100535434C (zh) 2006-12-14 2009-09-02 天津市新源电气科技有限公司 变速变频风电机励磁控制系统
US20090096213A1 (en) * 2007-10-12 2009-04-16 Berglund Jerry W Vertical axis wind turbine and method of making the same
KR100870634B1 (ko) 2008-07-31 2008-11-26 주식회사 미지에너텍 풍력 발전기
CN101514679B (zh) * 2009-03-27 2011-10-05 广州雅图风电设备制造有限公司 一种垂直风力发电机叶片
CN101514677B (zh) * 2009-03-27 2011-04-20 广州雅图风电设备制造有限公司 一种垂直轴风力发电机
CN101526069B (zh) * 2009-04-17 2010-12-29 邓允河 一种垂直风力发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334241A1 (de) * 1988-03-26 1989-09-27 Heidelberg Motor Gesellschaft Fuer Energiekonverter Mbh Vorrichtung zur Nutzbarmachung von Windenergie
DE4117838A1 (de) * 1991-05-29 1992-12-03 Juergen Schatz Verfahren und einrichtung zur energetischen nutzung gasfoermiger stoffstroeme, insbesondere langsam fliessender stoffstroeme
CN1683783A (zh) * 2004-04-13 2005-10-19 王和平 一种垂直轴风力发电机
CN200988745Y (zh) * 2006-12-30 2007-12-12 新疆风能有限责任公司 一种专用于风力发电机安装的吊装装置

Also Published As

Publication number Publication date
JP2012533276A (ja) 2012-12-20
EP2455610A4 (en) 2013-12-11
US8546972B2 (en) 2013-10-01
KR101415100B1 (ko) 2014-07-16
EP2455610A1 (en) 2012-05-23
RU2511985C2 (ru) 2014-04-10
RU2012105064A (ru) 2013-08-27
KR20120090023A (ko) 2012-08-16
CN101603511A (zh) 2009-12-16
WO2011006284A1 (zh) 2011-01-20
US20120126542A1 (en) 2012-05-24
CA2768266A1 (en) 2011-01-20
AU2009349979A1 (en) 2012-02-09
AU2009349979B2 (en) 2014-01-23
EP2455610B1 (en) 2015-03-11
CA2768266C (en) 2014-09-16

Similar Documents

Publication Publication Date Title
CN101603511B (zh) 一种垂直风力发电机
EP2270294A2 (en) Methods and flange for assembling towers
CN104847579B (zh) 可调叶片攻角双层式风轮垂直轴风力发电机
US8952558B2 (en) Wind generating device
CN2802116Y (zh) 框架式多级风轮机
CN103511183B (zh) 一种垂直轴风力发电机
CN1880756A (zh) 自由发电定频稳压输出的风力发电机
CN101514677B (zh) 一种垂直轴风力发电机
CN101550918B (zh) 垂直风力发电机
CN101550917B (zh) 一种垂直风力发电机
CN104832372B (zh) 10mw级空气动力制动的垂直轴风电系统
CN203948227U (zh) 一种中型低速永磁直驱风力发电机组
CN203081656U (zh) 一种内转子电励磁直驱风电机组
CN101922416B (zh) 开启风帆式垂直短轴大型风力发电机
CN101302994B (zh) 一种垂直轴风力机
CN201228612Y (zh) 一种垂直轴风力机
CN104405588B (zh) 轮式直驱风力发电机
CN219549022U (zh) 风力涡轮机以及风力发电设备
CN202031768U (zh) 磁悬浮轴定位翼型风帆风力发电机
CN202148989U (zh) 高空发电的地面风力发电机组
CN103511198B (zh) 一种垂直轴风力发电机的施工方法
CN1566625A (zh) 风坝式径流垂直轴风力发电机
CN109826757A (zh) 一种链轮传动的风力发电装置及其工作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 510800 201 Mall, No. 11 Guanghua Sixth Road, Huadu District, Guangzhou City, Guangdong Province

Patentee after: GUANGZHOU YATU NEW ENERGY TECHNOLOGY Co.,Ltd.

Address before: 510460 Guangdong city of Guangzhou Province Yao town of Huadu District Ya Yuan Road No. 1

Patentee before: Guangzhou Yatu Wind Power Equipment Manufacturing Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110727