CN101601987B - 在微流控芯片之间实现数字微流体输运的装置及方法 - Google Patents

在微流控芯片之间实现数字微流体输运的装置及方法 Download PDF

Info

Publication number
CN101601987B
CN101601987B CN2009101004352A CN200910100435A CN101601987B CN 101601987 B CN101601987 B CN 101601987B CN 2009101004352 A CN2009101004352 A CN 2009101004352A CN 200910100435 A CN200910100435 A CN 200910100435A CN 101601987 B CN101601987 B CN 101601987B
Authority
CN
China
Prior art keywords
micro
transports
fluid
fluidic chip
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101004352A
Other languages
English (en)
Other versions
CN101601987A (zh
Inventor
章安良
费景臣
叶丽军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN2009101004352A priority Critical patent/CN101601987B/zh
Publication of CN101601987A publication Critical patent/CN101601987A/zh
Application granted granted Critical
Publication of CN101601987B publication Critical patent/CN101601987B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

本发明公开了一种在微流控芯片之间实现微流体输运的装置及方法,优点在于本装置包括输运接口芯片,输运接口芯片由输运压电基片组成,输运压电基片上设置有输运叉指换能器和输运疏水层,这样需在多个微流控芯片间输运微流体时,可将输运压电基片与微流控芯片的压电基片对接,使输运疏水层和微流控芯片的疏水层相连通,开启信号发生装置,加载RF电信号到微流控芯片的叉指换能器上使其产生声表面波并驱动微流体运动,在惯性力作用下微流体运动到输运疏水层上,关闭信号发生装置,再移动输运接口芯片,使输运压电基片与另一微流控芯片的压电基片对接,使输运疏水层与该微流控芯片的疏水层相连通,采用相同的方法使微流体输运到该微流控芯片上。

Description

在微流控芯片之间实现数字微流体输运的装置及方法
技术领域
本发明涉及一种微流体输运技术,尤其是涉及一种在微流控芯片之间实现数字微流体输运的装置及方法。
背景技术
微流控芯片是将样品预处理、混合、反应、分离和检测等操作单元集成在一个或多个芯片中的微分析系统,以代替传统的实验室工作。微流控芯片具有样品用量少、操作简单,并能在较短时间内精确完成从样品制备到结果显示的全过程,能有效地克服传统的实验室工作中手工操作带来的实验误差,因此微流控芯片在化学分析、DNA测序、蛋白质分析、单细胞分析、单分子分析、食品安全、环境检测和药物筛选等领域中得到了越来越多的应用,并随着微流控芯片技术的进一步成熟,其应用范围必将深入到生活的方方面面,故微流控芯片也曾被称为“影响人类未来的最重要的发明之一”。
微流体输运是微流控芯片的重要基础操作单元。对于微流体输运,目前存在较多用于输运微流体的方法,如气动微泵方法、采用电渗原理作为驱动力来输运样品或定位微液体的方法、采用离心力驱动方式输运微流体的方法、采用气体膨胀原理使薄膜(聚二甲基硅氧烷(PDMS)膜)形变而完成微流体输运的方法及采用电场驱动输运微流体的方法等等,这些方法各自具有优点,但也存在缺点。气动微泵方法:使用该方法输运微流体需外置气源和控制阀,但气源和控制阀体积较大,不能集成于微流控芯片中。采用电渗原理作为驱动力来输运样品或定位微液体的方法,该方法不能输运非带电分子,属于非均质移动,使用该方法的输运装置缺乏灵活性,而且进一步发展的潜力较小。采用离心力驱动方式输运微流体的方法,该方法依靠微流控芯片在旋转过程中所产生的离心力作用使微流体流向微流控芯片外围,但该方法需要微流控芯片高速旋转,这样增加了液流控制及检测等方面的难度,难以大规模推广应用。采用气体膨胀原理使薄膜(聚二甲基硅氧烷(PDMS)膜)形变而完成微流体输运的方法,该方法需要集成加热电阻等相关单元,不仅增加了微流控芯片的面积,而且加热和冷却需要一定的时间,从而使得开关速度缓慢,另外同样需要外界加热装置,不易集成化。采用电场驱动输运微流体的方法,使用该方法输运微流体时需要较大的外加电压,通常需要几百伏,难以推广应用。
目前声表面波技术的不断发展,且由于其具有工艺简单成熟、价格低廉等优点,越来越受到微流控专家的重视,并开发了以声表面波为驱动力的微流体输运方法。而相对于连续流形式的微流控芯片,数字流形式的微流控芯片具有样品用量更少、分析速度更快、精确度更高、样品或试剂交叉污染更少等诸多优点而具有更大的发展前景,已经得到各国专家的高度重视。现有的利用声表面波技术输运数字微流体的方法,如期刊《IEEE会刊的超声、铁电和频率控制分会刊》2007年第54卷第10期2146-2151页(IEEETransactions on ultrasonics,ferroelectrics,and frequency control Vol.54(10),2007:2146-2151)公开了《运用声表面波系统检测和高精度定位微液滴》(《Detection andhigh-precision positioning of liquid droplets using SAW systems》),它是基于声表面波技术实现数字微流体的输运,在128°Y旋转X传播方向铌酸锂基片上采用微电子工艺制作2×2阵列叉指换能器,在水平方向的叉指换能器上加RF电信号激发声表面波,该声表面波驱动声路径上的数字微流体,以使数字微流体在压电基片的平面内实现输运,数字微流体的位置由垂直方向的叉指换能器对确定。这种数字微流体输运方法解决了两维平面内数字微流体的运动,而随着数字流形式微流控芯片研究的深入,必然需要集成越来越多的操作单元于微流控芯片中,尤其是较复杂的微流体分析系统,很难将所有的操作单元集成于一个微流控芯片中,而是将微流体分析系统所需的各操作单元按功能分别集成于几个微流控芯片中,由此牵涉到了在多个微流控芯片之间输运数字微流体的问题,而现有的微流控芯片通常包括一个压电基片,压电基片上设置有叉指换能器组和用于数字微流体运动的疏水层,叉指换能器组由若干个叉指换能器组成,叉指换能器沿压电基片的四周设置,叉指换能器与外部信号发生装置连接,压电基片上靠近叉指换能器向外的一侧设置有反射栅,反射栅用于减少外部信号发生装置输出到叉指换能器上的RF电信号功率,如果要在现有的多个微流控芯片之间实现数字微流体的输运,则必然要求各个微流控芯片具有一个用于数字微流体向外输运的出口,然而即使各个微流控芯片具有一个出口,上述现有的数字微流体输运方法也无法实现在多个微流控芯片间的数字微流体的输运或传递。
发明内容
本发明所要解决的技术问题是提供一种能够有效实现数字微流体在多个微流控芯片之间输运的输运装置及输运方法。
本发明解决上述技术问题所采用的技术方案为:一种在微流控芯片之间实现数字微流体输运的装置,包括一个可自由移动的输运接口芯片,所述的输运接口芯片主要由输运压电基片组成,所述的输运压电基片连接有导线连接板,所述的输运压电基片的上表面设置有与外部信号发生装置连接的输运叉指换能器和用于数字微流体输送的输运疏水层,所述的输运压电基片用于与微流控芯片的压电基片对接,所述的输运疏水层用于与微流控芯片的疏水层相连通。
本装置还包括一个具有在水平和垂直方向均可调节的活动支架,所述的活动支架包括支架体和连接于所述的支架体上的置物台,所述的置物台上设置有玻璃载片,所述的导线连接板固定连接于所述的玻璃载片上。
所述的输运压电基片的上表面上设置有用于减少外部信号发生装置输出到所述的输运叉指换能器上的RF电信号功率的输运反射栅,所述的输运反射栅的位置靠近所述的输运叉指换能器远离所述的输运疏水层的一侧。
所述的输运叉指换能器和所述的输运反射栅均采用现有的微电子工艺光刻于所述的输运压电基片的上表面上。
所述的输运疏水层的厚度大于等于1μm且小于等于3μm。
所述的输运叉指换能器包括两个第一汇流条,所述的第一汇流条上连接有第一导线,所述的第一导线的一端通过压焊工艺或导电银胶固定连接于所述的导线连接板上,所述的导线连接板上设置有连接引脚,所述的外部信号发生装置包括用于产生RF电信号的信号发生器和与所述的信号发生器连接的功率放大器,所述的功率放大器连接有切换开关,所述的切换开关与所述的连接引脚连接。
一种在微流控芯片之间实现数字微流体输运的方法,包括以下步骤:
①将每个微流控芯片连接一个用于固定连接导线的基板,基板上设置有引脚和支撑块,通过支撑块将多个微流控芯片纵向并行排列成一体,将输运接口芯片通过导线连接板固定连接于活动支架的玻璃载片上,将切换开关与基板上的引脚及导线连接板上的连接引脚相连接;
②在水平和垂直方向上调节活动支架,将输运接口芯片的输运压电基片与待运输出数字微流体的微流控芯片的压电基片对接,使输运接口芯片的输运疏水层与待运输出数字微流体的微流控芯片的疏水层相连通;
③切换切换开关使功率放大器通过切换开关与基板上的引脚连接,开启信号发生器和功率放大器,信号发生器输出RF电信号并将RF电信号传输给功率放大器,功率放大器对接收到的RF电信号进行放大处理,并通过切换开关将放大后的RF电信号传输给待运输出数字微流体的微流控芯片的叉指换能器,待运输出数字微流体的微流控芯片的叉指换能器接入RF电信号后产生声表面波;
④待运输出数字微流体的微流控芯片的叉指换能器产生的声表面波驱动置放于待运输出数字微流体的微流控芯片的疏水层上的待输运的数字微流体,使待输运的数字微流体沿声表面波的传播路径运动,在惯性力作用下待输运的数字微流体运动到输运接口芯片的输运疏水层上,然后关闭信号发生器和功率放大器,切换切换开关使功率放大器通过切换开关与基板上的引脚不相连接;
⑤在水平和垂直方向上调节活动支架,将输运接口芯片的输运压电基片与待接收输运过来的数字微流体的微流控芯片的压电基片对接,使输运接口芯片的输运疏水层与待接收输运过来的数字微流体的微流控芯片的疏水层相连通;
⑥切换切换开关使功率放大器通过切换开关与导线连接板上的连接引脚连接,开启信号发生器和功率放大器,信号发生器输出RF电信号并将RF电信号传输给功率放大器,功率放大器对接收到的RF电信号进行放大处理,并通过切换开关将放大后的RF电信号传输给输运接口芯片的输运叉指换能器,输运接口芯片的输运叉指换能器接入RF电信号后产生声表面波;
⑦输运接口芯片的输运叉指换能器产生的声表面波驱动位于输运接口芯片的输运疏水层上的待输运的数字微流体,使待输运的数字微流体沿声表面波的传播路径运动,在惯性力作用下待输运的数字微流体运动到待接收输运过来的数字微流体的微流控芯片的疏水层上,然后关闭信号发生器和功率放大器,切换切换开关使功率放大器通过切换开关与导线连接板上的连接引脚不相连接,完成数字微流体在微流控芯片间的输运。
重复执行步骤②~⑦,实现数字微流体在多个微流控芯片之间的输运。
与现有技术相比,本发明的优点在于本发明装置包括了一个可自由移动的输运接口芯片,输运接口芯片主要由用于与微流控芯片的压电基片对接的输运压电基片组成,输运压电基片的上表面设置有与外部信号发生装置连接的输运叉指换能器和用于与微流控芯片的疏水层相连通的输运疏水层,这样当需要在多个微流控芯片之间输运数字微流体时,可将输运压电基片与微流控芯片的压电基片对接,并使输运疏水层和微流控芯片的疏水层相连通,开启外部信号发生装置,加载RF电信号到微流控芯片的叉指换能器上,微流控芯片的叉指换能器产生声表面波,声表面波驱动数字微流体运动,在惯性力作用下数字微流体运动到输运疏水层上,关闭信号发生装置,再移动输运接口芯片,使输运压电基片与另一个微流控芯片的压电基片对接,并使输运疏水层与另一个微流控芯片的疏水层相连通,采用相同的方法使位于输运疏水层上的数字微流体输运到另一个微流控芯片上,从而实现数字微流体的多微流控芯片间的输运。
附图说明
图1为本发明的数字微流体输运装置的结构示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
在较为复杂的微流体分析系统中,通常包括两个以上的微流控芯片,每个微流控芯片中集成有多个操作单元,每个微流控芯片在对位于其中的数字微流体进行相关操作时有可能需要与位于其他微流控芯片中的数字微流体共同实现操作,这样通常需要将某一个微流控芯片上的数字微流体输运到其他需该数字微流体的微流控芯片上,目前的数字微流体输运方法无法实现多个微流控芯片间的数字微流体的输运,因此本发明提出了一种在多个微流控芯片之间实现数字微流体输运的装置。
在详细描述本发明装置之前先对微流控芯片进行说明,如图1所示,图1中给出了两个微流控芯片22,微流控芯片22主要由压电基片221组成,压电基片221的上表面为工作表面222,工作表面222上设置有叉指换能器223、用于数字微流体9运动的疏水层224和用于减少外部信号发生装置8输出到叉指换能器223上的RF电信号功率的反射栅225,反射栅225的位置靠近叉指换能器223远离疏水层224的一侧,压电基片221的下表面连接有能够用于固定连接导线的基板21。
其中,叉指换能器223和反射栅225均采用现有的微电子工艺光刻于压电基片221的工作表面222上;压电基片221可采用普通的LiNbO3压电基片或光学级LiNbO3压电基片;连接于压电基片221的下表面的基板21由PCB(Printed Circuit Board,印刷线路板)板制作而成,PCB板容易固定导线,当然基板21也可采用其他现有的可以固定导线的基板;微流控芯片22的疏水层224为在工作表面222上涂覆一层Teflon AF 1600疏水材料形成的,疏水层224的厚度可控制在1μm到3μm之间。
本发明的装置如图1所示,包括一个能够自由移动的输运接口芯片12,输运接口芯片12主要由输运压电基片121组成,输运压电基片121连接有用于固定连接导线的导线连接板11,输运压电基片121的上表面为输运工作表面122,输运工作表面122上设置有与外部信号发生装置8连接的输运叉指换能器123和用于数字微流体9运动的输运疏水层124,在需进行输运数字微流体时需将输运接口芯片12的输运压电基片121与微流控芯片22的压电基片221对接,使输运接口芯片12的输运疏水层124与微流控芯片22的疏水层224相连通。在此,输运压电基片121与压电基片221一样均可采用普通的LiNbO3压电基片,也可均采用光学级的LiNbO3压电基片。在此,输运压电基片121靠近其输运工作表面122上设置的输运疏水层124的一端的边缘超出导线连接板11靠近输运疏水层124的一端的边缘,同样压电基片221靠近其工作表面222上设置的疏水层224的一端的边缘超出基板21靠近疏水层224的一端的边缘,这样可有效保证输运压电基片121与压电基片221对接,且使输运疏水层124与疏水层224相连通。
在此具体实施例中,为使输运接口芯片12能够达到自由移动且又比较稳定的目的,本装置还应包括一个具有在水平和垂直方向均可调节的活动支架3,活动支架3包括支架体31和连接于支架体上的置物台32,置物台32上设置有玻璃载片33,导线连接板11通过现有的固定连接方式固定连接于玻璃载片33上。在此,活动支架3也可由其他任意现有成熟的具有上下左右调节功能的调节装置替代。在此,导线连接板11由PCB(Printed Circuit Board,印刷线路板)板制作而成,PCB板容易固定导线,当然导线连接板11也可采用其他现有的可以固定导线的基板。
在此具体实施例中,在与微流控芯片22连接的基板21与微流控芯片22不接触的一个表面上设置有支撑块226,这样当相邻的微流控芯片22通过支撑块226纵向即垂直于地平线的方向并行排列成一体时,支撑块226将微流控芯片22之间隔开,有效保障了微流控芯片22的正常工作,此外该支撑块226的高度需大于数字微流体9的最大直径,这样可使得位于上面的基板21的下表面不与位于下面的微流控芯片22上的数字微流体9相接触,以保证数字微流体9能够正常运动。在此,也可以将多个微流控芯片22横向排列,只是这样的置放方式会占用较大的空间面积。在此,支撑块226最好采用绝缘材料制成。
在此具体实施例中,在输运压电基片121上可设置用于减少外部信号发生装置8输出到输运叉指换能器123上的RF电信号功率的输运反射栅125,输运反射栅125的位置靠近输运叉指换能器123远离输运疏水层124的一侧,输运叉指换能器123和输运反射栅125均采用现有的微电子工艺光刻于输运工作表面122上,在此,设置输运反射栅125后,加载到输运叉指换能器123的RF电信号可相对较低一点,如果没有输运反射栅125的情况下,需加载较大功率的RF电信号到输运叉指换能器123。
在此具体实施例中,输运疏水层124为在输运工作表面122上涂覆一层Teflon AF1600疏水材料形成的,输运疏水层124的厚度可在1μm到3μm之间,在此限制输运疏水层124的厚度是为了使输运疏水层124有较好的疏水性能,如果输运疏水层12太厚,则当输运叉指换能器123工作产生声表面波后,较厚的输运疏水层会衰减声表面波的能量,这样将导致输运叉指换能器123产生的声表面波无法驱动数字微流体,如果疏水层太薄,则其表面张力较大,疏水性能较差。
在此具体实施例中,输运叉指换能器123包括两个第一汇流条127,第一汇流条127上连接有第一导线4,第一导线4的一端通过导电银胶固定连接于导线连接板11上,导线连接板11上设置有连接引脚111,第一导线4的一端通过连接引脚111与外部的信号发生装置8连接,微流控芯片22的叉指换能器223包括两个第二汇流条227,第二汇流条227上连接有第二导线5,第二导线5的一端通过导电银胶固定连接于基板21上,基板21上设置有引脚211,第二导线5的一端通过引脚211与外部的信号发生装置8连接。在此,通过导电银胶固定导线时,导线连接板11和基板21可采用PCB板。在此,也可通过压焊工艺的方式来固定导线,只是导线连接板11和基板21需采用具有铜表面的基板。
在此具体实施例中,信号发生装置8包括用于产生RF电信号的信号发生器81和与信号发生器81连接的功率放大器82,功率放大器82连接有切换开关83,切换开关83与连接引脚111和引脚211连接,通过切换切换开关83使功率放大器82通过切换开关83与连接引脚111或引脚211相连接或断开。在此,信号发生器81、功率放大器82及切换开关83均采用现有技术。
为实现数字微流体在多个微流控芯片之间输运,微流控芯片22的压电基片221的工作表面222上可只设置一个叉指换能器223,也可设置多个叉指换能器223,多个叉指换能器223是因为对数字微流体的各种操作的需要。设置多个叉指换能器223时,多个叉指换能器223需沿着压电基片221的工作表面222的四周布置,类似于现有技术中采用微电子工艺制作的2×2阵列叉指换能器,但同时又区别于该2×2阵列叉指换能器,多个叉指换能器223布置于压电基片221的工作表面222的四周时需留出一个用于数字微流体9输运的出口,这样各个叉指换能器223配合工作,可使数字微流体9朝出口处运动。但输运接口芯片12的输运压电基片121的输运工作表面122上可只设置一个输运叉指换能器123,当然也可以设置多个输运叉指换能器123,但在此输运接口芯片12只是担当一个输运数字微流体的一个中间部件,所以不需要设置多个输运叉指换能器123。
使用上述装置的输运方法,具体包括以下步骤:
①将多个连接有基板21的微流控芯片22通过连接于基板21上的支撑块226纵向并行排列成一体,基板21与基板21之间由支撑块隔开,在此需确保支撑块226的高度大于数字微流体的最大直径,这样才能使得位于上面的基板的下表面不与位于下面的微流控芯片上的数字微流体相接触,以保证数字微流体能够正常运动;然后将输运接口芯片12通过导线连接板11固定连接于玻璃载片33上,固定连接方式可采用现有的任何成熟的连接方式;再将切换开关83与基板21上的引脚211及导线连接板11上的连接引脚111相连接。
②在水平和垂直方向上调节活动支架3,将输运接口芯片12的输运压电基片121与待运输出数字微流体的微流控芯片22的压电基片221对接,并使输运接口芯片12的输运疏水层124与待运输出数字微流体的微流控芯片22的疏水层224相连通。
③切换切换开关83使功率放大器82通过切换开关83与基板21上的引脚211连接,开启信号发生器81和功率放大器82,信号发生器81输出RF电信号并将RF电信号传输给功率放大器82,功率放大器82对接收到的RF电信号进行放大处理,并通过切换开关83将放大后的RF电信号传输给待运输出数字微流体的微流控芯片22的叉指换能器223,待运输出数字微流体的微流控芯片22的叉指换能器223接入RF电信号后产生声表面波。
④待运输出数字微流体的微流控芯片22的叉指换能器223产生的声表面波驱动置放于待运输出数字微流体的微流控芯片22的疏水层224上的待输运的数字微流体,使待输运的数字微流体沿声表面波的传播路径运动,在惯性力作用下待输运的数字微流体运动到输运接口芯片12的输运疏水层124上,然后关闭信号发生器81和功率放大器82,切换切换开关83使功率放大器82通过切换开关83与基板21上的引脚211不相连接。
⑤在水平和垂直方向上调节活动支架3,将输运接口芯片12的输运压电基片121与待接收输运过来的数字微流体的微流控芯片22的压电基片221对接,并使输运接口芯片12的输运疏水层124与待接收输运过来的数字微流体的微流控芯片22的疏水层224相连通。
⑥切换切换开关83使功率放大器82通过切换开关83与导线连接板11上的连接引脚111连接,开启信号发生器81和功率放大器82,信号发生器81输出RF电信号并将RF电信号传输给功率放大器82,功率放大器82对接收到的RF电信号进行放大处理,并通过切换开关83将放大后的RF电信号传输给输运接口芯片12的输运叉指换能器123,输运接口芯片12的输运叉指换能器123接入RF电信号后产生声表面波。
⑦输运接口芯片12的输运叉指换能器123产生的声表面波驱动位于输运接口芯片12的输运疏水层124上的待输运的数字微流体,使待输运的数字微流体沿声表面波的传播路径运动,在惯性力作用下待输运的数字微流体运动到待接收输运过来的数字微流体的另一个微流控芯片22的疏水层224上,然后关闭信号发生器81和功率放大器82,切换切换开关83使功率放大器82通过切换开关83与导线连接板11上的连接引脚111不相连接,完成数字微流体在微流控芯片间的输运。
根据实际操作需要,可重复执行上述步骤②~⑦,实现数字微流体在多个微流控芯片之间的输运。

Claims (4)

1.一种在微流控芯片之间实现数字微流体输运的装置,其特征在于包括一个可自由移动的输运接口芯片和一个具有在水平和垂直方向均可调节的活动支架,所述的输运接口芯片主要由输运压电基片组成,所述的输运压电基片连接有导线连接板,所述的活动支架包括支架体和连接于所述的支架体上的置物台,所述的置物台上设置有玻璃载片,所述的导线连接板固定连接于所述的玻璃载片上,所述的输运压电基片的上表面设置有与外部信号发生装置连接的输运叉指换能器、用于减少外部信号发生装置输出到所述的输运叉指换能器上的RF电信号功率的输运反射栅和用于数字微流体输送的输运疏水层,所述的输运叉指换能器包括两个第一汇流条,所述的第一汇流条上连接有第一导线,所述的第一导线的一端通过压焊工艺或导电银胶固定连接于所述的导线连接板上,所述的导线连接板上设置有连接引脚,所述的外部信号发生装置包括用于产生RF电信号的信号发生器和与所述的信号发生器连接的功率放大器,所述的功率放大器连接有切换开关,所述的切换开关与所述的连接引脚连接,所述的输运反射栅的位置靠近所述的输运叉指换能器远离所述的输运疏水层的一侧,所述的输运疏水层的厚度大于等于1μm且小于等于3μm,所述的输运压电基片用于与微流控芯片的压电基片对接,所述的输运疏水层用于与微流控芯片的疏水层相连通。
2.根据权利要求1所述的在微流控芯片之问实现数字微流体输运的装置,其特征在于所述的输运叉指换能器和所述的输运反射栅均采用现有的微电子工艺光刻于所述的输运压电基片的上表面上。
3.一种在微流控芯片之间实现数字微流体输运的方法,其特征在于包括以下步骤:
①将每个微流控芯片连接一个用于固定连接导线的基板,基板上设置有引脚和支撑块,通过支撑块将多个微流控芯片纵向并行排列成一体,将输运接口芯片通过导线连接板固定连接于活动支架的玻璃载片上,将切换开关与基板上的引脚及导线连接板上的连接引脚相连接;
②在水平和垂直方向上调节活动支架,将输运接口芯片的输运压电基片与待运输出数字微流体的微流控芯片的压电基片对接,使输运接口芯片的输运疏水层与待运输出数字微流体的微流控芯片的疏水层相连通;
③切换切换开关使功率放大器通过切换开关与基板上的引脚连接,开启信号发生器和功率放大器,信号发生器输出RF电信号并将RF电信号传输给功率放大器,功率放大器对接收到的RF电信号进行放大处理,并通过切换开关将放大后的RF电信号传输给待运输出数字微流体的微流控芯片的叉指换能器,待运输出数字微流体的微流控芯片的叉指换能器接入RF电信号后产生声表面波;
④待运输出数字微流体的微流控芯片的叉指换能器产生的声表面波驱动置放于待运输出数字微流体的微流控芯片的疏水层上的待输运的数字微流体,使待输运的数字微流体沿声表面波的传播路径运动,在惯性力作用下待输运的数字微流体运动到输运接口芯片的输运疏水层上,然后关闭信号发生器和功率放大器,切换切换开关使功率放大器通过切换开关与基板上的引脚不相连接;
⑤在水平和垂直方向上调节活动支架,将输运接口芯片的输运压电基片与待接收输运过来的数字微流体的微流控芯片的压电基片对接,使输运接口芯片的输运疏水层与待接收输运过来的数字微流体的微流控芯片的疏水层相连通;
⑥切换切换开关使功率放大器通过切换开关与导线连接板上的连接引脚连接,开启信号发生器和功率放大器,信号发生器输出RF电信号并将RF电信号传输给功率放大器,功率放大器对接收到的RF电信号进行放大处理,并通过切换开关将放大后的RF电信号传输给输运接口芯片的输运叉指换能器,输运接口芯片的输运叉指换能器接入RF电信号后产生声表面波;
⑦输运接口芯片的输运叉指换能器产生的声表面波驱动位于输运接口芯片的输运疏水层上的待输运的数字微流体,使待输运的数字微流体沿声表面波的传播路径运动,在惯性力作用下待输运的数字微流体运动到待接收输运过来的数字微流体的微流控芯片的疏水层上,然后关闭信号发生器和功率放大器,切换切换开关使功率放大器通过切换开关与导线连接板上的连接引脚不相连接,完成数字微流体在微流控芯片间的输运。
4.根据权利要求3所述的在微流控芯片之间实现数字微流体输运的方法,其特征在于重复执行步骤②~⑦,实现数字微流体在多个微流控芯片之间的输运。
CN2009101004352A 2009-06-30 2009-06-30 在微流控芯片之间实现数字微流体输运的装置及方法 Expired - Fee Related CN101601987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101004352A CN101601987B (zh) 2009-06-30 2009-06-30 在微流控芯片之间实现数字微流体输运的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101004352A CN101601987B (zh) 2009-06-30 2009-06-30 在微流控芯片之间实现数字微流体输运的装置及方法

Publications (2)

Publication Number Publication Date
CN101601987A CN101601987A (zh) 2009-12-16
CN101601987B true CN101601987B (zh) 2012-05-09

Family

ID=41467965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101004352A Expired - Fee Related CN101601987B (zh) 2009-06-30 2009-06-30 在微流控芯片之间实现数字微流体输运的装置及方法

Country Status (1)

Country Link
CN (1) CN101601987B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104225964A (zh) * 2014-09-17 2014-12-24 清华大学 微流体气泡排除装置及其制备方法以及微流体器件
CN106824315A (zh) * 2017-02-24 2017-06-13 常州工学院 一种阵列式芯片的检测区内微液加热的装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102284265B (zh) * 2011-06-10 2014-03-12 宁波大学 一种以声表面波为能量源的微反应器及其反应方法
CN104525284A (zh) * 2012-05-02 2015-04-22 李木 一种分立式数字微流控系统及其控制方法
CN106153701A (zh) * 2015-04-23 2016-11-23 宁波大学 检测多种亚型猪流感用双驱动耦合模式微流控芯片装置
CN105413767B (zh) * 2015-11-17 2018-01-12 河北工业大学 一种基于铌酸锂晶片夹层结构的微液滴实时可控分离装置及方法
EP3441143B1 (en) * 2017-08-08 2022-04-13 Roche Diagnostics GmbH Laboratory instrument base plate
CN107570093A (zh) * 2017-10-20 2018-01-12 皮卡(上海)生物科技有限公司 一种多级分子生物化学反应的方法及采用的装置
CN109926111B (zh) * 2019-03-28 2021-06-15 武夷学院 一种压电基片上微流体输运的装置及方法
CN112048502A (zh) * 2019-06-06 2020-12-08 承启医学(深圳)科技有限公司 电场捕获机理分离体液中外泌体的方法及微流控芯片
CN114345283B (zh) * 2022-01-20 2023-05-30 方福食品科技有限公司 一种高纯度甜蜜素生产工艺及其生产装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477400A (zh) * 2002-08-23 2004-02-25 汶 连 一种微流体系统及控制微流体在微流体系统中运动的方法
US20050042766A1 (en) * 2002-06-07 2005-02-24 Amic Ab Micro fluidic structures
CN201433096Y (zh) * 2009-07-01 2010-03-31 宁波大学 在微流控芯片之间实现数字微流体输运的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050042766A1 (en) * 2002-06-07 2005-02-24 Amic Ab Micro fluidic structures
CN1477400A (zh) * 2002-08-23 2004-02-25 汶 连 一种微流体系统及控制微流体在微流体系统中运动的方法
CN201433096Y (zh) * 2009-07-01 2010-03-31 宁波大学 在微流控芯片之间实现数字微流体输运的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
费景臣等.基于声表面波技术数字微流体微混合器研究.《电子器件》.2009,第32卷(第1期),218-221. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104225964A (zh) * 2014-09-17 2014-12-24 清华大学 微流体气泡排除装置及其制备方法以及微流体器件
CN104225964B (zh) * 2014-09-17 2016-09-28 清华大学 微流体气泡排除装置及其制备方法以及微流体器件
CN106824315A (zh) * 2017-02-24 2017-06-13 常州工学院 一种阵列式芯片的检测区内微液加热的装置及方法

Also Published As

Publication number Publication date
CN101601987A (zh) 2009-12-16

Similar Documents

Publication Publication Date Title
CN101601987B (zh) 在微流控芯片之间实现数字微流体输运的装置及方法
US11344889B2 (en) Microfluidic chip, detecting and driving method thereof, and on-chip laboratory system
Ma et al. Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave
EP2678107B1 (en) Fluidics apparatus for surface acoustic wave manipulation of fluid samples, use of fluidics apparatus and process for the manufacture of fluidics apparatus
US8080202B2 (en) Component separating device and chemical analysis device using the same
US11369961B2 (en) Apparatus and method for washing and concentrating microparticles encapsulated in microscale droplets using acoustic radiation force
JP4925819B2 (ja) ミクロキャビティでの少量液体の混合方法と装置
CN101862631B (zh) 一种数字微流体产生装置及产生方法
CN101301990A (zh) 用于芯片实验室的声表面波微流体驱动器及其制造方法
CN112058325B (zh) 一种基于免疫磁珠技术的超声相控阵微流控检测装置及其方法
CN101497006A (zh) 一种数字微流体微混合器及混合方法
CN102350285A (zh) 一种以声表面波为能量源的微反应器及其反应方法
CN201433096Y (zh) 在微流控芯片之间实现数字微流体输运的装置
CN203469541U (zh) 一种声表面波实现油相微流体与水相微流体分离的装置
CN101639475B (zh) 在两个微流控芯片之间实现数字微流体输运的装置及方法
CN201575997U (zh) 在两个微流控芯片之间实现微液滴输运的微装置
CN102510278A (zh) 一种以声表面波为能量源的纸基微流开关
CN201525749U (zh) 在两个微流控芯片之间实现数字微流体输运的装置
CN103223358B (zh) 一种声表面波实现数字微流体破裂的装置及方法
CN116656489A (zh) 一种分选体液中外泌体的驻波声流控器件及其使用方法
CN201681080U (zh) 一种数字微流体产生装置
KR20060068979A (ko) 초음파장 및 진행파 유전영동을 이용한 세포 분리 장치
CN112275331B (zh) 一种基于声表面波芯片阵列的微液滴操作系统
Fuchsluger et al. Utilizing Lateral Plate Transducer Modes for High Quality Acoustofluidics in Silicon-Based Chips
CN203196648U (zh) 一种声表面波实现数字微流体破裂的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120509

Termination date: 20140630

EXPY Termination of patent right or utility model