CN101577842B - 一种光通信系统、装置和方法 - Google Patents

一种光通信系统、装置和方法 Download PDF

Info

Publication number
CN101577842B
CN101577842B CN 200810066992 CN200810066992A CN101577842B CN 101577842 B CN101577842 B CN 101577842B CN 200810066992 CN200810066992 CN 200810066992 CN 200810066992 A CN200810066992 A CN 200810066992A CN 101577842 B CN101577842 B CN 101577842B
Authority
CN
China
Prior art keywords
light signal
optical
signal
node
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200810066992
Other languages
English (en)
Other versions
CN101577842A (zh
Inventor
林华枫
赵峻
徐之光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN 200810066992 priority Critical patent/CN101577842B/zh
Priority to PCT/CN2009/071651 priority patent/WO2009135437A1/zh
Priority to EP09741712.5A priority patent/EP2285019B1/en
Priority to AU2009243970A priority patent/AU2009243970B2/en
Publication of CN101577842A publication Critical patent/CN101577842A/zh
Application granted granted Critical
Publication of CN101577842B publication Critical patent/CN101577842B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2587Arrangements specific to fibre transmission using a single light source for multiple stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Abstract

本发明实施例提供了一种光通信系统、装置和方法,其中,该光通信系统包括至少一个中继装置,所述中继装置的一端耦接到至少一个终端节点,另一端耦接到中心节点,实现所述终端节点和中心节点之间的双向通信;所述中继装置,用于接收来自所述终端节点的第一光信号,并接收来自所述中心节点的第二光信号;所述中继装置,从所述第一光信号恢复出数据电信号后调制到所述第二光信号的至少部分光信号上,并将调制得到的第三光信号发送给所述中心节点。采用本发明实施例的方案,中继装置可以不需要上行光源,节约光源,而且使波长分配更灵活。

Description

一种光通信系统、装置和方法
技术领域
本发明涉及光网络通信领域,具体涉及一种光通信系统、装置和方法。 
背景技术
传统的基于铜线的宽带接入网,由于铜线基础设施的日益老化,正面临大规模的铜缆的替换和更新,运维成本逐年上升;另一方面,用户的带宽需求日益增长,基于铜线的宽带接入技术,如ADSL,VDSL,VDSL2,VDSL 2+等,所能提供的带宽与其传输距离成反比,即带宽越大,其有效的传输距离随之迅速缩短;另一方面,无线宽带接入网,如WiMAX,虽然在带宽方面与有线接入网相比稍有逊色,但其凭借其天然的、无缝渗透的、低单用户网络建设成本和运行维护成本的无线媒介资源,对运维包袱日益沉重的有线宽带接入网构成巨大的威胁。为了降低运维成本,基于玻璃光纤的无源光网络,如EPON,GPON,因其使用寿命长、受外部环境噪声干扰小、带宽资源巨大等优点,固定宽带接入网正向光进铜退演进。光纤无源宽带接入网相比于铜线宽带接入网有一个显著的区别点,就是其覆盖范围大大增加,传统的无源光网络可以覆盖20公里的距离,而铜线宽带接入网通常覆盖最多3公里左右的距离。为了进一步缩减中心机房数量从而缩减运维成本,长距离无源光网络(Long Reach PON,LR-PON)的研究获得了大量的关注。长距离无源光网络的传输距离可以远大于传统的无源光网络的覆盖距离,即长距离无源光网络的传输距离可以远大于20公里。 
发明内容
有鉴于此,本发明实施例本发明实施例提供了一种光通信系统、装置和方法,采用本发明实施例的方案,能够提供光信号的中继传输,延长光通信系统传输距离,节省光源、便于系统扩展。
本发明实施例通过如下方案实现: 
根据本发明的实施例,光通信系统包括至少一个中继装置,所述中继装置的一端耦接到至少一个终端节点,另一端耦接到中心节点,实现所述终端节点和中心节点之间的双向通信;所述中继装置,用于接收来自所述终端节点的第一光信号,并接收来自所述中心节点的第二光信号,所述第二光信号包括波长不同的第四光信号和第五光信号,所述第四光信号用于传输给所述终端节点,所述第五光信号用作种子光信号;所述中继装置,还用于将从所述第一光信号中恢复出的数据电信号调制到所述第五光信号上,并将调制得到的第三光信号发送给所述中心节点。 
根据本发明的实施例,一种通信装置,所述通信装置与第一节点和第二节点通过光传输介质连接,与所述第一节点和所述第二节点分别建立双向通信连接,其中,所述通信装置接收来自所述第一节点的第一光信号和来自所述第二节点的第二光信号,所述第二光信号包括传输给所述第一节点的第四光信号和用作种子光信号的第五光信号,所述第四光信号和所述第五光信号波长不同;所述通信装置包括接收模块和调制模块,其中,所述接收模块,用于从来自所述第一节点的第一光信号恢复出数据电信号,并将所述数据电信号发送给所述调制模块;所述调制模块,用于将所述数据电信号调制到第五光信号,并把调制得到的第三光信号发送给所述第二节点。 
根据本发明的实施例,一种光传输方法,该方法包括:接收来自第一节点的第一光信号和来自第二节点的第二光信号;所述第二光信号包括第四光信号和第五光信号;将第四光信号发送给所述第一节点;从所述第一光信号恢复出数据电信号,将恢复出的数据电信号调制到第五光信号上,将调制得到的第三光信号发送给所述第二节点。 
采用本发明实施例的方案,中继装置可以不需要上行光源,节约光源,而且使波长分配更灵活。 
附图说明
图1A、图1B和图1C为本发明实施例提供的接入系统示意图; 
图2为本发明实施例提供的主干段波长规划示意图; 
图3为本发明实施例提供的融合接入系统示意图; 
图4A-4G为本发明实施例提供的中继装置示意图; 
图5A和图5B为本发明实施例提供的中继装置示意图; 
图6A-6D为本发明实施例提供的本地节点示意图。 
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明实施例作进一步的详细描述。 
图1A、图1B和图1C为根据本发明实施例提供的通信系统示意图。如图1A所示,通信系统100a包括终端节点110和本地节点140-1、140-2…140-n和中心节点180。终端节点110为位于终端用户驻地的设备,包括光网络终端(Optical Network Terminal,ONT)和光网络单元(Optical Network Unit,ONU),ONT和ONU的区别为ONT直接位于用户端,而ONU与用户间还有其它的网络如以太网,如无特别说明,下文统一用ONU表示;本地节点140-1、140-2…140-n为覆盖局部地区的设备,例如,可以设置在离用户端设备10~20km的本地机房、本地机柜、街边机柜、交换箱(Cabinet)的任意一种,如无特别说明,本地节点统一用140表示;中心节点180可以设置在中心机房(Metro机房),例如,中心节点180可以设置在离本地节点140约40~80km的位置,中心节点180充当上层网络节点(图中未示出) 和本地节点的中间节点,当然,中心节点180也可以直接连接终端节点110(图中未示出)。另外,终端节点110通过光分配网(Optical DistributionNetwork,ODN)120与本地节点140连接,本地节点140通过主干段光纤与中心节点180连接,其中的光分配网(Optical Distribution Network,ODN)120包括无源光器件,如光分支元件、光滤波器等,ODN120可以包括多个级联的分支元件。 
图1A示意性给出一个中心节点180(图1A中的Metro-OLT)连接到n个本地节点140(图1A中的140-1,…,140-n);每一个本地节点提供一个用户侧接口,该用户侧接口通过无源光网络连接32个终端节点,如图1A中本地节点140-1通过无源光网络PON1连接终端节点用ONU101…ONU132,本地节点140-n通过无源光网络PONn连接终端节点用ONUn01…ONUn32。PON1…PONn是分支网络,包括光分配网(ODN),能够将来自本地节点140的光按光功率分成32个支路,并能够将来自ONUn01…ONUn32的光合并成一路。 
图1A中,中心节点180具有下行发送阵列(DS Tx Array),用于发送承载有下行数据的光信号,优选的,中心节点180还具有上行激光器阵列(USLD Array),用于给本地节点140提供种子光信号,本地节点140可以用中心节点180提供的种子光信号对上行数据进行重调制,下行发送阵列和上行激光器阵列生成的光信号通过波分复用装置WDM4复用到主干段光纤172上,其中主干段光纤172上传输的下行光信号可以包括n个上行波长和n个下行波长。主干段光纤172上传输的光信号通过光解复用装置162,如阵列波导光栅AWG1进行波长分离处理,光解复用装置162输出n对光S2(λd1,λu1)……S2(λdn,λun),每对光包含两个波长的光,每对光提供给对应一个本地节点,具体波长规划将在下文结合示例具体说明。本发明实施例中本地节点140和中心节点180之间上下行光信号承载在不同光纤中,上行激光器阵列生成的种子光信号(波长为λu1…λun)通过主干段光纤172与下行发送阵列生成的承载有下行数据的下行光信号(波长为λd1…λdn)一起传 输,可以避免种子光信号与上行调制光在主干段光纤174上进行单纤双向传输时存在的后向瑞利散射(Rayleigh Back Scattering,RBS)。 
本地节点140-1从光解复用装置162接收光信号,通过波分复用装置137(如WDM2)将接收到的光信号分成两路,一路输出为承载有下行数据的波长为λd1的光信号S4(λd1),另一路为作为种子光信号的波长为λu1的光信号S5(λu1)。本地节点140-1对光信号S4(λd1)在光域上进行透传,即不进行光电变换、电光变换等处理。光信号S4(λd1)通过波分复用装置132(如WDM1)复用到PON1。波长为λu1的光信号输入给调制模块136作为上行种子光信号。值得注意的是,如果PON1的ODN120与本地节点140-1之间的光纤122采用双纤分别承载上下行光信号,可以省去波分复用装置132,直接将下行光信号通过对应的光纤接口发送。 
PON1相当于广播网络,将来自本地节点140-1的光功率分成32个支路。 
ONU101…ONU132分别接收来自ODN120对应支路的光信号,从光信号中接收属于自己的数据。 
在上行方向上,当某个ONU需要向上发送数据时,在属于自己的时隙发送波长为λ1光信号,例如λ1为1270nm,ONU的发送时隙可以由中心节点180指派,可以参考APON、GPON和EPON等系统的时隙分配方法,不再赘述。 
ODN120将来自ONU101…ONU132的上行光复用到本地节点140-1。 
本地节点140-1通过ODN120接收来自ONU101…ONU132的光信号S1(λ1),其中S1(λ1)中可以包含32个ONU时分复用的光信号。。 
本地节点140-1包括中继装置130a,用于对来自PON1的上行光信号进行光电变换处理,并用光电变换处理后的电信号进行调制,调制采用的种子光信号为来自中心节点的种子光信号。由于PON1系统上行光信号为突发信号,中继装置130a通过突发接收模块134对上行光信号进行光电探测和突发时钟数据恢复处理,输出电信号给调制模块136。具体的,可以由突发接收模块134中的光探测模块对上行光信号的光电探测处理,由突发接收模块 134中的突发数据恢复模块恢复数据,输出电信号。调制模块136将输入的电信号调制到波长为λu1的光信号S5(λu1)上,得到调制后的波长为λu1的光信号S3(λu1)。光信号S3(λu1)输入光复用装置160,如阵列波导光栅AWG2。图1A中,中继装置130a通过波分复用装置132将上行光解复用出来输入突发接收模块,并通过该波分复用装置132将下行光信号S4(λd1)复用到PON1。值得注意的是,如果PON1中ODN120与本地节点140之间采用双纤分别承载上下行光信号,可以省去波分复用装置132,对应的光纤接口的上行光信号直接输入到突发接收模块134。 
光复用装置160将来自多个本地节点,如本地节点140-1,…,140-n的上行光信号复用到主干段光纤174,上行光信号通过主干段光纤174传输到中心节点180。在图1A所示的系统中主干段光纤174中传输的上行光信号包括n路波长分别为λu1…λun的密集波分复用的光信号,在主干段光纤174中还可以进一步包括对n路光信号进行放大的光放设备。 
中心节点180接收来自主干段光纤174的上行光信号。具体的,中心节点180通过光解复用装置,如阵列波导光栅AWG2将来自主干段光纤174的多个波长的光信号解复用成n路相应波长λu1…λun的光信号,并将解复用后的n路光信号输入到上行接收阵列(US Rx Array)进行接收处理。值得注意的是,中心节点180中的光解复用装置和上行接收阵列可以为集成接收装置。 
优选的,在图1A所示的系统中,在主干段光纤172上可以设置光放大器170、,用于放大下行光信号和上行种子光信号;也可以在在主干段光纤174上可以设置光放大器176,用于放大上行光信号。例如,光放大器170可以对多个通道的下行光信号和上行种子光信号同时放大。光放大器170的选型可以根据上下行波长范围而定,例如,对于C波段和L波段的光可以采用掺铒光纤放大器(Erbium Doped Fiber Amplifier,EDFA)或半导体光放大器(Semiconductor Optical Amplifier,SOA)。 
优选的,在图1A所示的系统的中继装置130a包括一个或多个光放大 模块,可以对中继装置130a中至少部分光信号进行放大处理,具体包括对如下至少一种光信号进行光功率放大处理:承载有下行数据的下行光信号和上行种子光信号的整体光信号S2(λd1,λu1),承载有下行数据的下行光信号S4(λd1),上行种子光信号S5(λu1),调制后的光信号S3(λu1)。具体实现将在下文进一步描述。 
图1B示意性给出了本发明另一实施例的通信系统示意图。与图1A的中继装置130a不同,图1B本地节点140-1包含的中继装置130b包括光接收模块138和光发射模块139。光接收模块138将光信号S4(λd1)转换成电信号,输出电信号给光发射模块139,光发射模块139为光发射装置,根据光接收模块138输入的电信号生成并发送光信号S6(λ2)。具体的,光接收模块138可以包括光探测模块和数据恢复模块,同样的,光接收模块138可以是集成光探测和数据恢复功能的模块。值得注意的是,图1A的中继装置130a具有的其他功能同样适用于图1B的中继装置130b,不再赘述。另外,在中继装置130b中下行方向的光信号经过波长变换,本地节点140-1,…,140-n与终端节点110之间的下行波长可以重用。 
图1C示意性给出了本发明另一实施例的通信系统示意图。与图1B的中继装置130b不同,图1C的本地节点140-1包含的中继装置130c提供4个用户侧接口,每个用户侧接口连接32个终端节点,将最大用户从32个扩展到128个。在上行方向上,中继装置130c包括4个接收通路,每一个接收通路包括光接收模块134,对上行光信号进行光电探测和突发时钟数据恢复处理,输出电信号。4个光接收模块134通过复用模块142(即Mux)输入到调制模块。复用模块142将4个光接收模块134输出的电信号复用成一路电信号。同样的,在下行方向上包括4个发射通路,即数据接收模块138通过解复用模块144(即Demux)连接到4个光发射模块139。具体的,接收模块138将光信号S4(λd1)转换成电信号,解复用模块144将来自接收模块138的电信号解复用成4路电信号,每一路电信号输入到一个光发射模块139,每一个光发射模块139根据接收到的电信号生成并发送光信号S6 (λ2)。具体的,光接收模块138可以包括光探测模块和数据恢复模块,同样的,光接收模块138也可以是集成了光探测和数据恢复功能的模块。相应的,在中心节点180的上行接收阵列(US Rx Array)输出每一个本地节点的上行电信号,再通过解复用模块(即Demux)解复用成多路电信号后送给相应的PON MAC处理模块处理,其中,解复用的电信号的路数根据本地节点提供的用户侧接口决定或根据PON MAC处理模块决定。相应的,在下行方向上,在中心节点180能够将多个PON MAC处理模块的电信号通过复用模块(即Mux)复用成一路,然后通过下行发送阵列(DS LD Array)的一个接口发送出去,其中,复用的路数根据本地节点提供的用户侧接口决定或根据PON MAC处理模块决定。值得注意的是,图1A和图1B的中继装置具有的其他功能同样适用于图1C的中继装置130c,不再赘述。另外,在中继装置130c中在上行方向可以将低速传输转变成高速传输,如将4路约1.25Gbps的上行传输转变成一路约5Gbps的上行传输;在下行方向,可以将高速传输转变成低速传输,如将一路约10Gbps的下行传输转变成4路约2.5Gpbs的下行传输,实现速率灵活适配;中继装置130c也可以只提供上行的速率适配或只提供下行的速率适配。 
如图2所示为本发明实施例图1A、1B和1C所示主干段光纤170上传输的上下行波长规划示意图。图1A通信系统100a、100b、100c中,中心节点180可以是下一代无源光网络的中心光线路终端,即NG-PON OLT;ONU101…ONU132…,ONUn01…ONUn32是下一代无源光网络的光网络单元,即NG-PON ONU。该波长规划把C波段分成上行和下行两段进行DWDM传输。为了节省光解复用装置162的端口数,如AWG1的端口数,在DWDM波长划分时,可以把上行波段和下行波段的间隔设计成刚好与光解复用装置162的自由光谱区(Free Spectral Range,FSR)成整数倍关系,从而可使得λd1和λu1在同一端口输出,λdn和λun在同一端口输出……,这样,AWG1和AWG2的端口数相同。λd1和λu1也设计可以各从一个端口输出,若这样的话,AWG1的端口数是AWG2的两倍。在接入段,所有NG-PON ONU 的上行采用统一的波长(如1270nm),在下行方向,直接接收来自NG-PONOLT的C-band的下行光。 
如图3所示为本发明实施例提供的另一种通信系统,该通信系统提供长距离接入系统(60~100km)和传统接入系统(~20km)的融合。如图3所示,通信系统300包括终端节点310、315,本地节点340和中心节点380,其中,终端节点310、315通过ODN320与本地节点340连接,本地节点340通过主干段光纤与中心节点380连接。图3所示的系统中,终端节点310和图1A、1B和1C所示终端节点110功能基本相同,ODN320和ODN120功能相同,中继装置330和图1A、1B和1C所示的中继装置130a、130b和130c功能基本相同,中心节点380和图1A、1B和1C所示的中心节点180功能基本相同,光解复用装置362和图1A、1B和1C所示的光解用装置162功能相同,光复用装置360和图1A、1B和1C所示的光复用装置160功能相同,光放大装置370、376和图1A、1B和1C所示的光放大装置170功能相同。例如,图3所示的传统接入系统为GPON系统,终端节点包括GPON系统的用户终端GPON ONU,在本地节点340中包括GPON系统对应的本地光线路终端350,如GPON-OLT。系统300提供了波分复用装置352,如波分复用装置WDM3,波分复用装置352将GPON-OLT的下行光信号和中继装置330输出的下行光信号复用到PON1,并将PON1的上行光信号解复用成两路,一路提供给GPON-OLT,另一路提供给中继装置330。 
值得注意的是,图3所示系统中本地光线路终端350和终端节点315构成系统不仅限于GPON系统,还可以是基于以太网的无源光网络EPON、GEPON、10GEPON等,也可以是基于异步传输模式的无源光网络APON、BPON等。 
图3所示系统中主干段光纤372的波长规划和图2所示系统中主干段光纤172的波长规划相同,主干段光纤374用于传输上行光信号。在接入段,ONU 315采用标准的1310nm的上行波长和1490nm的下行波长;所有ONU310的上行采用统一的波长,如1270nm,ONU 310从属于中心节点380, ONU 310接收到的光信号的波长与中继装置330有关,即ONU 310可以接收中继装置330透传下行光信号,也可以接收经中继装置330光电变换和电光变换处理的下行光信号。ONU 310和ONU 315中至少有一个设备需要配置波长阻塞滤波器(wavelength blocking filter,WBF)。本发明实施例中,中心节点380为NG-PON系统的Metro-OLT,ONU310为NG-ONU,图3中ONU 315的WBF使得GPON ONU只能接收1480nm~1500nm范围内的光信号,阻塞掉所有其它光信号,从而保证GPON ONU不受新增加的NG-PONONU的影响,实现GPON与NG-PON在同一个ODN网络中的和平共存,具体的,WBF可参照ITU-T G.984.5标准进行设计。 
值得注意的是,图3所示的系统中GPON可以保证由GPON向NG-PON的平滑演进,实现接入网与城域网无缝地融合。如图3所示,传统GPON网络的GPON OLT通常设放置在机房,在本发明实施例中称为本地机房,GPON OLT端口下面连接多个GPON ONU。当GPON OLT下的第一个用户的带宽需求超出GPON所能提供的带宽容量时,只需在GPON OLT所在的本地机房(即图3所示本地节点340所在的机房)设置增加中继装置330和WDM3(WDM3可在部署GPON网络时提前部署),在中心节点380所在位置增加部署NG-PON OLT,在本地节点340和中心节点380之间部署AWG1、AWG2和主干段传输光纤等,其中,这些光传输基础设施可提前部署。然后,把需要带宽升级的GPON用户的GPON ONU替换成NG-PON ONU,就实现了第一个GPON用户的带宽升级。当同一个GPON OLT端口下的其它GPON用户也需要升级时,只需简单地用NG-PON ONU替换GPON ONU即可。当GPON OLT端口下最后一个GPON ONU都升级到NG-PON后,就可以把本地机房中的GPON OLT彻底地关闭,从而实现GPON向NG-PON的平滑演进。当所有GPON OLT都关闭后,由于本地机房只剩下中继装置,所有的汇聚设备都集中到NG-PON OLT所在的中心节点中,因此,可以把本地机房(本地节点340)撤掉,把所有中继装置集中放置在某一个本地机柜或街边机柜里,从而实现接入网与城域网的长距离无缝融合,有效降低运维成 本。 
图4A-4G为本发明实施例提供的通信装置示意图。装置400a-400g能够提供图1A、1B、1C和图3所示系统的终端节点110和中心节点380之间的中继功能,对应中继装置130a、130b、130c和中继装置330。 
图4A中,装置400a至少包括突发接收模块404、调制模块406。突发接收模块404,用于对来自终端节点的第一光信号S1(λ1)进行光电探测和突发时钟数据恢复处理,恢复出数据电信号;调制模块406一端耦接到突发接收模块404,另一端耦接到与中心节点对接的光接口,分别接收来自突发接收模块404的数据电信号和来自中心节点的上行种子光信号S5(λu1),将数据电信号调制到上行种子光信号S5(λu1)上,得到调制后的上行光信号S3(λu1)。优选的,调制模块通过波分复用装置410耦接到与中心节点对接的光接口,接收来自中心节点的上行种子光信号信号S5(λu1)。波分复用装置410还可以从与中心节点对接的光接口中分离出承载有下行数据的下行光信号S4(λd1),并将下行光信号S4(λd1)通过无源光网络发送。优选的,中继装置330设置有波分复用装置402,波分复用装置402包括三个连接端,一端耦接到突发接收模块404,一端耦接到波分复用装置410,另一端耦接到与无源光网络对接的光接口,波分复用装置402能够将波分复用装置410输出的光信号复用到与无源光网络对接的光接口,并将与无源光网络对接的光接口的光解复用到突发接收模块404。优选的,中继装置330可提供通道放大功能,例如,在波分复用装置410输入端耦接光放大装置418,或者在波分复用装置410和波分复用装置402之间设置有光放大装置412,或者在波分复用装置410和调制模块406之间设置有光放大装置414,或者在调制模块输出端设置由光放大装置416,或者上述光放大装置412、414、416、418的任意组合;或者调制模块406可以选择具有放大功能的调制模块。 
与图4A相比,图4B装置400b在下行光信号输入端具有两个接口,每一个接口对应一路光信号。例如,承载有下行数据的光信号S4(λd1)从其中一个接口输入后直接耦接或通过光放大装置412耦接到波分复用装置402; 用作上行种子光信号S5(λu1)从另一个接口输入后直接耦接或通过光放大装置414耦接到调制模块406。 
与图4A相比,图4C装置400c在下行光信号输入端接收到的下行光信号只包括一个波长的光信号S2(λd1),装置400c中包括光分路装置420(Splitter,SPL),将光信号S2(λd1)的光功率分成两路S4(λd1)、S5(λd1),一路光信号S4(λd1)直接耦接或通过光放大装置412耦接到波分复用装置402,另一路光信号S5(λd1)直接耦接或通过光放大装置414间接耦接到调制模块406,调制模块406输出波长为λd1的光信号S3(λd1)。 
与图4B相比,图4D装置400d具有一个下行输出接口和一个上行输入接口,承载有下行数据的光信号S4(λd1)可以直接耦接或通过光放大装置412耦接到装置400的下行输出接口,上行光信号S1(λ1)直接从上行数据接口耦接到突发接收模块404。 
与图4A相比,图4E装置400e采用具有光放大功能的调制模块408,如图中的半导体光放大器SOA,能够对上行种子光S5(λu1)直接进行光放大和调制的同时处理。 
与图4A相比,图4F装置400f在下行方向提供光电变换和电光变换功能,如通过光接收模块414对光信号S4(λd1)进行光探测和数据恢复处理,输出数据电信号给光发射模块416,光发射模块416根据接收到的数据电信号生成并发送光信号S6(λ2)。具体的,光接收模块414可以包括光探测模块和数据恢复模块,同样的,光接收模块414可以是集成光探测和数据恢复功能的模块。下行方向的光波长从输入端λd1变换成输出端λ2,使得用户侧的下行波长可重用。 
与图4F相比,图4G装置400g在上行方向提供4个上行通路复用,在下行方向提供4个通路解复用。具体的,在上行方向上,4个光接收模块404通过复用模块420(Mux)耦接到调制模块406,实现将4路1.25Gbps数据电信号复用成一路有效载荷(payload)约为5Gbps的数据电信号;在下行方向上,光接收模块414通过解复用装置422(Demux)耦接到4个光发射 模块416,将一路有效载荷(payload)约10Gbps的数据电信号解复用成4路2.5Gbps的数据电信号。装置400g也可以包括装置400a的各放大模块。 
图5A为本发明实施例提供的另一实施例的装置示意图。与中继装置400a-400g不同,中继装置500a包括时钟提取模块540,从下行光信号中提取时钟,将提取的时钟作为上行接收和/或发送的参考时钟。例如,时钟提取模块540从下行光信号中耦合出一部分光信号,对耦合出的光信号进行光探测并恢复出线路时钟,时钟提取模块540可以对恢复出的线路时钟进行处理,如上下行频率不一致可进行频率适配等。中继装置500a的波分复用装置502和波分复用装置402功能相同,光放大装置512、514、516分别和光放大装置412、414、416功能相同,波分复用装置510和波分复用装置410功能相同。突发接收模块504完成突发接收模块404的功能,调制模块506为外部调制器。 
图5A中,上行光信号S1(λ1)经过WDM1分波,进入光探测模块,光探测模块输出的模拟电信号经过跨阻放大器(Transimpedance Amplifier,TIA)和限幅放大器(Limiting Amplifier,LA)(TIA和LA图中未示出),然后通过突发时钟和数据恢复模块恢复出电信号,恢复出的上行数据输入外部调制器506。S2(λd1,λu1)经过光放大装置518放大输入WDM2。WDM2输出的上行种子光信号S5(λu1)通过光放大装置514,如半导体光放大器SOA,放大后输入外部调制器506;外部调制器506将恢复出的上行电信号调制到上行种子光信号,并将调制得到的上行光信号S3(λu1)通过与主干段光纤对接的光接口发送出去。WDM2输出的承载有下行数据的光信号S4(λd1)通过光放大装置512放大后出入WDM1。值得注意的是,上述光放大装置512、514、516和518为可选元件。优选的,为了降低BCDR的难度及复杂度,本实施例从下行光信号中耦合出很小一部分光用于提取参考时钟。具体的,从光放大装置512输出的下行光信号中耦合出一部分光通过时钟提取模块540的光探测模块完成光电变换,光探测模块输出的电信号输入到时钟提取模块540的时钟处理单元,由时钟提取单元提取参考时钟,提取的参考 时钟可提供给突发数据恢复模块用于上行突发接收和/或提供给调制模块用于上行突发发射。其中,时钟提取模块需要的光不仅限于来自光放大装置512输出的光信号,也可以是从波分复用装置510之前的光信号。 
图5A中采用外部调制模块,具有高速率突发发射的优势。当然,也可以参考图4E所示,采用具有直接调制功能的SOA来调制。考虑到NG-PON的上行速率可能达到10Gbps并且是突发发射,具有直接调制功能的SOA实现高速率的突发发射难度要比外部调制大。图5A、5B中,光探测模块可以为光电探测器PIN或APD,突发时钟和数据恢复模块可为突发时钟数据恢复(Burst mode Clock and Data Recovery,BCDR)电路,外部调制器506可为电吸收调制器(Electro-absorption Modulator,EA)或铌酸锂调制器(LiNbO3)。 
图6A-6D所示为本发明实施例提供的本地节点示意图。图6A-6D中,本地节点640a、640b、640c和640d包括中继装置630和波分复用装置652和本地光线路终端650。中继装置630参考中继装置130、330、400a-400g、500a、500b,不再赘述。波分复用装置652,如波分复用装置WDM3,将Local-OLT 650(如GPON-OLT)的下行光信号和中继装置630输出的下行光信号复用到无源光网络,并将无源光网络的上行光信号解复用成两路,一路提供给Local-OLT650,另一路提供给中继装置630。 
下面参考图1C和图4G举例说明本发明实施例提供的上下行数据电域复用模块Mux和解复用模Demux。以基于GPON封装模式(GPON EncapsulationMode,GEM)的系统为例,在中心节点,4个GPON OLT的2.48832Gbps的下行帧按照G.709建议的光传送网(Optical Transport Network,OTN)接口的复用与映射协议通过Mux复用成串行比特速率约为10.70923Gbps的下行数据帧,通过DS LD Array的一个发射元调制到一个光信号中生成下行光信号。在本地节点中,中继装置的Demux进行相反的解复用操作,重新获得4个比特速率为2.48832Gbps的标准GPON下行数据帧。每一个比特速率为2.48832Gbps的标准GPON下行数据帧分别通过光发射模块调制到波长1490nm的光信号中,再 通过WDM1传输给GPON ONU。在上行方向,来自四个不同GPON网络的ONU的上行信号分别通过WDM1进入相应的光探测模块和突发数据恢复模块完成上行数据的恢复处理,把1.24416Gpbs的上行突发数据通过比特填充的方式填补成2.48832Gbps的数据流,通过Mux把4路2.48832Gbps的数据流复用成串行比特速率约为10.70923Gbps,然后调制到来自中心节点的种子光S5中并传输回中心节点,在中心节点180通过解复用及去填充比特操作,恢复出1.24416Gbps的上行数据帧,并分别送给不同的GPON MAC处理。 
根据本发明实施例,提供一种光传输方法,具体包括:接收来自第一光网络装置(图1所示终端节点)的第一光信号和来自第二光网络装置(图1所示中心节点)的第二光信号;将所述第二光信号的第四光信号发送给所述第一光网络装置;将所述第一光信号转换成电信号后调制到所述第二光信号的第五光信号上,将调制得到的第三光信号发送给所述第二节点。 
其中,所述将所述第一光信号转换成电信号后调制到所述第二光信号的第五光信号具体包括:将所述第一光信号进行光电探测和突发时钟数据恢复处理,将恢复出的电信号调制到所述第二光信号的所述第五光信号。 
所述方法进一步包括如下至少一种:在接收到来自所述第二节点的第二光信号之后,对所述第二光信号整体进行光功率放大;在用所述第二光信号的所述第五光信号进行调制处理前,对所述第五光信号进行光功率放大;在将所述第二光信号的所述第四光信号发送给所述第一节点之前,对所述第四光信号进行光功率放大;在将所述第三光信号发送给所述第二节点之前,对调制得到的所述第三光信号进行光功率放大。 
所述方法进一步包括:所述第二光信号中提取参考时钟;其中,所述参考时钟用于突发时钟数据恢复处理的参考时钟,和/或用于进行调制处理的参考时钟。 
根据本发明实施例提供的一种光网络中心节点,所述光网络中心节点通过本地节点连接到光网络终端节点;所述光网络中心节点向所述本地节点发送第一波长光信号和第二波长光信号,所述第一波长光信号承载有传输给所 述光网络终端节点的数据,所述第二波长光信号用作所述本地节点进行调制处理的种子光信号。所述光网络中心节点将至少两个所述第二波长光信号通过波分复用方式发送给相应的所述本地节点。 
值得注意的是,本发明实施例上文中提到的GPON-OLT、GPON-ONU,也可以是EPON-OLT、EPON-ONU,其中local-OLT既可以GPON-OLT,也可以是EPON-OLT。 
采用本发明实施例的通信系统,可进一步地提高传输距离,缩减中心机房的数量,促进接入网与城域网的融合,已部署的20公里的EPON/GPON能够无缝、平滑地演进到更长距离、更高速率的下一代PON(NG-PON)。 
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。 

Claims (17)

1.一种光通信系统,其特征在于:所述光通信系统包括至少一个中继装置,
所述中继装置的一端耦接到至少一个终端节点,另一端耦接到中心节点,实现所述终端节点和中心节点之间的双向通信;
所述中继装置,用于接收来自所述终端节点的第一光信号,并接收来自所述中心节点的第二光信号,所述第二光信号包括波长不同的第四光信号和第五光信号,所述第四光信号用于传输给所述终端节点,所述第五光信号用作种子光信号;
所述中继装置,还用于将从所述第一光信号中恢复出的数据电信号调制到所述第五光信号上,并将调制得到的第三光信号发送给所述中心节点。
2.根据权利要求1所述的光通信系统,其特征在于:
所述中继装置进一步进行如下至少一种光功率放大处理:对所述第二光信号整体进行光功率放大,对所述第四光信号进行光功率放大,对所述第五光信号进行光功率放大、对所述第三光信号进行光功率放大。
3.根据权利要求1所述的光通信系统,其特征在于:
所述中继装置从所述第二光信号中提取时钟,
所述时钟用于所述中继装置进行时钟和数据恢复处理时的参考时钟,和/或用于所述中继装置进行调制处理时的参考时钟。
4.根据权利要求1所述的光通信系统,其特征在于:所述光通信系统还包括本地光线路终端装置和波分复用装置,所述中继装置和所述本地光线路终端装置通过所述波分复用装置连接到所述终端节点。
5.根据权利要求4所述的光通信系统,其特征在于:
所述终端节点包括第一终端节点和第二终端节点,其中,
所述中心节点通过所述中继装置与所述第一终端节点进行数据交互;
所述本地光线路终端装置与所述第二终端节点进行数据交互;
所述中继装置接收到的来自所述第一终端节点的光信号的波长不同于接收到的来自所述第二终端节点的光信号的波长。
6.根据权利要求1所述的光通信系统,其特征在于:
至少两个所述中继装置与所述中心节点通过波分复用方式通信。
7.根据权利要求1所述的光通信系统,其特征在于:
所述中继装置和所述中心节点之间耦接光放大装置,所述光放大装置用于放大光信号。
8.根据权利要求1所述的光通信系统,其特征在于:所述终端节点和所述中心节点通过无源光网络协议通信。
9.一种通信装置,其特征在于:
所述通信装置与第一节点和第二节点通过光传输介质连接,与所述第一节点和所述第二节点分别建立双向通信连接,其中,所述通信装置接收来自所述第一节点的第一光信号和来自所述第二节点的第二光信号,所述第二光信号包括传输给所述第一节点的第四光信号和用作种子光信号的第五光信号,所述第四光信号和所述第五光信号波长不同;
所述通信装置包括接收模块和调制模块,其中,
所述接收模块,用于从来自所述第一节点的第一光信号恢复出数据电信号,并将所述数据电信号发送给所述调制模块;
所述调制模块,用于将所述数据电信号调制到所述第五光信号,并把调制得到的第三光信号发送给所述第二节点。
10.根据权利要求9所述的通信装置,其特征在于:
来自所述第一节点的所述第一光信号的波长与所述第三光信号的波长不同。
11.根据权利要求10所述的通信装置,进一步包括:
所述通信装置进一步包括时钟提取模块,所述时钟提取模块用于从所述第二光信号的至少部分光信号中提取时钟;
所述时钟提供给所述接收模块作为突发时钟和数据恢复处理的参考时钟,和/或提供给所述调制模块作为调制处理的参考时钟。
12.根据权利要求9至11任一项所述的通信装置,其特征在于,
所述第四光信号和所述第五光信号分别从所述通信装置的两个接口输入,或者所述第四光信号和所述第五光信号从所述通信装置的同一个接口输入。
13.根据权利要求9所述的通信装置,其特征在于,所述通信装置进一步包括分光模块,所述分光模块从所述通信装置接收到的第二光信号分出相应波长的光信号并输入所述调制模块。
14.根据权利要求9所述的通信装置,其特征在于,所述通信装置进一步包括:
对所述通信装置接收到的所述第二光信号整体进行光功率放大的光放大装置;或
对所述第二光信号的部分光信号进行光功率放大的光放大装置;或
对所述调制模块调制后的所述第三光信号进行光功率放大的光放大装置。
15.一种光传输方法,其特征在于:
接收来自第一节点的第一光信号和来自第二节点的第二光信号;
所述第二光信号包括第四光信号和第五光信号;
将第四光信号发送给所述第一节点;
从所述第一光信号恢复出数据电信号,将恢复出的数据电信号调制到第五光信号上,将调制得到的第三光信号发送给所述第二节点。
16.根据权利要求15所述的光传输方法,其特征在于,所述方法进一步包括如下至少一种:
在接收到来自所述第二节点的第二光信号之后,对所述第二光信号整体进行光功率放大;
在用所述第二光信号的所述第五光信号进行调制处理前,对所述第五光信号进行光功率放大;
在将所述第二光信号的所述第四光信号发送给所述第一节点之前,对所述第四光信号进行光功率放大;
在将所述第三光信号发送给所述第二节点之前,对调制得到的所述第三光信号进行光功率放大。
17.根据权利要求15所述的光传输方法,其特征在于,所述方法进一步包括:
从所述第二光信号中提取时钟;其中,所述时钟用于突发时钟数据恢复处理的参考时钟,和/或用于进行调制处理的参考时钟。
CN 200810066992 2008-05-09 2008-05-09 一种光通信系统、装置和方法 Expired - Fee Related CN101577842B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN 200810066992 CN101577842B (zh) 2008-05-09 2008-05-09 一种光通信系统、装置和方法
PCT/CN2009/071651 WO2009135437A1 (zh) 2008-05-09 2009-05-05 一种光通信系统、装置和方法
EP09741712.5A EP2285019B1 (en) 2008-05-09 2009-05-05 Optical communication system, apparatus and method
AU2009243970A AU2009243970B2 (en) 2008-05-09 2009-05-05 Optical communication system, apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810066992 CN101577842B (zh) 2008-05-09 2008-05-09 一种光通信系统、装置和方法

Publications (2)

Publication Number Publication Date
CN101577842A CN101577842A (zh) 2009-11-11
CN101577842B true CN101577842B (zh) 2013-08-07

Family

ID=41264443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810066992 Expired - Fee Related CN101577842B (zh) 2008-05-09 2008-05-09 一种光通信系统、装置和方法

Country Status (4)

Country Link
EP (1) EP2285019B1 (zh)
CN (1) CN101577842B (zh)
AU (1) AU2009243970B2 (zh)
WO (1) WO2009135437A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517161B (zh) * 2012-06-19 2016-07-27 上海贝尔股份有限公司 在无源光网络中在局端设备和光网络单元之间通信的方法
CN103516431B (zh) * 2012-06-26 2018-09-14 南京中兴软件有限责任公司 光电光中继器、长距盒及其对上下行光信号的处理方法
CN103516433B (zh) * 2012-06-26 2017-07-11 中兴通讯股份有限公司 一种光电光中继器、长距盒及对上下行光信号的处理方法
CN103532629B (zh) * 2012-07-05 2016-03-30 京信通信技术(广州)有限公司 一种改善数字光纤直放站上行时延调整的方法及装置
CN105763285B (zh) * 2016-04-21 2018-03-20 烽火通信科技股份有限公司 Twdm‑pon系统的onu及时钟同步方法
CN106209243B (zh) * 2016-07-08 2018-12-18 青岛海信宽带多媒体技术有限公司 中继光模块
CN107147446B (zh) * 2017-06-28 2019-05-31 武汉光迅科技股份有限公司 一种多波长光通信单纤双向传输装置
CN112602331B (zh) * 2018-10-02 2022-08-19 华为技术有限公司 具有预定频率间隔的收发方法和装置
CN109495185B (zh) * 2018-11-14 2020-12-22 青岛海信宽带多媒体技术有限公司 光模块
CN109560891B (zh) * 2018-11-16 2020-07-21 烽火通信科技股份有限公司 实现波分复用光信号分路的方法及装置
US10992387B2 (en) 2019-09-12 2021-04-27 Google Llc Port replicator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418691A2 (en) * 2002-11-07 2004-05-12 Samsung Electronics Co., Ltd. Passive optical network using loop back of multi-wavelength light generated at central office
CN101034941A (zh) * 2006-03-09 2007-09-12 华为技术有限公司 一种光环回波分复用无源光网络系统及其数据传输方法
CN101119163A (zh) * 2006-07-31 2008-02-06 华为技术有限公司 一种实现组播业务的wdm-pon方法、系统及光线路终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682239B1 (fr) * 1991-10-04 1994-11-04 Cit Alcatel Systeme de transmission bidirectionnelle, notamment par fibre optique, avec une porteuse unique pour les deux sens de transmission.
US6118565A (en) * 1997-09-30 2000-09-12 Lucent Technologies Inc. Coherent optical communication system
EP1835648B1 (en) * 1998-12-08 2010-02-10 Nippon Telegraph and Telephone Corporation Optical communication network
US6333798B1 (en) * 2001-02-13 2001-12-25 Seneca Networks, Inc. Bidirectional WDM optical communication network
KR100678245B1 (ko) * 2004-12-01 2007-02-02 삼성전자주식회사 수동형 광 가입자 망
GB0611483D0 (en) * 2006-06-10 2006-07-19 Ct For Integrated Photonics Th Optical fibre network for RF and microwave signal distribution
CN101141346B (zh) * 2007-05-23 2010-06-02 中兴通讯股份有限公司 波分复用无源光网络装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418691A2 (en) * 2002-11-07 2004-05-12 Samsung Electronics Co., Ltd. Passive optical network using loop back of multi-wavelength light generated at central office
CN101034941A (zh) * 2006-03-09 2007-09-12 华为技术有限公司 一种光环回波分复用无源光网络系统及其数据传输方法
CN101119163A (zh) * 2006-07-31 2008-02-06 华为技术有限公司 一种实现组播业务的wdm-pon方法、系统及光线路终端

Also Published As

Publication number Publication date
AU2009243970A1 (en) 2009-11-12
CN101577842A (zh) 2009-11-11
EP2285019A4 (en) 2012-03-14
EP2285019B1 (en) 2014-02-26
WO2009135437A1 (zh) 2009-11-12
EP2285019A1 (en) 2011-02-16
AU2009243970B2 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
CN101577842B (zh) 一种光通信系统、装置和方法
Abbas et al. The next generation of passive optical networks: A review
EP1887724B1 (en) A wavelength division multiplexing passive optical network and its implement method
WO2015180508A1 (zh) 基于波分pon系统的开放网络架构及信号传输方法
KR100975882B1 (ko) 시간분할 다중화 수동형 광전송 방식에 파장분할 다중화기술을 적용한 광가입자망 시스템 및 서비스 제공 방법
CN102710361A (zh) 一种分布式基站信号传输系统及通信系统
US11689312B2 (en) System and methods for coherent optical extension
KR101727779B1 (ko) 파장 가변 광 모듈 기반 수동형 광 망 거리 확장장치 및 그 방법
CN102332955A (zh) 一种用于pon的光中继器
CN101471730B (zh) 基于波分复用结构的光纤宽带接入系统及光网络单元
CN105721098B (zh) 用低速光器件实现高速传输的对称twdm‑pon系统中的olt
CN101345599A (zh) 时分多址无源光网络的升级方法和无源光网络系统
KR101762973B1 (ko) 다중포트 수동 광 네트워크 확장장치 및 이를 이용한 광신호 전송방법
KR20170001051A (ko) 시분할다중화 및 파장분할다중화 방식을 적용한 차세대 수동 광 네트워크 종단 장치
CN202004922U (zh) 一种波分复用上的无源光网络系统
CN105743601A (zh) 用低速光器件实现高速传输的对称twdm-pon系统
CN104065444B (zh) 一种利用光纤布拉格光栅均衡rsoa调制带宽的系统及方法
CN105743600A (zh) 用低速光器件实现高速传输的对称twdm-pon系统中的onu
KR100949886B1 (ko) Tdm-pon 기반의 원격 중계 장치 및 그 시스템
US20110044689A1 (en) Method and system for cross-phase-modulation noise reduced transmission in hybrid networks
Kaur et al. Low cost architecture to integrate multiple PONs to a long reach spectrum sliced WDM network
Yang et al. Smile OAN: A long reach hybrid WDM/TDM passive optical network for next generation optical access
Huelsermann et al. Results from EU FP7 project OASE on next-generation optical access
Payne et al. End-to-end network design and experimentation in the DISCUS project
JP6250820B2 (ja) メトロ網とアクセス網を融合する方法、遠隔ノードおよび光回線終端装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

Termination date: 20210509

CF01 Termination of patent right due to non-payment of annual fee