CN101556278A - 一种筛选自身抗原的方法 - Google Patents

一种筛选自身抗原的方法 Download PDF

Info

Publication number
CN101556278A
CN101556278A CNA2008100895815A CN200810089581A CN101556278A CN 101556278 A CN101556278 A CN 101556278A CN A2008100895815 A CNA2008100895815 A CN A2008100895815A CN 200810089581 A CN200810089581 A CN 200810089581A CN 101556278 A CN101556278 A CN 101556278A
Authority
CN
China
Prior art keywords
protein
antigen
autoantigen
western marking
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100895815A
Other languages
English (en)
Other versions
CN101556278B (zh
Inventor
赵晓航
高红军
乔媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cancer Hospital and Institute of CAMS and PUMC
General Hospital of PLA Navy
Original Assignee
PLA NAVY GENERAL HOSIPTAL
Cancer Hospital and Institute of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA NAVY GENERAL HOSIPTAL, Cancer Hospital and Institute of CAMS and PUMC filed Critical PLA NAVY GENERAL HOSIPTAL
Priority to CN200810089581.5A priority Critical patent/CN101556278B/zh
Publication of CN101556278A publication Critical patent/CN101556278A/zh
Application granted granted Critical
Publication of CN101556278B publication Critical patent/CN101556278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及分子生物学领域,具体而言涉及一种改进的筛选自身抗原的方法。本发明通过提供下述方法:将细胞蛋白分成亚细胞组分;进行改良的一维Western印记方法初筛;进行二维Western印记的确定性筛选。解决了常规筛选方法流失低丰度组分,筛选效率低的问题,所述方法可以全面高效地从细胞提取的蛋白中筛选出自身抗原,为自身免疫病、肿瘤等各种能够产生自身抗体的疾病的药物制备提供有用的靶标。

Description

一种筛选自身抗原的方法
技术领域
本发明涉及细胞生物学和蛋白质领域,具体而言涉及一种快速筛选自身抗原的方法。本发明的方法可以在几个月内从细胞提取的蛋白中有效地筛选出自身抗原,而适合为自身免疫病、肿瘤等各种能够产生自身抗体的疾病的药物制备提供有用的靶标。
背景技术
生物、物理、化学以及药物等因素作用于机体时,可以使自身抗原发生改变、免疫隔离部位抗原释放、分子模拟效应产生、表位扩展以及免疫忽视被打破,这些改变可以引起自身免疫病。二十世纪七十年代发现肿瘤患者体内可以检测到自身抗体和(或)自身反应性T淋巴细胞,证实了肿瘤抗原(自身抗原的一种)的存在[1]。目前认为肿瘤抗原产生的分子机制主要包括细胞癌变过程中合成了新的蛋白分子,基因突变或重排使正常蛋白分子结构发生改变,糖基化等原因导致异常的细胞蛋白特殊的降解产物,隐蔽抗原表位的暴露,胚胎抗原或分化抗原的异常表达等。
自身抗原的鉴定对研究自身免疫病,肿瘤疾病的发病机理,机体的免疫功能与疾病发生发展和转归的相互关系至关重要;是发展有效的疫苗,诊断试剂,治疗性抗体,筛选有效药物靶点的必要前提。因此自身抗原鉴定的新方法不断出现,根据研究目的不同大致可以分为两大类[2],一是以探索新型抗原或抗体为目的方法;二是以评价被报道过的抗原或重要功能蛋白为目的方法。第一类抗原鉴定的方法应用比较多的主要有两种,基于cDNA表达文库筛选的血清学分析方法(serological analysis of recombinant cDNA expressionlibraries,SEREX)和基于二维凝胶电泳(two-dimensionalelectrophoresis,2-DE)、Western-blot的血清学蛋白质组分析方法(Serological proteome analysis,SERPA)。第二大类方法包括常规免疫检测方法和应用肽序列标签研究抗原的方法,前者包括酶联免疫吸附测定(enzyme-labeled immunosorbent assay,ELISA)和蛋白芯片法。
第一大类方法立足于发现新型的自身抗原。cDNA表达文库筛选的血清学分析方法是目前文献报道比较多的方法,该方法的主要优点是通量高,应用多个抗原特异的血清在一次实验中可以检测多个肿瘤相关抗原。用SEREX方法虽然已经鉴定多种肿瘤相关的抗原[3-9],但该技术的主要缺点比较明显[6]:1.免疫筛选的原核表达系统不能对外源表达蛋白进行糖基化修饰,不能保证重组蛋白的正确折叠,因此体液免疫反应不能检测相应抗原的特定表位甚至所有表位;2.cDNA文库的建立对高表达水平的抗原有偏好,而相应的低丰度抗原可能被漏掉;3抗原鉴定需要的时间相当长,工作量很大。SERPA技术是2000年出现的鉴定自身抗原的一种方法,该方法以2-DE和Western-blot为基础,联合蛋白质谱鉴定策略筛选自身抗原[10]。与SEREX方法比较,该方法主要的优点是整个实验耗时较短,避免了构建cDNA文库和预杂交消除非特异性结合的步骤,可以保持蛋白的转录后修饰,更好地提供抗原决定簇。
SERPA技术用于自身抗原的筛选研究虽然已有众多报道[10-21],但其主要的不足是2-DE本身的一些缺陷如分离极酸、极碱蛋白和水溶性差的膜蛋白能力有限,检测灵敏度的限制只能鉴定丰度相对较高的抗原,另外2-DE是劳动密集型实验,检测的血清越多工作量越大。同时,所需患者或对照血清量较大。第二大类方法是对现有的抗原进行评价,而不是探索新型自身抗原的方法。
本发明人在前人工作的基础上,对SERPA技术进行了改进。为提高低丰度抗原被鉴定的几率,采用亚细胞蛋白提取的方法将体外培养的疾病细胞蛋白分成若干个组分,如细胞胞浆蛋白组分,细胞核蛋白组分,膜蛋白组分和/或细胞骨架组份。亚细胞蛋白组分分离的方法可以采用手工的亚细胞组分分离方法,也可以采用商品化的试剂盒进行分离。其次在用SERPA技术筛选自身抗原之前将每个蛋白组分用一维SDS聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamidegel electrophoresis,SDS-PAGE)进行分离,做Western印记实验(1-Dimensional Western印记,一维Western印记)初筛该细胞的不同蛋白组分中是否存在自身抗原,筛选可能存在自身抗体的疾病血清。同时对传统的一维Western印记方法进行改进,提高检测的通量,降低血清用量。最后选择含有自身抗原的蛋白组分用2-DE进行分离,然后选择几例特定的阳性血清和阴性对照血清进行Western印记实验(2-Dimensional Western印记,二维Western印记),在参比2-D凝胶上找到抗原蛋白点,然后质谱鉴定。
发明内容
本发明涉及对现有鉴定自身抗原的方法SERPA技术的改进。主要改进有四处:一、将细胞蛋白分成亚细胞组分,使得低丰度蛋白在相应组分富集;二、加入一维Western印记方法初筛抗原库来源是否适合抗原蛋白的筛选,确定抗原筛选的蛋白来源;三、对传统的一维Western印记方法进行改进,提高检测的通量以适合大规模的血清筛选;确定能够产生抗体的血清和候选抗原的分子量;四、降低传统SERPA技术应用的血清例数,仅需要选择几例阳性血清和阴性血清分别做二维Western印记实验,在二维凝胶上确定抗原蛋白点的位置即可。本发明方法可以高通量的筛选自身抗原,更适合鉴定难度大的低丰度抗原的筛选和血清抗体发生率低的病例筛选。
本发明具体提供了下述筛选自身抗原的方法,包括步骤:
1)选择可能含有抗原的蛋白样品;
2)将所述可能含有抗原的蛋白样品分成亚蛋白组分;
3)对每种蛋白组分进行一维Western印记初筛;
4)根据一维Western印记实验的结果选择阳性率高的亚蛋白组分作为二维Western印记的可能含有抗原的蛋白样品;
5)通过二维Western印记对4)中的可能含有抗原的蛋白样品进行筛选和质谱鉴定。
本发明还提供了下述筛选自身抗原的方法,包括步骤:
1)采用选择的细胞系作为可能含有抗原的蛋白样品的来源;
2)将所述细胞系的细胞蛋白分成亚蛋白组分;
3)以患者或健康人对照血清作为一抗,对每种蛋白组分进行一维Western印记初筛;
4)总结实验组和对照组阳性信号的规律,比较分析二者在不同分子量的信号差异,包括阳性率和信号相对强弱的差异;
5)根据一维Western印记实验的结果选择可以产生自身抗体的典型血清为一抗,选择阴性血清为对照,选择阳性率高的亚蛋白组分作为二维Western印记的可能含有抗原的蛋白样品;
6)采用5)中选择的一抗、对照,通过二维Western印记对5)中的可能含有抗原的蛋白样品进行筛选和质谱鉴定。
本发明还提供了下述筛选自身抗原的方法,包括步骤:
1)首先确定可能含有抗原的蛋白样品的来源。由于组织难以避免血清的污染和组织的异质性,建议用细胞系作为蛋白库的来源。用商品化的试剂盒将细胞蛋白分成亚蛋白组分,即胞浆蛋白组分,膜系统蛋白组分,细胞核蛋白组分和/或细胞骨架组份。
2)将每种蛋白组分用一维的SDS聚丙烯酰胺凝胶进行分离,将凝胶中的蛋白转到PVDF膜或硝酸纤维素膜上。转有蛋白的PVDF切成尽量窄的小条,每个PVDF小条做好标记放入8通道或12通道的杂交盘中,每个通道放一根,然后以患者或健康对照血清为一抗按照Western印记的程序做后续实验。
3)总结实验组和对照组阳性信号的规律,比较分析二者在不同分子量的信号差异,包括阳性率和信号相对强弱的差异。
4)二维Western印记实验:根据一维Western印记实验的结果选择几例可以产生自身抗体的典型血清为一抗,进行二维Western印记实验筛选候选抗原,同时选择阴性血清为对照。在未转膜的2-D聚丙烯酰胺凝胶上找到对应的蛋白点,然后挖点、酶解、质谱鉴定、生物学验证。
附图说明
图1.本发明的疾病自身抗原鉴定的方法的流程图。
图2.免疫沉淀和Western印记方法验证食管癌和健康对照血清中抗enolase-1自身抗体的表达量。C表示食管癌血清,N表示对照血清,B表示阴性对照。
图3.免疫组化方法验证食管鳞癌候选相关抗原enolase-1在癌组织和癌旁正常食管上皮中的表达,其中①,②为食管癌组织,③,④为食管癌旁正常组织,①,③×200;②,④×400。
图4.肿瘤候选相关抗原PGK1在食管鳞状细胞癌组织和癌旁正常组织中的表达,其中①,②为食管癌组织,③,④为食管癌旁正常组织,①,③×200;②,④×400。
具体实施方式
本发明将在下面的实施例中进一步加以描述。但是本发明并不局限于实施例。
实施例1:食管鳞癌肿瘤相关抗原的鉴定
细胞培养:食管鳞癌细胞系EC0156和KYSE410(EC0156细胞系源自中国医学科学院肿瘤研究所,可以参考文献:Wang Q,Xu Y,Zhao X,Chang Y,Liu Y,Jiang L,Sharma J,Seo DK,Yan H.A facile one-step in situ functionalization ofquantum dots with preserved photoluminescence for bioconjugation.J Am ChemSoc 2007;129:6380-6381;KYSE410细胞系是日本兵库县医学院岛田丰博士馈赠)
1)EC0156和KYSE410细胞分别培养于达尔伯克改良伊格尔培养基(Dulbecco’s Modified Eagle’s Medium,DMEM)和RPMI1640培养基中,培养基含有10%灭活胎牛血清,100U/ml青霉素和100μg/ml链霉素,在5%CO2的37℃孵箱(NAPCO,Winchester,VA)中培养。
2)应用亚细胞蛋白提取试剂盒“ProteoExtractTM Kits”(Cat.No.539790,MERCK公司)将EC0156和KYSE410细胞蛋白分成三个或四个亚组分,包括胞浆蛋白,细胞膜系统蛋白、细胞核蛋白组分和细胞骨架组份。应用Br adford法进行蛋白定量[22]
3)用一维SDS聚丙烯酰胺凝胶分离不同蛋白组分:采用微型电泳槽(VE-180型,上海天能科技有限公司;Mini PROTEAN 3,Bio-Rad公司),12%的聚丙烯酰胺凝胶分离蛋白。用1.0mm厚含有2个梳齿的梳子(其中一个梳齿宽约3mm;另外一个梳齿宽约75mm)取代常规的10或15个梳齿的梳子制作上层积聚胶。将预染蛋白分子量标记加入到3mm宽的孔中,将要分离的蛋白样品加入到75mm宽的孔中。也可以选用商品化的预置梯度胶进行蛋白分离。
4)转膜:用小型转印设备(Mini Trans-Blot转印槽,Bio-Rad公司)将聚丙烯酰胺凝胶采用湿转法转移到PVDF膜上,转膜条件为4℃110V电压1.5小时。
5)分割PVDF膜:将转有蛋白的PVDF膜夹入两层干净的玻璃纸中间,玻璃纸下面垫一块儿干净的玻璃板,用一次性手术刀片沿与预染蛋白分子量标记平行的方向将膜切成3-4mm宽的小条,将每个小条做好标记后放入8通道的杂交盘中,每条通道放一个。
6)一维Western印记实验:每个通道加入1ml的TBST(20mMTris-HCl,pH7.5;50mM NaCl;0.1%Tween-20)配置的5%脱脂牛奶室温封闭3小时或4℃封闭过夜;吸出封闭液,加入1ml 5%脱脂牛奶稀释的食管癌或健康对照血清(稀释比例1∶200),室温孵育3小时或4℃孵育过夜;用洗膜缓冲液(20mM Tris-HCl,pH7.5;200mM NaCl;0.1%Tween-20)洗10次,每次5min;然后加入辣根过氧化物酶标记的山羊抗人IgG的二抗,室温孵育1小时,用洗膜缓冲液洗10次,每次5min。将每个PVDF膜小条重新拼接在一起,等比例混合ECL超敏化学发光试剂盒(Cat.No.P1020,北京普利莱基因科技有限公司)的A液和B液,均匀地加到膜上,暗室曝光、显影、定影。
7)阳性信号规律总结:确定肿瘤相关抗原可能存在的蛋白组分和相对分子量的大小,总结食管癌和健康对照血清中自身抗体发生的阳性率,相对信号强弱的规律。本实例发现EC0156胞浆蛋白组分中肿瘤候选相关抗原有明显的规律分布,主要集中在50,43,37,110,82,105,70,25kDa的蛋白条带上;细胞膜系统蛋白组分无明显肿瘤相关抗原规律分布。KYSE410胞浆蛋白组分中肿瘤候选相关抗原主要集中在53,45和37kDa的蛋白条带上;而细胞膜系统蛋白组分无明显肿瘤相关抗原规律分布。
8)2-D电泳:首先将EC0156和KYSE410细胞的胞浆组分蛋白分别用微型的等电聚焦设备(ZOOM IPG Runner System,Invitrogen公司)按照蛋白的等电点不同进行分离。具体操作步骤如下:将100μg的蛋白加入到155μl水化液(8M脲,2%CHAPS,65mM DTT,0.5%IPG缓冲液,痕量的溴酚蓝),蛋白充分溶解后,缓慢加入到暗盒(Cat.No.ZM0003,Invitrogen公司)的IPG沟槽内,将7cm pH3-10的线性IPG胶条(Cat.No.163-2000,Bio-Rad公司)胶面朝上缓慢插入到IPG沟槽内,注意避免气泡产生,用胶带封闭上样孔,室温水化过夜,然后进行等电聚焦。等电聚焦的条件:200V 20min,450V 15min,750V15min,2000V 100min。从暗盒中取出IPG胶条在平衡缓冲液(50mMTris-Cl pH8.8,6M脲,30%甘油,2%SDS,65mM DTT,痕量的溴酚蓝)中进行平衡15min,然后向不含DTT的平衡缓冲液中加入碘乙酰胺(终浓度140mM)进行蛋白烷化,15min。最后进行二维的SDS聚丙烯酰胺凝胶电泳实验。
9)二维Western印记实验:将2-D聚丙烯酰胺凝胶分离的蛋白转到PVDF膜上,根据一维Western印记实验结果总结的规律有目的的选择疾病血清和对照血清进行二维Western印记实验。
10)在未转膜的2-D凝胶上找到候选抗原蛋白点,进行挖点、酶解、质谱鉴定。本实例用MALDI-TOF/TOF(Ultraflex III TOF/TOF,Bruker公司)进行鉴定,用Mascot搜索引擎搜索NCBI数据库,Mascotscore>65,p<0.05。
11)鉴定结果和生物学验证:本实例在EC0156细胞中首次鉴定了食管癌相关的候选肿瘤抗原enolase-1,phosphoglycerate kinase 1(PGK1),heat shock protein 105kDa(HSP105),vinculin,phosphoglycerate mutase 1和triosephosphate isomerase 1;在KYSE410细胞中鉴定到两个肿瘤相关抗原P53和MBP-1。众所周知P53是比较常见的肿瘤相关抗原,而MBP-1是enolase-1的截短表达形式,是癌基因c-myc P2启动子的负调控蛋白。目前对enolase-1和PGK1进行了生物学验证。免疫沉淀和Western印记的方法验证了食管癌血清中存在高滴度的抗enolase-1的自身抗体,免疫组化结果显示enolase-1在食管癌组织中明显高表达,且亚细胞定位发生了异常改变。免疫组化结果显示PGK1在食管癌组织中表达明显高于癌旁正常组织,且细胞定位也发生了异常改变。其余候选抗原正在验证过程中。
根据上述实施例,本领域的技术人员完全可以想到将本发明的方法应用到其他细胞系中,对自身抗原进行筛选。对于本发明的方法的变形、改良都包括在本发明的范围内。
技术效果
通过本发明的方法可以避免传统的SERPA技术筛选疾病抗原的盲目性:直接用二维Western印记去筛选自身抗原,存在某种程度的盲目性。抗原来源(如细胞系)和血清的选择虽然具有一定的随机性,但同时具有一定的偏见性和盲目性,如初选的抗原来源可能不一定适合自身抗原的筛选或所选的血清可能根本没有抗体的产生。而本发明的方法中加入了一维Western印记实验初筛抗原库,同时随机的大量筛选疾病血清,既保证了实验的随机性又避免了盲目性,可以避免浪费大量珍贵的血清标本和宝贵的时间。
此外,通过本发明的方法,对一维Western印记本身的改进可以明显提高血清筛选的速度,传统的一维Western印记方法一周内只能筛选十几例血清,而本发明中改进一维Western印记方法一周内可以筛选上百例血清,适合大规模的筛选实验。改进的一维Western印记实验明显提高了抗原抗体结合的效率,血清和抗原库蛋白需要量明显减少。
通过本发明的方法将细胞蛋白分成不同的亚细胞蛋白组分可以明显改善低丰度抗原在某一组分的富集程度,提高了这类抗原被鉴定的可能性;另外亚组分的分离可以优先筛选抗原存在概率大的组分,如自身免疫性疾病中抗原主要集中在胞浆和胞核蛋白组分,实际操作中可以对这两个组分进行优先筛选。
通过本发明的方法用一维Western印记实验初筛抗原后,明确了典型病例血清和候选抗原的分子量大小,因此在做二维Western印记实验时可以做到有的放矢,仅需要用几例典型患者血清和对照血清为一抗,在2-D凝胶上确定抗原蛋白点即可,明显降低了传统SERPA技术的工作量。
通过本发明的方法采用微型电泳及转膜系统较传统SERPA技术中应用的大型电泳转膜设备可操作性更强。
参考文献:
[1]Shiku H,Takahashi T,Resnick LA,et al.Cell surfaceantigens of human malignant melanoma.III.Recognition ofautoantibodies with unusual characteristics[J].J Exp Med,1977,145:784-789
[2]Caron M,Choquet-Kastylevsky G,Joubert-Caron R.Cancerimmunomics using autoantibody signatures for biomarkerdiscovery[J].Mol Cell Proteomics,2007,6:1115-1122
[3]Sahin U,Tureci O,Schmitt H,et al.Human neoplasms elicitmultiple specific immune responses in the autologoushost[J].Proc Natl Acad Sci USA,1995,92:11810-11813
[4]Chen YT,Scanlan MJ,Sahin U,et al.Atesticular antigenaberrantly expressed in human cancers detected byautologous antibody screening[J].Proc Natl Acad Sci USA,1997,94:1914-1918
[5]Diesinger I,Bauer C,Brass N,et al.Toward a more completerecognition of immunoreactive antigens in squamous celllung carcinoma[J].Int J Cancer,2002,102:372-378
[6]Wang X,Yu J,Sreekumar A,et al.Autoantibody signaturesinprostate cancer[J].N Engl J Med,2005,353:1224-1235
[7]Fernandez Madrid F,Tang N,Alansari H,et al.Improvedapproach to identify cancer-associated autoantigens[J].Autoimmun Rev,2005,4:230-235
[8]Shimada  H,Kuboshima  M,Shiratori T,et al.Serumanti-myomegalin antibodies in patients with esophagealsquamous cell carcinoma[J].Int J Oncol,2007,30:97-103
[9]Nesslinger NJ,Sahota RA,Stone B,et al.Standardtreatments induce antigen-specific immune responses inprostate cancer[J].Clin Cancer Res,2007,13:1493-1502
[10]Prasannan L,Misek DE,Hinderer R,et al.Identificationof beta-tubulin isoforms as tumor antigens inneuroblastoma[J].Clin Cancer Res,2000,6:3949-3956
[11]Klade CS,Voss T,Krystek E,et al.Identification of tumorantigens inrenal cell carcinoma byserological proteomeanalysis[J].Proteomics,2001,1:890-898
[12]Brichory FM,Mi sek DE,Yim AM,et al.An immune responsemanifested by the common occurrence of annexins I and IIautoantibodies and high circulating levels of IL-6in lungcancer[J].Proc Natl Acad Sci USA,2001,98:9824-9829
[13]Brichory F,Beer D,Le Naour F,et al.Proteomics-basedidentification of protein gene product 9.5as a tumorantigen that induces a humoral immune response in lungcancer[J].Cancer Res,2001,61:7908-7912
[14]Le Naour F,Misek DE,Krause MC,et al.Proteomics-basedidentification of RS/DJ-1 as a novel circulating tumorantigen in breast cancer[J].Clin Cancer Res,2001,7:3328-3335
[15]Le Naour F,Brichory F,Misek DE,et al.A distinctrepertoire of autoantibodies in hepatocellular carcinomaidentified by proteomic analysis[J].Mol Cell Proteomics,2002,1:197-203
[16]Kellner R,Lichtenfels R,Atkins D,et al.Targeting oftumor associated antigens in renal cell carcinoma usingproteome-based analysis and their clinicalsignificance[J].Proteomics,2002,2:1743-1751
[17]Seliger B,Menig M,Lichtenfels R,et al.Identificationof markers for the selection of patients undergoing renalcell carcinoma-specific immunotherapy[J].Proteomics,2003,3:979-990
[18]Hong SH,Misek DE,Wang H,et al.An autoantibody-mediatedimmune response to calreticulin is oforms in pancreaticcancer[J].Cancer Res,2004,64:5504-5510
[19]Canelle L,Bousquet J,Pionneau C,et al.An efficientproteomics-based approach for the screening ofautoantibodies[J].J Immunol Methods,2005,299:77-89
[20]Cui JW,Li WH,Wang J,et al.Proteomics-basedidentification of human acute leukemia antigens thatinduce humoral immune response[J].Mol Cell Proteomics,2005,4:1718-1724
[21]Li C,Xiao Z,Chen Z,et al.Proteome analysis of human lungsquamous carcinoma[J].Proteomics,2006,6:547-558
[22]Bradford MM.A rapid and sensitive method for thequantitation of microgram quantities of protein utilizingthe principle of protein-dye binding[J].Anal Biochem,1976,72:248-254

Claims (7)

1.筛选自身抗原的方法,包括步骤:
1)选择可能含有抗原的蛋白样品;
2)将所述可能含有抗原的蛋白样品分成亚蛋白组分;
3)对每种蛋白组分进行一维Western印记初筛;
4)根据一维Western印记实验的结果选择阳性率高的亚蛋白组分作为二维Western印记的可能含有抗原的蛋白样品;
5)通过二维Western印记对4)中的可能含有抗原的蛋白样品进行筛选和质谱鉴定。
2.权利要求1中的筛选自身抗原的方法,包括步骤:
1)采用选择的细胞系作为可能含有抗原的蛋白样品的来源;
2)将所述细胞系的细胞蛋白分成亚蛋白组分;
3)以患者或健康人对照血清作为一抗,对每种蛋白组分进行一维Western印记初筛;
4)总结实验组和对照组阳性信号的规律,比较分析二者在不同分子量的印记信号差异,包括阳性率和信号相对强弱的差异;
5)根据一维Western印记实验的结果选择可以产生自身抗体的典型血清为一抗,选择阴性血清为对照,选择阳性率高的亚蛋白组分作为二维Western印记的可能含有抗原的蛋白样品;
6)采用5)中选择的一抗、对照,通过二维Western印记对5)中的可能含有抗原的蛋白样品进行筛选和质谱鉴定。
3.权利要求2的方法,其中步骤1)中的细胞系选自人的肿瘤细胞或者其他疾病相关细胞。
4.权利要求2的方法,其中步骤2)中的亚蛋白组分包括胞浆蛋白组分,膜系统蛋白组分,细胞骨架组份和/或细胞核蛋白组分。
5.权利要求2的方法,其中步骤2)中的分成亚蛋白组分的方法包括采用商品化的试剂盒。
6.权利要求1的筛选自身抗原的方法,其中含有抗原的蛋白样品是EC0156和KYSE410细胞。
7.权利要求1的筛选自身抗原的方法,其中筛选到的抗原是enolase-1、PGK1、HSP105、vinculin、phosphoglycerate mutase 1、triosephosphate isomerase 1、P53和MBP-1。
CN200810089581.5A 2008-04-08 2008-04-08 一种筛选自身抗原的方法 Active CN101556278B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810089581.5A CN101556278B (zh) 2008-04-08 2008-04-08 一种筛选自身抗原的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810089581.5A CN101556278B (zh) 2008-04-08 2008-04-08 一种筛选自身抗原的方法

Publications (2)

Publication Number Publication Date
CN101556278A true CN101556278A (zh) 2009-10-14
CN101556278B CN101556278B (zh) 2016-08-03

Family

ID=41174473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810089581.5A Active CN101556278B (zh) 2008-04-08 2008-04-08 一种筛选自身抗原的方法

Country Status (1)

Country Link
CN (1) CN101556278B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566956A (zh) * 2003-06-18 2005-01-19 厦门大学 微生物高效中和抗原的筛选和鉴定方法
US6969614B1 (en) * 1999-02-16 2005-11-29 The United States Of America As Represented By The Department Of Health And Human Services Methods for the isolation and analysis of cellular protein content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969614B1 (en) * 1999-02-16 2005-11-29 The United States Of America As Represented By The Department Of Health And Human Services Methods for the isolation and analysis of cellular protein content
CN1566956A (zh) * 2003-06-18 2005-01-19 厦门大学 微生物高效中和抗原的筛选和鉴定方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
LATHA PRASANNAN 等: "Identification of β-Tubulin Isoforms as Tumor Antigens in Neuroblastoma", 《CLINICAL CANCER RESEARCH》 *
LAURA F. STEEL 等: "Methods of comparative proteomic profiling for disease diagnostics", 《J. CHROMATOGR. B》 *
NANDINI FALISSE-POIRRIER 等: "Advances in immunoproteomics for serological characterization of microbial antigens", 《JOURNAL OF MICROBIOLOGICAL METHODS》 *
QIANGBIN WANG 等: "A Facile One-Step in situ Functionalization of Quantum Dots with Preserved Photoluminescence for Bioconjugation", 《J. AM. CHEM. SOC.》 *
SANDRA R. PEREIRA-FACA等: "Identification of 14-3-3u as an Antigen that Induces a Humoral Response in Lung Cancer", 《CANCER RES》 *
YOSHIKO OKAMURA等: "Two-Dimensional Analysis of Proteins Specific to the Bacterial Magnetic Particle Membrane from Magnetospirillum sp. AMB-1", 《APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY》 *
熊兴东: "食管癌细胞差异表达核基质蛋白的分离与鉴定", 《中国优秀博硕士学位论文全文数据库(硕士) 医药卫生科技辑》 *
高红军 等: "食管鳞癌肿瘤相关抗原磷酸甘油酸激酶1的鉴定", 《世界华人消化杂志》 *
高红军: "食管癌自身抗体和血清小分子蛋白的鉴定", 《中国博士学位论文全文数据库 医药卫生科技辑》 *

Also Published As

Publication number Publication date
CN101556278B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
Shen et al. Autoantibodies, detection methods and panels for diagnosis of Sjögren's syndrome
de Wit et al. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling
Lu et al. Peroxiredoxin 2: a potential biomarker for early diagnosis of hepatitis B virus related liver fibrosis identified by proteomic analysis of the plasma
Canelle et al. An efficient proteomics-based approach for the screening of autoantibodies
Katayama et al. An autoimmune response signature associated with the development of triple-negative breast cancer reflects disease pathogenesis
US20050221372A1 (en) Nuclear matrix protein alterations associated with colon cancer and colon metastasis to the liver, and uses thereof
Gao et al. Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis
Gao et al. Chaperonin containing TCP1 subunit 5 is a tumor associated antigen of non-small cell lung cancer
Alex et al. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies
Gupta et al. Evaluation of autoantibody signatures in meningioma patients using human proteome arrays
Farrell et al. Predominance of ERG‑negative high‑grade prostate cancers in African American men
CN105579853A (zh) 用于检测gaba(a)相关性自身免疫疾病的诊断方法和相关主题
Zhao et al. The challenges of early diagnosis and therapeutic prediction in rheumatoid arthritis.
Repetto et al. Proteomic exploration of plasma exosomes and other small extracellular vesicles in pediatric hodgkin lymphoma: a potential source of biomarkers for relapse occurrence
Zhong et al. TNFAIP8 promotes the migration of clear cell renal cell carcinoma by regulating the EMT
Johnson et al. Stress granules and RNA processing bodies are novel autoantibody targets in systemic sclerosis
JP6276992B2 (ja) 胸膜中皮腫患者の早期発見のための分子マーカー及びその発現解析方法
La Rocca et al. Glioblastoma cusa fluid protein profiling: A comparative investigation of the core and peripheral tumor zones
Dellavance et al. Autoantibodies to 60 kDa SS-A/Ro yield a specific nuclear myriad discrete fine speckled immunofluorescence pattern
Ferguson et al. Defining the cell surface proteomic landscape of multiple myeloma reveals immunotherapeutic strategies and biomarkers of drug resistance
CN101556278A (zh) 一种筛选自身抗原的方法
Ueda et al. Identification of L-plastin autoantibody in plasma of patients with non-Hodgkin's lymphoma using a proteomics-based analysis
US10048266B2 (en) Diagnostic biomarkers and therapeutic targets for pancreatic cancer
Wang et al. Proteomics and molecular network analyses reveal that the interaction between the TAT–DCF1 peptide and TAF6 induces an antitumor effect in glioma cells
Qin et al. Using serological proteome analysis to identify and evaluate anti‐GRP78 autoantibody as biomarker in the detection of gastric cancer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20151013

Address after: 100021 Beijing, Panjiayuan, South Lane, No. 17, No.

Applicant after: Tumor Hospital, Chinese Medical Academy

Applicant after: General Hospital of the PLA Navy

Address before: 100021 Beijing, Panjiayuan, South Lane, No. 17, No.

Applicant before: Tumour Inst., China Medical Science Research Academy

Applicant before: General Hospital of the PLA Navy

C14 Grant of patent or utility model
GR01 Patent grant