CN101538077A - 一种三维电极反应器用粒子电极的电解活化方法 - Google Patents

一种三维电极反应器用粒子电极的电解活化方法 Download PDF

Info

Publication number
CN101538077A
CN101538077A CN200910042936A CN200910042936A CN101538077A CN 101538077 A CN101538077 A CN 101538077A CN 200910042936 A CN200910042936 A CN 200910042936A CN 200910042936 A CN200910042936 A CN 200910042936A CN 101538077 A CN101538077 A CN 101538077A
Authority
CN
China
Prior art keywords
electrode
active carbon
gac
reactor
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910042936A
Other languages
English (en)
Inventor
柴立元
王云燕
尤翔宇
舒余德
闵小波
彭兵
杨志辉
王海鹰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN200910042936A priority Critical patent/CN101538077A/zh
Publication of CN101538077A publication Critical patent/CN101538077A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种三维电极反应器用粒子电极的活化方法。其过程是:将使用过一段时间的活性炭用稀H2SO4溶液浸泡振荡,然后装入三维电极反应器内,用超纯水电解活化。该方法通过将活性炭填充在两个主电极之间,在电解液中加以直流电场,借助电化学反应产生具有强氧化性的羟基自由基,使得吸附在活性炭上的污染物大部分降解。相对于热再生和化学再生等方法,电化学再生法具有操作简便、能耗低、无二次污染、活性炭损失小等优点。粒子电极活性炭在使用一定次数后,采用电解活化,活化后性能可以恢复到原有水平。

Description

一种三维电极反应器用粒子电极的电解活化方法
技术领域
本发明涉及一种三维电极反应器用粒子电极的活化方法,特别是涉及一种降解难降解有机物的三维电极反应器用粒子电极的活化方法,属于环境工程领域。
背景技术
生物难降解有机污染物的处理是当前世界工业废水处理的热点和难点。研究者们针对难降解有机废水也提出过一些处理方法,其中电化学法处理废水具有技术经济指标先进、无毒、清洁等特点,而越来越受到人们的重视。三维电极反应器具有较大的体面比,较好的传质效应和较高电流效率,是一种具有较高实用和理论价值的电化学反应器,在废水处理中得到了许多应用,但目前大多都集中在含重金属离子废水的处理,而在有机废水领域的研究不多见。北京化工大学开发的“一种处理难降解有机废水的三维电极反应器(CN1850644A)”需要曝气充氧、活性炭的使用寿命及其活化没有提及;中山大学开发的“三维电极反应器(CN2564547Y)”需要曝气充氧、粒子电极的制作过程复杂。
活性炭外观呈黑色、内部孔隙结构发达、比表面积大、具有多种官能团、吸附能力强、由石墨结构微粒组成的材料,是一种常用的吸附剂、催化剂或催化剂载体,广泛应用于脱除工业和城市污水中的有机污染物。本研究采用活性炭作三维电极反应器中的粒子电极,电解使用一定时间后活性炭的催化性能失去了活性。前期研究三维电极法处理EDTA废水,结果表明:活性炭第一次使用TOC由400mg/L可以降至20mg/L,使用到第四次TOC只能降低到90mg/L,活性炭活性明显降低,需要再生处理。
再生的方法有多种,比较常用的方法有热再生方法、化学再生法和微生物再生法、湿式氧化再生法、溶剂再生法、超声波再生法等。热再生法通常需要将使用过的活性炭运输到活性炭生产厂家进行高温再生,虽然有再生效率高、应用范围广等特点,但是因再生过程须外加能源加热,致使投资和运行费用较高,同时活性炭再生后会损耗5%~10%。化学再生法能够在现场进行再生,但也会造成一定程度的碱或其它污染及活性炭损耗,不能从根本上解决污染问题。微生物再生简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大,且在降解过程中一般不能将所有的有机物彻底分解成CO2和H2O,其中间产物仍残留在活性炭上,积累在微孔中,多次循环后再生效率会明显较低,因而限制了微生物再生法的工业化应用。湿式氧化再生法处理对象广泛,反应时间短,再生效率稳定,再生开始后无需另外加热,然而对于某些难降解有机物可能会产生毒性较大的中间产物。溶剂再生法针对性较强,往往一种溶剂只能脱附某些污染物,应用范围较窄。超声波再生法能耗小,工艺及设备简单,活性炭损失小,可回收有用物质等,但只对物理吸附有效,目前再生效率仅为45%左右,且活性炭孔径大小对再生效率有很大影响。
上述各种活性炭再生技术除了各自的缺陷外,通常还有下述三点弊端:再生过程中活性炭损失往往较大;再生活性炭吸附能力会有明显下降;再生时产生的尾气会造成空气的二次污染。
发明内容
本发明的目的是提供一种三维电极用粒子电极的活化方法,该方法能使活性炭的活性恢复至原有水平。
一种三维电极反应器用粒子电极的电解活化方法,将使用8-10次的三维电极反应器用粒子电极用pH为1.0的稀H2SO4溶液浸泡振荡1-2小时,然后装入三维电极反应器内,用超纯水冲洗,用1mol/L的NaOH溶液调节其pH为7.0-8.0,在电流密度为20-60A/m2的情况下电解0.5-1小时。
所说的粒子电极是以椰子壳或硬质果壳为原料,用水蒸气法生产的不定型颗粒炭,具有一定的抗压强度,易再生、过滤速度快。
本发明的三维电极反应器用粒子电极的颗粒大小一般为8~20目。
本发明粒子电极的电解活化在三维电极反应器中进行。
本发明的三维电极反应器用粒子电极采用以下方法活化,活化后性能可以恢复到原有水平。
所述三维电极反应器的组成包括:由两个平板电极(阳极和阴极)、粒子电极和槽体组成。起馈电极作用的两个平板电极均为高纯石墨,极板面积为5cm×10cm,粒子电极为活性炭(20目),作为工作电极被填充在阳极和隔膜间形成三维电极,粒子电极有效填充体积为5cm×5cm×10cm。槽体由PVC材料粘结而成,隔膜板为一块打满1mm微孔的PVC板,隔膜板距阴极0.5cm,距阳极5cm。外加电源以直流方式供给,采用DF1797B-8003型程控开关电源(宁波中策电子),输出电压0~80V,输出电流0~2.5A。
采用三维电极法再生活性炭,再生的最佳工艺条件通过电解EDTA来确定。电解EDTA的最高降解率被确定为活性炭再生的最佳条件。称取一定量的乙二胺四乙酸二钠,用超纯水溶解即得到模拟废水。用TOC-VCPH型总有机碳分析仪(日本岛津)测得TOC浓度为200mg/L,pH值用PHS-3B型精密pH计(上海雷磁)测得,电导率用DDS-307型电导率仪(上海虹益)测定。
电解前,石墨电极用稀硫酸浸泡,用去离子水反复冲洗以去除表面附着的污染物,然后置于电化学反应器中,在阳极和隔膜板间填充150g预先活化好的活性炭。同时量取500mL模拟废水置于烧杯中,将烧杯放在恒温水浴锅中以控制水温,用恒流泵使废水从阳极底端流入反应器,从阴极上部流出,返回到烧杯中,以此循环,同时于主电极两端施加一定的电压,调节电流密度开始电化学氧化,反应一段时间后取槽内溶液进行分析。
理论依据
本发明的活性炭再生机理主要为电化学氧化。本发明采用的三维电极反应器在合适的电势条件下产生氧化性极强的羟基自由基,可迅速彻底的分解有机物。其反应如下:
H2O→gOH+H++e-    (酸性)
OH -→gOH+e-       (碱性)
R+gOH→CO2+H2O+无机离子
本发明使脱附于活性炭表面的污染物能得到高效的降解。本发明采用了三维电极反应器,使该电极处理有机污染物主要基于羟基自由基氧化机理。众所周知,羟基自由基氧化电位高达2.8V,是仅次于氟的强氧化剂,因此,污染物处理效果大大提高,试验表明对EDTA、苯环类生物难降解有机污染物降解的电流效率可高达80%,能量利用率高。
附图1为EDTA的红外光谱图,3523.93cm-1为羟基伸缩振动峰,3389.87cm-1为氢键结合的羧酸,3026.81cm-1为Csp3伸缩振动,1475.08cm-1
Figure A20091004293600061
反对称伸缩振动,1396.72cm-1
Figure A20091004293600062
对称伸缩振动,1656.37cm-1为N-C伸缩振动,上述结果表明,EDTA未吸附前,主要基团均有特征峰表征。
附图2为EDTA被活性炭吸附后的红外光谱图,对比附图1与附图2,活性炭吸附EDTA后的红外谱图明显不同于未被吸附的EDTA谱图。由附图2看出,波数3500~3300cm-1间出现双峰,3414.88cm-1为N-H键对称伸缩振动峰,3450cm-1为非对称伸缩振动峰。同时,在1650cm-1处出现N-H键弯曲振动峰。这些数据表明活性炭吸附有伯胺。波数为1025.36cm-1处又出现了C-N键伸缩振动,故认为活性炭吸附的是脂肪族伯胺;在图中3550.59cm-1处出现了很强的尖峰,为羧基中羟基伸缩振动峰。同时在1618.94cm-1处出现羧酸C-O键反对称伸缩振动峰。所以活性炭吸附的脂肪族伯胺含羧基。其原因为EDTA被活性炭吸附时形成了-σ*反馈键,导致EDTA相关键断裂,生成H2NCH2COOH。
附图3为活性炭作为三维电极反应器中的粒子电极,经多次电解处理EDTA废水后的红外光谱图。由图看到,在高频区3422.62cm-1处出现的吸收峰带,是氢键N-H伸缩振动产生的,表明吸附物质成缔合状态。将附图2与附图3对比表明,活性炭经过多次使用后,甘氨酸H2NCH2COOH由起初的单分子通过N-H键在活性炭上呈缔合状态存在。这种缔合物可能是非催化活性化合物,在电解过程中不易降解,永久性占据活性炭的活性点使活性炭失去活性。
产生非催化活性化合物的原因:一是H2NCH2COOH与活性炭某些吸附点产生很强的化学键;二是由于微孔填充和毛细凝结作用,因而在电解过程(H2NCH2COOH)n氧化速度很慢。为了加速非催化缔合物(H2NCH2COOH)n的氧化速度,采用三维电极法产生高浓度的羟基自由基·OH,单独将残存在活性炭中的缔合物(H2NCH2COOH)n强行降解,使活性炭恢复活性。因为再生过程中活性炭中已不存在催化活性配合物,电解产生的羟基自由基·OH完全用于(H2NCH2COOH)n氧化。为了降解反应有利进行,电解过程使用的溶液不含有机物,故电解产物在溶液中的浓度近似为零。在上述条件下,电解法能使活性炭再生。
本发明通过将活性炭填充在两个主电极之间,在电解液中加以直流电场,借助电化学反应产生具有强氧化性的羟基自由基,使得吸附在活性炭上的污染物大部分降解。相对于热再生和化学再生等方法,电化学再生法具有操作简便、能耗低、无二次污染、活性炭损失小等优点。粒子电极活性炭在使用一定次数后,采用电解活化,活化后性能可以恢复到原有水平。
附图说明
附图1:本发明用EDTA的红外光谱图;
附图2:本发明用活性炭吸附EDTA后红外光谱图;
附图3:本发明方法电解后活性炭红外光谱图;
附图4:本发明使用的三维电极反应器结构示意图;
附图5:本发明的粒子电极活性炭及使用20次后活性炭电解活化后红外光谱图;
附图6:本发明的三维电极反应器粒子电极活化与不活化对EDTA废水的处理效果。
具体实施方式
以下结合附图对本发明作进一步说明。
本发明的三维电极反应器(如附图4所示)的槽体6可做成矩形,用有机玻璃材料制成。阴极3和阳极8分别置于槽体两侧,并分别与直流电源1的负极和正极连接;电极用高纯石墨板加工而成,隔膜板4主要是用于分隔粒子电极与阴极,用有机玻璃材料制成,上面开1mm的微孔若干;粒子电极7填充于电极阳极和隔膜板之间。槽体的大小,两电极及隔膜之间的距离可依所处理废水的水量和废水的性质进行调节。废水从进水口5进入反应器中;在粒子电极内发生吸附一氧化反应后从出水口2排出。
本发明的三维电极反应器用于处理EDTA废水时,先打开进水阀进水,接通直流电源,调节适当的电流密度,废水经处理后从出水口排出。
本发明的三维电极反应器所使用的粒子电极在使用一段时间后需要进行活化处理,即将使用过8-10次的活性炭浸泡于pH为1.0的稀硫酸溶液中,振荡或搅拌12小时,然后放入三维电极反应器内,用超纯水冲洗,调节其pH为7.0-8.0,在电流密度为100-300mA的情况下电解0.5-1.0小时,即达到对粒子电极的活化目的。
以下实施例或实施方式旨在进一步说明本发明,而不是对本发明的限定。
实施例1
采用本发明活化方法对活性炭进行电解活化。在活性炭活化的最佳电解条件:电解时间1h,电解温度25℃,溶液电导率1.39ms/cm,电流强度100-300mA,pH6-8下,将已使用20多次的活性炭进行活化,活化后活性炭红外光谱如附图5所示。为了说明活化效果,将未使用过的活性炭红外光谱图表示在同一图中,对比两谱图看出,在高频区峰的强度与形状几乎完全重合,表明活性炭经过单独电解可以活化。在三维电极反应器中用电解活化的活性炭对EDTA进行降解,能使降解率保持在95%以上。
实施例2
采用三维电极反应器处理含EDTA废水,控制工艺条件为:EDTA废水500mL,进水pH值7.7,进水速度200mL/min,进水COD为1000mg/L,电流密度40A/m2,粒子电极每使用10次后,采用本发明的活化方式进行活化,其有机物去除效果与采用未活化的粒子电极处理EDTA废水效果对比如附图6所示,使用活化后粒子电极的三维电极反应器对COD的去除率稳定在90%以上,而使用不活化的粒子电极三维电极反应器对COD去除率随着使用次数的增多逐渐下降,最后稳定在40%左右,活化可以达到提高粒子电极活性,增强有机物降解率的目的。

Claims (3)

1.一种三维电极反应器用粒子电极的电解活化方法,其特征在于:将使用8-10次的三维电极反应器用粒子电极用pH为1.0的稀H2SO4溶液浸泡振荡1-2小时,然后装入三维电极反应器内,用超纯水冲洗,用1mol/L的NaOH溶液调节其pH为7.0-8.0,在电流密度为20-60A/m2的情况下电解0.5-1小时。
2.根据权利要求1所述的方法,其特征在于:所述的粒子电极是以椰子壳或硬质果壳为原料,用水蒸气法生产的不定型颗粒炭。
3.根据权利要求1所述的方法,其特征在于:所述的粒子电极的颗粒大小为8~20目。
CN200910042936A 2009-03-24 2009-03-24 一种三维电极反应器用粒子电极的电解活化方法 Pending CN101538077A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910042936A CN101538077A (zh) 2009-03-24 2009-03-24 一种三维电极反应器用粒子电极的电解活化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910042936A CN101538077A (zh) 2009-03-24 2009-03-24 一种三维电极反应器用粒子电极的电解活化方法

Publications (1)

Publication Number Publication Date
CN101538077A true CN101538077A (zh) 2009-09-23

Family

ID=41121513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910042936A Pending CN101538077A (zh) 2009-03-24 2009-03-24 一种三维电极反应器用粒子电极的电解活化方法

Country Status (1)

Country Link
CN (1) CN101538077A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495419A (zh) * 2013-10-23 2014-01-08 林天安 三维电极用活性炭及其制备和在难生物降解有机物废水治理上的应用
CN103828091A (zh) * 2011-07-25 2014-05-28 H2催化剂有限责任公司 用于制氢的方法和系统
CN105854858A (zh) * 2016-06-06 2016-08-17 中南大学 一种通过提高阴极电位进行电化学脱附无机阴离子的方法
CN112724460A (zh) * 2020-12-25 2021-04-30 华东师范大学 一种三维电化学降解聚对苯二甲酸乙二醇酯的方法
CN114538692A (zh) * 2022-03-21 2022-05-27 华之源(苏州)化工科技有限公司 一种处理碱洗脱硫废液的系统及其循环再利用方法
EP4183751A1 (en) * 2021-11-17 2023-05-24 SK Hynix Inc. Device and method for selectively removing perfluorinated compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103828091A (zh) * 2011-07-25 2014-05-28 H2催化剂有限责任公司 用于制氢的方法和系统
US10259707B2 (en) 2011-07-25 2019-04-16 H2 Catalyst, Llc Methods and systems for producing hydrogen
CN103495419A (zh) * 2013-10-23 2014-01-08 林天安 三维电极用活性炭及其制备和在难生物降解有机物废水治理上的应用
CN103495419B (zh) * 2013-10-23 2016-01-06 林天安 三维电极用活性炭及其制备方法和在难生物降解有机物废水治理上的应用
CN105854858A (zh) * 2016-06-06 2016-08-17 中南大学 一种通过提高阴极电位进行电化学脱附无机阴离子的方法
CN105854858B (zh) * 2016-06-06 2018-06-22 中南大学 一种通过提高阴极电位进行电化学脱附无机阴离子的方法
CN112724460A (zh) * 2020-12-25 2021-04-30 华东师范大学 一种三维电化学降解聚对苯二甲酸乙二醇酯的方法
CN112724460B (zh) * 2020-12-25 2022-02-11 华东师范大学 一种三维电化学降解聚对苯二甲酸乙二醇酯的方法
EP4183751A1 (en) * 2021-11-17 2023-05-24 SK Hynix Inc. Device and method for selectively removing perfluorinated compound
CN114538692A (zh) * 2022-03-21 2022-05-27 华之源(苏州)化工科技有限公司 一种处理碱洗脱硫废液的系统及其循环再利用方法

Similar Documents

Publication Publication Date Title
CN100566817C (zh) 一种吸附重金属的生物吸附剂及其制备方法
CN100567181C (zh) 预氧化-复合电解去除地下水中砷的方法
CN101538077A (zh) 一种三维电极反应器用粒子电极的电解活化方法
CN102423684A (zh) 一种改性沸石氨氮吸附剂及其使用和再生方法
CN102277742A (zh) 一种可重复使用的水中重金属离子的清除材料的制备方法
Nayeri et al. Oxytetracycline removal from aqueous solutions using activated carbon prepared from corn stalks
CN112340830B (zh) 以吸附-解吸后的废弃吸附剂为原料的催化剂在活化过硫酸盐处理高盐有机废水中应用
CN104829019A (zh) 基于石墨烯材料的光电协同处理有机废水的方法及装置
CN101891331B (zh) 活性炭吸附与电化学再生一体化处理装置及其使用方法
CN101555045A (zh) 一种废水的吸附回用处理方法
CN112978874A (zh) 利用流动电极电容去离子装置净化含碘盐废水的方法
CN109293100B (zh) 一种重金属污水的处理方法
CN102583628A (zh) 一种活性炭纤维毡去除水中三聚氰酸及电脱附再生的方法
CN102874805A (zh) 一种用于废水处理的多孔炭的制备方法
CN101844075B (zh) 一种电化学活性碳再生装置的使用方法
CN101088604A (zh) 用于降氟改水的滤料制备工艺
CN102188959A (zh) 一种吸附污水中氨氮饱和后的沸石的再生方法
CN101219368B (zh) 一种采用壳聚糖包埋海带粉的重金属生物吸附剂及其制备方法
CN201343479Y (zh) 电镀废水处理设备
CN110102275A (zh) 一种羟基自由基再生金矿废水用活性炭的方法
CN106268618A (zh) 一种活性吸附材料的制备方法及其应用
CN102872794A (zh) 一种去除水中溴酸根的复合吸附材料及其制备方法
CN113968602B (zh) 一种电催化去除水中硝化氮的方法
CN108358375A (zh) 一种工业污水处理方法
CN102190399A (zh) 一种电化学再生厌氧生化-吸附氨氮后的沸石的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090923