CN101536187A - 有序排列、大长宽比、高密度的硅纳米线及其制造方法 - Google Patents

有序排列、大长宽比、高密度的硅纳米线及其制造方法 Download PDF

Info

Publication number
CN101536187A
CN101536187A CNA2007800373753A CN200780037375A CN101536187A CN 101536187 A CN101536187 A CN 101536187A CN A2007800373753 A CNA2007800373753 A CN A2007800373753A CN 200780037375 A CN200780037375 A CN 200780037375A CN 101536187 A CN101536187 A CN 101536187A
Authority
CN
China
Prior art keywords
substrate
silicon
described method
silicon nanowires
nano wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800373753A
Other languages
English (en)
Inventor
吴永现
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co ltd
Showa Denko Materials America Inc
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Chemical Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Chemical Research Center Inc filed Critical Hitachi Chemical Co Ltd
Publication of CN101536187A publication Critical patent/CN101536187A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/12Etching of semiconducting materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/30Polishing of semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/93Ternary or quaternary semiconductor comprised of elements from three different groups, e.g. I-III-V
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/962Quantum dots and lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • Y10S977/766Bent wire, i.e. having nonliner longitudinal axis
    • Y10S977/768Helical wire
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/789Of specified organic or carbon-based composition in array format

Abstract

一种产生硅纳米线的方法,包括:提供掺杂材料形式的衬底;配制蚀刻溶液;将适当的电流密度施加适当的时间长度。还描述了至少部分地由硅纳米线构成的相关结构和器件。

Description

有序排列、大长宽比、高密度的硅纳米线及其制造方法
技术领域
本发明涉及其整体或部分由硅纳米线形成的结构、材料和组合物,以及形成这样的结构、材料和组合物的方法。
背景技术
在接下来的讨论中,参照特定的结构和/或方法。然而,下面的参照不应被理解为承认这些结构和/或方法构成现有技术。申请人明确保留证明这样的结构和/或方法不符合现有技术的权利。
具有纳米尺度尺寸的结构具有独特而有用的性质,例如在一些纳米结构中观察到的量子行为。
一种这样的材料是硅纳米线。该纳米线可表征为表现出电子传递(electron transport)、光致发光和/或量子效应的一维、小尺度、大表面面积的线状材料。这样的材料对于特定的医疗和电子应用而言值得关注。
已经描述了许多种制造这种结构的技术。这些技术包括光刻、等离子体刻蚀、等离子体沉积、反应离子刻蚀、化学气相沉积、激光烧蚀、溅射、热蒸发分解、电子束蒸发、超临界气体-液体固体合成、电化学溶解,以及金属诱导局部氧化和溶解。
美国专利No.5,348,618公开了一种据称用于形成硅纳米线的化学溶解过程。该过程包括第一阳极电镀步骤,随后为第二化学溶解步骤以增加孔隙大小。该专利中没有包含可见的证据(例如,照片)来证明实际上获得了沿(001)方向的有序排列(well-aligned)硅纳米线。
美国专利No.5,458,735描述了用于形成具有发光性质的“微孔硅层”的方法。其中描述的方法包括在硅晶片置于酸性溶液中的至少一部分时间期间照射硅晶片的阳极侧。微孔层除了p+掺杂区域之外还包括n+掺杂区域,由此形成p-n结。该专利并没有讨论硅纳米线的形成。
美国专利No.5,552,328描述了多孔硅发光二极管阵列的形成。对多孔硅形态的唯一讨论描述了“类似圆柱状的硅结构”。该圆柱据称具有50-100纳米量级的直径。该多孔硅通过电化学溶解方法制成。报道的蚀刻电流为10mA/cm2,蚀刻溶液为HF:H2O=1:3。该过程被描述为在照射时发生。并且,其中描述的多数实施例包括复杂的硅结构,例如p-n结或“多硅”。
2005年Andrea Edit of University of Oulu的名为“Investigation ofPristine and Oxidized Porous Silicon”的论文讨论了多孔硅的合成和性质。该论文中注意到,多孔硅可以包括晶态硅纳米线。然而,该论文并没有详细讨论硅纳米线的形态或特性,或者其形成的机制。并且,该论文并没有描述自立式纳米线或者从衬底获得它们的技术。
尽管有这些技术在使用,但是仍然存在对简单而物有所值的制造方法的需求,需要这样的方法来大量形成具有可剪裁的几何形状的有序排列的、大长宽比的硅纳米线。
发明内容
根据本发明,提供了一种沿(001)方向(垂直于<100>硅衬底)的有序排列的、大长宽比、高密度且纳米大小(例如,<10nm)的硅纳米线。此外,可在硅纳米线和硅衬底之间形成沿(100)平面(平行于<100>硅衬底)的硅网络结构。可通过超声处理获得独立(free-standing)式硅纳米线捆束和(独立于衬底的)硅网络。结果是高度可重复的,并且产物的几何形状是高度(highly)可控的。
根据本发明一个方面执行的用于产生上述硅纳米线的方法包括仅仅用低浓度(例如,5-20%)乙酸氢氟酸(ethanoic hydrofluoric acid)蚀刻溶液和相对较高的电流密度(例如,15-30mA/cm2)电化学蚀刻重度掺杂的p型硅晶片的单一步骤来产生超高孔隙率(例如,>80%)的结构,而不需要进一步的化学溶解。
本发明的一个可选实施例提供通过电化学蚀刻硅衬底来产生硅纳米线的方法,该方法包括提供掺杂的硅材料形式的衬底;配制包含乙醇和氢氟酸的蚀刻溶液,该蚀刻溶液包含1-38%体积的氢氟酸;施加1-2,000mA/cm2的电流密度;电化学蚀刻上述衬底1秒至24小时。
根据另一可选方面,本发明提供通过上述方法获得的一个或多个硅纳米线。
根据另一个替代实施例,本发明提供一种包含硅纳米线的结构,该结构包括有序排列的、密排的硅纳米线捆束,每一纳米线具有小于约50nm的直径和10nm-100微米的长度,纳米线的尺寸基本均匀,该结构基本由硅和氧以元素形式或作为化合物构成,该结构具有至少80%的孔隙率。
根据本发明又一可选方面,提供了从上述结构获得的一个或多个独立式硅纳米线。
根据附加的替代实施例,本发明提供这样一种结构,该结构包含多个硅纳米线,每一纳米线包括外表面;以及一个或多个互连硅膜;其中所述纳米线的外表面和所述一个或多个膜被氧化从而限定交替的导体-绝缘体结构。
附图说明
可以结合附图阅读下面对优选实施例的描述,在附图中同样的附图标记表示同样的要素,并且其中:
图1是用于进行根据本发明的电化学蚀刻过程的示例性布置的示意图;
图2是蚀刻的衬底的表面的图像和与此相关的结构细节;
图3A-3D示出根据本发明的原理形成的硅纳米线结构的典型形态;
图4A-4B示出根据本发明的原理在蚀刻的衬底上形成的独立式硅纳米线结构的典型形态;
图5是包含根据本发明实施例形成的硅纳米线的结构的示意图;
图6是根据本发明形成的孔隙/硅纳米线分布或布置的三种变化的示意图;
图7是根据本发明形成的孔隙/硅纳米线分布或布置的三种另外的变化的示意图;
图8是硅网络层的片段的图像;
图9是根据本发明的原理构建的光伏器件的示意图。
具体实施例描述
根据本发明第一方面,提供一种用于形成有序排列的、大长宽比、高密度、纳米尺寸的硅纳米线的方法。
根据本发明,用于形成硅纳米线的方法考虑下面的因素。
起始的硅晶片衬底具有良好的结晶度,这确保孔隙沿特定方向传播而不出现分支。
在衬底表面上形成均匀分布的很小而大小均匀的孔隙。该孔隙均匀(homogeneously)传播,基本不出现或不出现严重的分支。获得至少约80%,90%的超高孔隙度。孔隙大小可与形成的硅纳米线在同样的量级,也就是,直径为几纳米。
总体来说,当在蚀刻溶液中使用低浓度氢氟酸(HF)时,应该使用相对较低的电流密度(例如,对于10%HF,1-15mA/cm2施加2分钟)以防止电抛光。另一方面,当使用高浓度HF时,可以使用相对较高的电流密度(例如,对38%的HF,100-2,000mA/cm2施加2分钟)以获得相当的孔隙度。可通过使用低浓度HF和低电流密度而实现的慢蚀刻速度可以为通过化学溶解形成和传播均匀孔隙提供时间。可通过低浓度HF和(对于特定HF浓度)相对较高的电流密度而实现的高孔隙度在几何上确保离散硅纳米线的形成。另一方面,高孔隙化的硅具有很大的表面积与体积比,这使得其对于电抛光、毛细引致抛光以及进一步的氧化更为活跃。
在电化学蚀刻硅晶片时,高HF浓度和低电流导致孔隙的形成,而低HF浓度和高电流密度(在本发明中为优选条件而非强制条件)导致电抛光。对于给定的一组电化学蚀刻条件,在“孔隙形成区域”和“电抛光区域”之间存在“过渡区域”,在这个过渡区域中孔隙形成和电抛光竞相控制表面形态。参见Smith等人在J.Appl.Phys.71(8),1992年4月15日的文章“PorousSilicon Formation Mechanism”,其全部内容通过引用纳入本文中。在这个区域中产生的结构总体来说实质上为多孔的,但是孔隙直径随着接近电抛光电势而迅速增加。部分电抛光有助于增加孔隙度,并将硅纳米线捆束分离成更小的单元,这使得更加易于进一步的氧化以及将独立式硅纳米线抬离衬底表面。
将来自硅纳米线结构的溶剂干燥所导致的毛细管力在硅纳米线形成中也发挥作用。当从硅纳米结构表面将冲洗溶液干燥时,蒸发过程施加表面张力,这使得硅纳米线结构开裂或部分抛光。该毛细引致抛光的效果与电抛光的相似。不同的干燥方法和/或试剂引致不同量的表面张力,如下所述(按照表面张力减小的顺序):
水>乙醇>己烷>戊烷>临界点干燥或冷冻干燥。因此,可以选择适当的干燥方法以有意地保持或破坏硅纳米线结构的表面形态。
与上述考虑相一致,本发明包括,但不必需,下面的用于产生硅纳米线结构的示例性处理条件。
根据本发明,使用掺杂的硅晶片形式的基底或衬底材料。掺杂的晶片可包含p+,p++型或者n-型的硼掺杂的硅晶片,并可具有小于1.0000欧姆-厘米,小于0.0100欧姆-厘米,或者小于0.0010欧姆-厘米的电阻率。硅晶片还可以在<100>方向上被抛光。硅晶片或衬底可具有任意合适的厚度,例如,500-550微米量级的厚度。该硅晶片或衬底还可以具有任意合适的平面尺寸,诸如2厘米边长的方形。根据其他实施例,衬底或硅晶片缺少p-n结。
然后在合适的蚀刻溶液中蚀刻上述类型的衬底材料。合适的蚀刻溶液可包括氢氟酸、无水乙醇和/或水的混合物。HF在蚀刻溶液中可以呈现约1%-38%,5%-20%,或10%的体积浓度范围。根据一个实施例,蚀刻溶液可以使用体积比48%HF+52%H2O溶液:乙醇=1:4配制作为其至少一部分。
用合适的蚀刻电流蚀刻上述衬底。可通过适当的接触,诸如铝后部触点和铂丝,来给衬底施加直流(DC)或交流(AC)电流。蚀刻过程可在暗处进行。取决于HF浓度,可能的蚀刻电流值包括:1-2,000mA/cm2,100-2,000mA/cm2,或1-50mA/cm2。根据一个实施例,用于以10%HF溶液蚀刻的电流密度可约为1-50mA/cm2,或15-30mA/cm2。根据另一实施例,用于以38%HF溶液蚀刻的电流密度可以为100-2,000mA/cm2
根据本发明一个替代实施例,在电化学蚀刻期间可以施加照射,目的是给予硅纳米线发光特性。
蚀刻进行适当的时长,诸如1秒-24小时,1-60分钟,或1-10分钟。例如,当使用包含约10%HF的溶液时,蚀刻可进行约1-60分钟,或者替代地1-10分钟。根据一个实施例,蚀刻过程在单一步骤中进行。
用于进行上述过程的适当布置或设备的构造应在本领域技术人员的能力之内。出于说明的目的,图1给出一种这样的适当布置,其中这里说明的部件将从下到上进行描述。该说明性而非限定的实施例中的布置10包括由适当材料,诸如聚四氟乙烯,制成的槽或池12。在衬底或硅晶片16下面放置阳极14,诸如铝薄片。在衬底或晶片16顶上放置密封件,诸如。形环18,其内径限定暴露于蚀刻溶液22的蚀刻区域20。最后,诸如铂丝或网的阴极24被引入到槽或池12中。
在完成蚀刻过程之后,将衬底从蚀刻溶液中移出,并用适当技术对其清洗和/或干燥。例如,在蚀刻完成之后,可以用纯乙醇清洗蚀刻的衬底。可以用己烷或戊烷清洗具有很高孔隙度和/或很厚蚀刻深度的那些蚀刻的衬底。纯乙醇可以用作不易混合的水和戊烷之间的过渡液体。在以上描述的清洗过程随后或与之同时,可以将惰性气体,诸如氮吹过蚀刻的衬底的表面。可替代地,蚀刻的衬底可经受超临界干燥或冷冻干燥过程。出于说明目的,衬底可暴露于液态二氧化碳。
可选地,可通过适当的移除技术将独立式硅纳米线结构抬离蚀刻的衬底。根据本发明一个实施例,蚀刻的衬底在溶液中经受超声处理。该溶液可以是乙醇,水或其他溶剂。一旦施加超声处理,有序排列的硅纳米线捆束就可以被抬离衬底。随着超声处理时间量的增加(数小时到数天),硅纳米线捆束的宽度和厚度将会减小。根据特定的非限定性的示例,超声处理可以进行从5分钟量级,1小时,24小时,48小时或更多范围的时长。
当使用上述条件时,在蚀刻过的衬底表面上的硅晶体结构的骨架中形成硅纳米线结构,例如如图2-3D中所示。这些硅纳米线可表征为有序排列、密排、为捆束形式,以及总体垂直于硅衬底(也就是,沿(001)方向)。每一单个硅纳米线具有小于50nm的直径,其中的多数小于10nm,例如为5-8nm。硅纳米线的长度在0.5-5.0微米(例如,约790nm)的范围,该长度与给定HF浓度下蚀刻持续时间线性成比例。每个硅纳米线还可具有相对大的长宽比(例如,长度除以直径)。例如,根据本发明的原理形成的硅纳米线可具有1-10,000、10-1,000或50-500的长宽比。根据一个可选实施例,长宽比至少为80。在同一样品之内硅纳米线的尺寸高度均匀。由此获得的硅纳米线的形态是高度可重复的。这里说明的样品用10%HF在19.5mA/cm2下蚀刻了4分钟,并用乙醇进行干燥。样品表面的物理颜色为浅绿色。硅纳米线的蚀刻深度或长度为1.5μm。图3A是以mag=10k示出了总体形态和具有~1μm大小的巨大孔隙的抛光区域的俯视图。图3B是以mag=100k示出了具有10-20nm大小的小孔隙的硅晶体结构的骨架的俯视图。图3C是揭露出硅纳米线捆束和下面的硅网络的表面刮擦的俯视图,其mag=15k。图3D示出硅纳米线和硅网络的上表面的倾斜(angled)视图,其mag=30k。
根据本发明形成的硅纳米线典型地与超薄膜(采用捆束形式)互连,这些膜的成分为硅或者氧化硅。该膜可以是无定形的,而纳米线典型为晶体。硅纳米线具有很高纯度的硅含量。当使用能量色散X射线光谱仪(EDS)和傅里叶变换红外光谱(FTIR)来分析成分时,仅仅探测到硅和氧。Si/O的比例在硅纳米线处最高,在互连膜处最低。因此,纳米线/膜结构支持导体-绝缘体-导体类型的结构(Si-SiOx-Si)。如果暴露在外界空气中,硅纳米线可以被氧化。通过将新鲜蚀刻的硅衬底保存在真空中可以极大地减小这种氧化,或者通过将蚀刻的衬底暴露于高温下的外界空气中可以加速这样的氧化。
通过改变蚀刻条件,诸如改变蚀刻溶液的成分,蚀刻电流密度,蚀刻持续时长,以及晶片掺杂度(电阻率),硅纳米线的几何形状是可高度剪裁的。
蚀刻衬底的表面具有至少80%,至少90%或者更高的孔隙度。孔隙度通过重力测量技术进行测量,其中孔隙度根据下面的公式进行计算:
Figure A200780037375D00121
其中V0-V1是蚀刻之后的体积差,m0-m1是蚀刻之后的重量差,ρ是体硅的密度,A为蚀刻后的表面积,h为蚀刻深度。
如果孔隙度太高(也就是,高于95%)或者硅纳米线的长度太长,形成的硅纳米线可能由于毛细力而塌陷,并且不再有序排列且垂直于衬底。如果孔隙率太低或者孔隙大小太大,单个硅纳米线更加难以区分。也就是,纳米线倾向于通过更厚的膜高度互连。
除了以上提到的硅纳米线捆束之外,在硅纳米线捆束和硅衬底之间形成有硅网络薄层。该硅网络由直径1-50nm,或10nm或更小的硅纳米线以及直径1nm-1微米,或者10-100nm的空洞(有时填充有超薄硅膜)构成(参见,例如图3C和3D)。
当如上所述通过适当的移除过程可选地将硅纳米线从蚀刻的衬底移除时,可以通过将胶体溶液的液滴施加到TEM网格上,然后蒸发该溶剂,如图4A和4B所示,用STEM或TEM对这些独立式硅纳米线成像。可以发现,每一单个硅纳米线平均具有小于10nm的直径,并保留其原始长度(而没有断裂),也就是,10nm-100μm。独立式硅纳米线是有序排列的,并通过超薄膜互连。捆束的厚度远远小于其宽度。因此硅纳米线捆束接近一个2维结构。图4A是硅纳米线捆束的一个图像,mag=100k。图4A中说明的样品用10%HF在17.7mA/cm2下蚀刻了2分钟,然后在乙醇中超声处理了21小时。图4B是示出了硅线和互连膜的细节的图像,mag=150k。图4B中说明的样品用10%HF在20.4mA/cm2下蚀刻了2分钟,然后在乙醇中超声处理了5分钟。EDS和FTIR表征示出结构中仅仅存在硅和氧。
由于表面积大,独立式硅纳米线结构在暴露于空气中会发生氧化。硅纳米线的外鞘层和互连薄膜将首先被氧化。通过这种方式,可以获得2维或3维的,独立的或底层(substrated)的,交替的导体-绝缘体-导体结构,如图5示。如其中示出的,该结构包括主要由硅形成的纳米线或纳米线捆束50,其由氧化硅形成的互连区域52分开。这样的结构可用于许多不同的应用,诸如晶体管阵列。还可以通过(在超声处理之前)将蚀刻的衬底放置在炉子中来有意地将新鲜蚀刻的硅样品氧化。还可以通过将新鲜蚀刻的或者氧化的硅样品在pH溶液(弱酸或碱)中超声处理以溶解互连薄膜由此获得单股硅纳米线。
图6示意性示出根据本发明原理用于形成硅纳米线的蚀刻衬底之中的三种不同的孔隙分布(100,120,140)。如其中所示,孔隙102由纳米线104形式的残留硅材料分开。如其中进一步示出的,孔隙102具有直径a,并可具有尺寸为b的介入硅纳米线材料。孔隙102之间的间隔由尺寸c表示,其对应于a+b。根据本发明的原理,孔隙102的直径相对于孔隙102之间的间隔c的比例约为0.9-1.1(a/c=0.9-1.1)。根据特定实施例,该比例大约为1.0。布置100,120和140的a/c比例分别为0.9,1.0和1.1。
图7示意性示出根据本发明原理用于形成硅纳米线的蚀刻衬底之中的三种另外的孔隙分布(200,220,240)。图7中示明的分布与之前描述的图6中示明的分布之间的主要区别在于,在图7中示明的孔隙分布中,孔隙沿着平行四边形的轮廓分布,这使得残留硅纳米线材料三角形分布。这些分布(200,202,204)一般产生更高的总体孔隙率。如图7中所示明的,孔隙202由纳米线204形式的残留硅材料分开。如其中进一步示明的,孔隙202具有直径a,并可具有尺寸为b的介入硅纳米线材料。孔隙202之间的间隔由尺寸c表示,其对应于a+b。根据本发明的原理,孔隙202的直径相对于孔隙202之间的间隔c的比例约为0.9-1.1(a/c=0.9-1.1)。根据特定实施例,该比例大约为1.0。布置200,220和240的a/c比例分别为0.9,1.0和1.1。
又如图8所示,能够获得的另一结构是网状硅网络。该网络最初位于硅纳米线捆束之下,硅衬底之上。该层也可以通过超声处理而卸离,并取决于超声处理的持续时长断裂为更小的片断,也就是,亚微米到微米。硅网络包括直径平均小于10nm的硅纳米线和直径在50nm附近的空洞或孔隙(偶尔填充有超薄硅膜)。图8中说明的样品用10%HF在17.7mA/cm2下蚀刻了2分钟,然后在乙醇中超声处理了21小时。图8示明具有约50nm的平均孔隙大小的硅网络,mag=60k。
本发明的蚀刻衬底和独立式纳米线可以用于许多不同的应用,包括但不限于:用于形成基于硅的光电产品的部件,量子器件,晶体管,平板显示器(例如,TFT显示器),化学和/或生物传感器,生物材料,涂料,复合材料,整形外科,创伤愈合部件,组织工程材料,药物传输设备,等等。
图9示出引入本发明的硅纳米线结构的器件的一个示例。更具体地,如其中所示,可以提供引入了本发明的硅纳米线结构的光伏器件300。器件300包括:由任何适当传导性材料或材料的组合(诸如一种或多种金属)形成的传导性电极层302,由任何适当的传导性聚合物(诸如P3HT(聚3-己基噻吩))形成的传导性聚合物层304,如上所述根据本发明形成的多个硅纳米线306,其与所述传导性聚合物304形成多个异质结,硅衬底或晶片308,随后是由任何适当传导性材料或材料的组合(诸如一种或多种金属)形成的对电极310。包含有硅纳米线306的器件300有利地在与传导性聚合物304的界面处提供很大的表面积:体积比。硅纳米线306和传导性聚合物304之间的这些异质结提供了在其之间提高能量传输的机制,这进而提高了光伏器件300的效率。
本说明书中所使用的表示成分数量、组分、反应条件等等的数字应该被理解为在一切情况下以术语“大约”进行修正。尽管阐明本文介绍的主题的宽泛范围的数值范围和常数是近似值,但是还是尽可能准确地指明这些数值。然而,任何数值都会固有地包含由其各自的测量技术和与之关联的标准偏差所导致的必要的特定误差。
尽管结合其优选实施例描述了本发明,但是本领域技术人员应该理解,可以做出没有具体描述出的添加、删除、修改和替换,而不偏离如所附权利要求所限定的本发明的精神和范围。

Claims (45)

1.一种通过电化学蚀刻硅衬底产生硅纳米线的方法,该方法包括:
提供掺杂的硅材料形式的衬底;
配制包含乙醇和氢氟酸的蚀刻溶液,该蚀刻溶液包含1-38%体积的氢氟酸;
施加1-2,000mA/cm2的电流密度;以及
电化学蚀刻上述衬底1秒至24小时。
2.如权利要求1所述的方法,其中所述衬底用硼掺杂。
3.如权利要求1或2所述的方法,其中所述衬底是p-型,p+型,p++型,或者n型。
4.如权利要求1-3中任一项所述的方法,其中所述衬底具有1.0000,0.0100,0.0010欧姆-厘米,或者小于这些值中任意值的电阻率。
5.如权利要求1-4中任一项所述的方法,其中所述衬底在<100>方向被抛光。
6.如权利要求1-5中任一项所述的方法,其中所述衬底具有大约500-550微米的厚度。
7.如权利要求1-6中任一项所述的方法,其中所述衬底没有p-n结。
8.如权利要求1-7中任一项所述的方法,其中所述衬底在单一步骤中被电化学蚀刻。
9.如权利要求1-8中任一项所述的方法,其中所述蚀刻溶液包括5-20%体积的氢氟酸。
10.如权利要求1-9中任一项所述的方法,其中所述蚀刻溶液还包括水。
11.如权利要求1-10中任一项所述的方法,其中所述蚀刻溶液按照如下体积比例包含氢氟酸、水和乙醇:48%HF+52%H2O溶液:乙醇=1:4。
12.如权利要求1-11中任一项所述的方法,包括根据下面替代中的一个来施加电流密度并提供蚀刻溶液配制:
(a)100-2,000mA/cm2以及38%HF;
(b)1-50mA/cm2以及10%HF;或者
(c)15-30mA/cm2以及10%HF。
13.如权利要求1-12中任一项所述的方法,其中所述电流为直流或交流。
14.如权利要求1-13中任一项所述的方法,其中电化学蚀刻在暗处进行或者在有光源的情况下进行。
15.如权利要求1-14中任一项所述的方法,包括将衬底电化学蚀刻1秒-24小时,1-60分钟,或者1-10分钟。
16.如权利要求1-15中任一项所述的方法,还包括将衬底从蚀刻溶液中移出,并清洗和/或干燥所述衬底。
17.如权利要求1-16中任一项所述的方法,包括在所述衬底从所述蚀刻溶液移出之后,用水、乙醇、己烷或戊烷中的一个或多个清洗所述衬底。
18.如权利要求1-17中任一项所述的方法,包括通过将惰性气体吹过所述衬底的表面来干燥所述衬底。
19.如权利要求1-18中任一项所述的方法,包括使所述衬底经受超临界干燥或冷冻干燥过程。
20.如权利要求1-19中任一项所述的方法,还包括将所述硅纳米线从所述衬底表面移除。
21.如权利要求20所述的方法,包括将所述衬底浸入超声处理溶液,并对其施加超声能量。
22.如权利要求21所述的方法,其中所述超声能量被施加5分钟-48小时,或者更多。
23.如权利要求1-22中任一项所述的方法,其中所述衬底诸如通过电抛光和/或蒸发引致抛光而至少部分地被抛光。
24.如权利要求1-23中任一项所述的方法,还包括至少部分地氧化所述蚀刻的衬底。
25.如权利要求1-24中任一项所述的方法,包括电化学蚀刻所述衬底以在其蚀刻表面上产生至少80%,或至少90%的孔隙率。
26.通过权利要求1-25中任一项所述的方法获得的一个或多个硅纳米线。
27.一种结构,包括:
有序排列的、密排的硅纳米线捆束,每一纳米线具有小于约50nm的直径和10nm-100微米的长度,纳米线的尺寸基本均匀,该结构基本由硅和氧或其化合物构成,该结构具有至少80%的孔隙率。
28.如权利要求27所述的结构,包括硅衬底,以及在所述衬底表面上沿(001)方向基本垂直排列的纳米线。
29.如权利要求27-28中任一项所述的结构,其中所述硅纳米线的至少大部分具有大约10nm或更小的直径。
30.如权利要求27-29中任一项所述的结构,其中每一纳米线具有1-10,000、10-1,000或50-500的长宽比。
31.如权利要求27-30中任一项所述的结构,包括至少90%的孔隙率。
32.如权利要求27-31中任一项所述的结构,还包括一个或多个硅或者氧化硅薄膜,用于互连所述硅纳米线,从而形成互连网络。
33.如权利要求32所述的结构,其中所述互联网络包括具有大约10nm或更小的直径的纳米线,以及具有大约1nm-1微米,或10-100nm的直径的孔隙。
34.如权利要求27-33中任一项所述的结构,其中所述结构诸如通过电抛光和/或蒸发引致抛光而至少部分地被抛光。
35.如权利要求27-34中任一项所述的结构,包括基本没有分支的孔隙。
36.如权利要求27-35中任一项所述的结构,包括衬底,所述衬底包括硼掺杂的硅晶片。
37.如权利要求36所述的结构,其中所述衬底包括p型,p+型或p++型掺杂的硅。
38.如权利要求37所述的结构,其中所述衬底具有1.0000、0.0100、0.0010欧姆-厘米,或者小于这些值中任意值的电阻率。
39.如权利要求27-38中任一项所述的结构,其中所述结构具有发光特性。
40.如权利要求27-39中任一项所述的结构,其中每个纳米线包括外表面;以及一个或多个互连硅膜;其中所述纳米线的外表面和所述一个或多个膜被氧化,从而限定交替的导体-绝缘体结构。
41.从权利要求27-40中任一项所述的结构获得的一个或多个独立式硅纳米线。
42.如权利要求27所述的结构,包括分离所述硅纳米线的多个孔隙,所述孔隙具有直径,所述孔隙以分开间隔分开,其中孔隙直径与分开间隔的比例为0.9-1.1。
43.一种结构,包括:
多个硅纳米线,每一纳米线包括外表面;以及
一个或多个互连硅膜;
其中所述纳米线的外表面和所述一个或多个膜被氧化从而限定交替的导体-绝缘体结构。
44.一种光伏器件,包括:
如权利要求27所述的结构;以及
传导性聚合物;
其中在所述结构的硅纳米线和所述传导性聚合物之间形成多个异质结。
45.如权利要求44所述的器件,还包括:
传导性电极层,
包含传导性聚合物的层;
包含所述结构的硅衬底;以及
传导性对电极层。
CNA2007800373753A 2006-10-05 2007-10-05 有序排列、大长宽比、高密度的硅纳米线及其制造方法 Pending CN101536187A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84943706P 2006-10-05 2006-10-05
US60/849,437 2006-10-05

Publications (1)

Publication Number Publication Date
CN101536187A true CN101536187A (zh) 2009-09-16

Family

ID=39283155

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800373753A Pending CN101536187A (zh) 2006-10-05 2007-10-05 有序排列、大长宽比、高密度的硅纳米线及其制造方法

Country Status (5)

Country Link
US (1) US8044379B2 (zh)
EP (1) EP2082425A4 (zh)
JP (1) JP2010505728A (zh)
CN (1) CN101536187A (zh)
WO (1) WO2008045301A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845661A (zh) * 2010-05-19 2010-09-29 中国科学院理化技术研究所 表面具有超疏水性纳米硅线阵列的单晶硅片及其制备方法
CN104118843A (zh) * 2014-07-24 2014-10-29 上海师范大学 纳米结构阵列材料及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211735B2 (en) 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
US8610100B2 (en) * 2009-06-30 2013-12-17 Nokia Corporation Apparatus comprising nanowires
DE102009033351B3 (de) 2009-07-16 2011-02-24 Technische Universität Bergakademie Freiberg Verfahren zur Herstellung von Oligo- und Polysilanen
DE102009056530A1 (de) 2009-12-04 2011-06-09 Christian-Albrechts-Universität Zu Kiel Nanodrahtstruktur mit freiliegenden, regelmäßig angeordneten Nanodrahtenden und Verfahren zur Herstellung einer solchen Struktur
WO2012099953A1 (en) 2011-01-18 2012-07-26 Bandgap Engineering, Inc. Method of electrically contacting nanowire arrays
US8466046B2 (en) * 2011-03-01 2013-06-18 Infineon Technologies Ag Method for fabricating a porous semiconductor body region
KR101475732B1 (ko) * 2011-08-31 2014-12-24 전자부품연구원 실리콘 나노와이어 소자
US10037896B2 (en) * 2013-07-25 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Electro-assisted transfer and fabrication of wire arrays
CA2829605C (en) 2013-10-07 2016-06-14 Springpower International Incorporated A method for mass production of silicon nanowires and/or nanobelts, and lithium batteries and anodes using the silicon nanowires and/or nanobelts
MY167930A (en) * 2014-05-07 2018-10-04 Mimos Berhad An etch-free method for conductive electrode formation
US20160002096A1 (en) 2014-07-02 2016-01-07 Corning Incorporated Silicon and silica nanostructures and method of making silicon and silica nanostructures
JP2020515033A (ja) * 2016-12-16 2020-05-21 エルファー エルエルシー 多孔質炭化ケイ素構造を製造およびエッチングするための方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8711373D0 (en) 1987-05-14 1987-06-17 Secr Defence Electroluminescent silicon device
US5627382A (en) 1989-12-07 1997-05-06 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Method of making silicon quantum wires
GB8927709D0 (en) 1989-12-07 1990-02-07 Secretary Of The State For Def Silicon quantum wires
CA2061264C (en) 1991-02-15 1999-11-16 Kiyofumi Sakaguchi Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
US6171512B1 (en) 1991-02-15 2001-01-09 Canon Kabushiki Kaisha Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
GB9108176D0 (en) 1991-04-17 1991-06-05 Secr Defence Electroluminescent silicon device
DE4126955C2 (de) 1991-08-14 1994-05-05 Fraunhofer Ges Forschung Verfahren zum Herstellen von elektrolumineszenten Siliziumstrukturen
CN1142875A (zh) 1993-12-06 1997-02-12 英国国防部 多孔半导体材料
EP0661733A2 (en) 1993-12-21 1995-07-05 International Business Machines Corporation One dimensional silicon quantum wire devices and the method of manufacture thereof
US5510633A (en) 1994-06-08 1996-04-23 Xerox Corporation Porous silicon light emitting diode arrays and method of fabrication
GB2299204A (en) 1995-03-20 1996-09-25 Secr Defence Electroluminescent device
GB9611437D0 (en) 1995-08-03 1996-08-07 Secr Defence Biomaterial
US5920078A (en) 1996-06-20 1999-07-06 Frey; Jeffrey Optoelectronic device using indirect-bandgap semiconductor material
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
US20030135971A1 (en) * 1997-11-12 2003-07-24 Michael Liberman Bundle draw based processing of nanofibers and method of making
US6313015B1 (en) 1999-06-08 2001-11-06 City University Of Hong Kong Growth method for silicon nanowires and nanoparticle chains from silicon monoxide
US6414333B1 (en) 2000-03-10 2002-07-02 Samsung Electronics Co., Ltd. Single electron transistor using porous silicon
EP2360298A3 (en) * 2000-08-22 2011-10-05 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
TW554388B (en) * 2001-03-30 2003-09-21 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
WO2003077298A1 (en) * 2002-03-08 2003-09-18 Koninklijke Philips Electronics N.V. Method of manufacturing nanowires and an electronic device
CA2408483C (en) 2002-10-17 2011-01-04 Yujie Han Laser chemical fabrication of nanostructures
TWI220162B (en) * 2002-11-29 2004-08-11 Ind Tech Res Inst Integrated compound nano probe card and method of making same
US7001669B2 (en) 2002-12-23 2006-02-21 The Administration Of The Tulane Educational Fund Process for the preparation of metal-containing nanostructured films
KR100553317B1 (ko) 2004-04-23 2006-02-20 한국과학기술연구원 실리콘 나노선을 이용한 실리콘 광소자 및 이의 제조방법
CN101010780B (zh) 2004-04-30 2012-07-25 纳米系统公司 纳米线生长和获取的体系和方法
US7179561B2 (en) 2004-12-09 2007-02-20 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
KR101135477B1 (ko) 2005-01-12 2012-04-19 삼성에스디아이 주식회사 다공성 멤브레인 및 그 제조방법, 이를 이용한 연료전지용고분자 전해질막, 및 이를 포함하는 연료전지 시스템
US7426025B2 (en) * 2005-09-23 2008-09-16 Hewlett-Packard Development Company, L.P. Nanostructures, systems, and methods including nanolasers for enhanced Raman spectroscopy
CN100347870C (zh) 2005-11-23 2007-11-07 天津大学 电致发光多孔硅材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845661A (zh) * 2010-05-19 2010-09-29 中国科学院理化技术研究所 表面具有超疏水性纳米硅线阵列的单晶硅片及其制备方法
CN104118843A (zh) * 2014-07-24 2014-10-29 上海师范大学 纳米结构阵列材料及其制备方法

Also Published As

Publication number Publication date
JP2010505728A (ja) 2010-02-25
EP2082425A4 (en) 2011-07-13
US8044379B2 (en) 2011-10-25
WO2008045301A1 (en) 2008-04-17
US20100065819A1 (en) 2010-03-18
EP2082425A1 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
CN101536187A (zh) 有序排列、大长宽比、高密度的硅纳米线及其制造方法
US9108850B2 (en) Preparing nanoparticles and carbon nanotubes
Shi et al. Synthesis of large areas of highly oriented, very long silicon nanowires
Qiu et al. From Si nanotubes to nanowires: synthesis, characterization, and self-assembly
US6325909B1 (en) Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
Azeredo et al. Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching
Daltin et al. Potentiostatic deposition and characterization of cuprous oxide films and nanowires
Xing et al. Solid–liquid–solid (SLS) growth of coaxial nanocables: silicon carbide sheathed with silicon oxide
Cao et al. Template-catalyst-free growth of highly ordered boron nanowire arrays
Pang et al. Electrochemical synthesis of ordered alumina nanowire arrays
Hsieh et al. Preparation of ruthenium dioxide nanorods and their field emission characteristics
CN112201754B (zh) 超薄晶态连续有机半导体薄膜及其制备方法和应用
Bayam et al. Synthesis of Ga2O3 nanorods with ultra-sharp tips for high-performance field emission devices
Sharma et al. Role of an electrolyte and substrate on the stability of porous silicon
Vescan et al. Low-pressure vapor-phase epitaxy of silicon on porous silicon
JP2004196628A (ja) 酸化タングステンナノ構造物とその複合体ならびにそれらの製造方法
Wei-ya et al. Self-organized formation of hexagonal nanopore arrays in anodic alumina
JPH0383339A (ja) 結晶シリコン表面テクスチヤー形成方法
Kar et al. Effect of sputtered films on morphology of vertical aligned ZnO nanowires
Müllegger et al. Substrate structure dependence of the growth modes of p-quaterphenyl thin films on gold
Vendamani et al. One dimensional silicon nanostructures prepared by oxidized porous silicon under heat treatment
Sadowski et al. Fluorinated fullerene thin films on Si (111)-(7× 7) surface
Tondare et al. An electron microscopy investigation of the structure of porous silicon by oxide replication
Wang et al. Scalable nano-integration strategy: Controllable three-dimensional monocrystalline GaN nanostructures from nanobelts to nanonetwork
Faro et al. Light Coherent Propagation and Enhanced Emission from Fractal Networks of Er-decorated Silicon Nanowires

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090916