CN101520478B - Direct image reconstruction method based on capacitance tomography of round sensor - Google Patents

Direct image reconstruction method based on capacitance tomography of round sensor Download PDF

Info

Publication number
CN101520478B
CN101520478B CN2009100799475A CN200910079947A CN101520478B CN 101520478 B CN101520478 B CN 101520478B CN 2009100799475 A CN2009100799475 A CN 2009100799475A CN 200910079947 A CN200910079947 A CN 200910079947A CN 101520478 B CN101520478 B CN 101520478B
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100799475A
Other languages
Chinese (zh)
Other versions
CN101520478A (en
Inventor
曹章
徐立军
丁洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2009100799475A priority Critical patent/CN101520478B/en
Publication of CN101520478A publication Critical patent/CN101520478A/en
Application granted granted Critical
Publication of CN101520478B publication Critical patent/CN101520478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The invention relates to a direct image reconstruction method based on the capacitance tomography of a round sensor. The method comprises the following operation steps: 1. N electrodes of an ECT sensor, which are arranged on the same cross section, are counterclockwise marked as electrodes i (i is larger than or equal to 1 and is smaller than or equal to N) and a traditional 1-by-1 excitation measuring mode is adopted, i.e. a scanning process comprises N-1 actions; 2. measured capacitance values are firstly pre-treated by linear transform to obtain N*(N-1)/2 independent measured charge change values; 3. the scattering transformation t(s) of discrete electrodes is calculated; and 4. the specific inductive capacity variation of any point is rebuilt. The invention aims at a round measuring region, overcomes the defects that a traditional algorithm needs to calculate a sensitivity matrix and can not independently calculate the rebuilding result of a subregion, directly rebuilds images according to capacitance measuring values and can directly rebuild images in the subregion. The method has high real-time performance, can be popularized to ECT and has important practical values and application prospects.

Description

Direct image reconstruction method based on capacitance tomography of circular sensor
(I) technical field
The invention relates to an image reconstruction method, in particular to a direct image reconstruction method based on capacitance tomography of a circular sensor. Belonging to the technical field of image reconstruction.
(II) background of the invention
Electrical capacitance tomography (electrical capacitance tomography-ECT) is the reconstruction of the distribution of the spatial permittivity of an insulating material from measured capacitance data. ECT has several advantages over other tomographic techniques, such as: low cost, fast response, portability, non-invasiveness, and robustness. The ECT has a wide application prospect in many industrial fields, and the core technology of the ECT is to reconstruct the variation of the internal dielectric constant distribution by adopting an image reconstruction method according to the variation of a group of measured values of the boundary capacitance.
In the past, most image reconstruction algorithms were based on the sensitivity theorem derived from the 1971 article by Geselowitz "application of lead theory of electrocardiography to impedance plethysmography" society of Electrical and electronics Engineers, Proc. biomedical Engineers, BME-1838-41. (Geselowitz D1971 An application of electrochemical lead the invention of electrochemical simulation. IEEE trans.biomed. Eng. BME-1838-41) and Lehr in 1972 "a Vector Derivation method for Impedance volume field calculation", the institute of Electrical and electronics Engineers, Proc. biomedical engineering, BME-19156-7 (Lehr J1972A Vector Derivation Useful in Impedance in electrochemical simulation IEEE trans. biomed. Eng. BME-19156-7) are proposed as a linearization method using perturbation principles. The 2005 article by Soleimani M and Lionheart W R B, "non-linear image reconstruction by capacitance tomography using experimental data," measures science and technology 161987-96. (Soleimani M and Lionheart W R B2005 Nonlinear image retrieval for electrical capacitance characterization using experimental data. Meas. Sci. technol. 161987-96).
Since ECT has a 'soft' field characteristic, i.e. the distribution of spatial sensitivity varies with the variation of the spatial permittivity distribution. Over the last few years, there have been researchers performing iterative image reconstruction using updated sensitivity matrices, but this is very time consuming and the convergence of such iterations has not been demonstrated. See the 2004 article by Fang W, "a nonlinear algorithm for tomographic reconstruction of images", measurement science and technology 152124-32. The article in Li Y and Yang W Q2008, "image reconstruction for complex distributed nonlinear Landweber iteration", measures science and technology 1994014. Smok W et al, "actual data validation of capacitance Tomography Image reconstruction algorithm for updating sensitivity matrix", 2006, fourth International Process Tomography conference (Wash. Chalan.) pages 85-89 (Fang W2004A nonlinear Image reconstruction algorithm for electronic capacitance Tomography Meas. Sci. technol. 152124-32. Li Y and Yang W Q2008 Image reconstruction by nonlinear Image comparison for compatible distribution Meas. Sci. technol. 1994014. Smok W, Mirkowski J, Ozewski T and Szatin R2006 version of Image reconstruction algorithm for electronic sensitivity mapping with actual data Verification of sensitivity matrix and program, in. polarization in. 9. polarization analysis. Polish. simulation for Image reconstruction. program. in. Polish. incorporated. Polish. simulation program.85. the third paper of FIGS.
In 1980, Calderon proposed a new linearization method to solve the two-dimensional inverse problem. The Calderon's algorithm implemented by Allers and Santosa solves the conductivity in electrical resistance tomography by reducing the inverse problem to a moment problem, developing the conductivity into a form of Zernike polynomials. See article A. Allers and F. Santosa for "Stability and resolution analysis of a linearization problem in electrical resistance tomography", Inverse problem 7, 515-. Bikowski and Mueller apply the Calderon method to two-dimensional ERT to reconstruct the conductivity distribution. See in detail j.bikowski, and j.l.mueller article "two-dimensional EIT image reconstruction with Calderon method", Inverse problem and image, 2, 43-61(2008) (j.bikowski, and j.l.mueller, "2D EIT recovery using Calderon' method," Inverse problem and image 2, 43-61 (2008)).
However, the algorithm of Calderon cannot be directly applied to ECT because the ECT sensor has a shielding layer, and meanwhile, the resistance tomography in the literature adopts an excitation measurement strategy of current excitation and voltage measurement, while the ECT adopts an excitation measurement mode of voltage excitation and current measurement. Because the method belongs to a direct method and has high real-time performance, the method is popularized to ECT, namely image reconstruction can be directly carried out on partial regions, and the method has important application value.
Disclosure of the invention
1. The purpose is as follows: the invention aims to provide a direct image reconstruction method based on the capacitance tomography of a circular sensor, which overcomes the defects of the prior art and can realize rapid image reconstruction.
2. The technical scheme is as follows: the invention relates to a direct image reconstruction method based on capacitance tomography of a circular sensor, which comprises the following specific operation steps:
the method comprises the following steps: for an ECT sensor with N electrodes on the same cross section, the N electrodes are marked as an electrode i (i is more than or equal to 1 and less than or equal to N) in a counterclockwise mode, and a traditional 1-by-1 excitation measurement mode is adopted, namely, N-1 actions are included in one measurement process. Step 1, applying alternating voltage with the amplitude of V to an electrode 1, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring to obtain N-1 capacitance values of the electrode 1 and electrodes 2 to N respectively; step 2, applying alternating voltage with the amplitude V to the electrode 2, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring to obtain N-2 capacitance values of the electrode 2 and the electrodes 3 to N respectively; step 3, applying alternating voltage with the amplitude of V to the electrode 3, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring to obtain N-3 capacitance values of the electrode 3 and the electrodes 4 to N respectively; in the same way, in the step N-1, the electrode N-1 is applied with an alternating voltage with the amplitude of V, and the other N-1 electrodes are grounded or kept at the same voltage with the groundAnd measuring to obtain 1 capacitance value of the electrode N-1 and the electrode N. The total measurement results in N x (N-1)/2 independent measurement capacitance change values. Such as Δ Ci,jIs the capacitance variation between electrode pairs i-j (i ≠ j, j is greater than or equal to 1 and less than or equal to N).
Step two: firstly, preprocessing the measured capacitance value through linear transformation to obtain N (N-1)/2 independent measured charge change values. Such as Δ qj kIs the amount of change in charge on the jth electrode at the kth measurement.
<math><mrow><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>&Delta;q</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&Delta;q</mi><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&Delta;q</mi><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msubsup><mi>&Delta;q</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msub><mi>&Delta;C</mi><mn>1,1</mn></msub></mtd><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>1,2</mn></msub></mtd><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>1,3</mn></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>2,1</mn></msub></mtd><mtd><msub><mi>&Delta;C</mi><mn>2,2</mn></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mn>2,3</mn></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>3,1</mn></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mn>3,2</mn></msub></mtd><mtd><msub><mi>C</mi><mn>3,3</mn></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>2</mn></mrow></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>3</mn></mrow></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mi>&Delta;C</mi><mrow><mi>N</mi><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr></mtable></mfenced><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>V</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mrow><mi>V</mi></mrow><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mrow><mi>V</mi></mrow><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
Wherein, <math><mrow><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>i</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>&NotEqual;</mo><mi>i</mi></mrow><mi>N</mi></munderover><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></mrow></math> is the ith electrodeSelf capacitance change amount, Δ Ci,jIs the amount of capacitance change between electrode pairs i-j (i ≠ j). Vj kThe voltage virtually applied to the jth (j is more than or equal to 1 and less than or equal to N) electrode during the kth measurement is satisfied
<math><mrow><msubsup><mi>V</mi><mi>j</mi><mi>k</mi></msubsup><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mi>cos</mi><mrow><mo>(</mo><mi>k</mi><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mn>1</mn><mo>.</mo><mo>.</mo><mo>.</mo><mi>N</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mrow><mo>(</mo><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>.</mo><mo>.</mo><mo>.</mo><mi>N</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Step three: calculating the Scattering transform t(s) of discrete electrodes
<math><mrow><mi>t</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>&Delta;&theta;</mi><mi>A</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>m</mi></msub><mrow><mo>(</mo><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mo>[</mo><msup><mi>e</mi><mrow><mo>-</mo><mi>im</mi><msub><mi>&theta;</mi><mi>j</mi></msub></mrow></msup><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mi>n</mi></msubsup><mo>+</mo><mi>I&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mrow><mi>n</mi><mo>+</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mo>]</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
Wherein A represents the area of the electrode, <math><mrow><msubsup><mi>&Delta;q</mi><mi>j</mi><mi>n</mi></msubsup><mo>=</mo><mi>A</mi><mrow><mo>(</mo><msub><mi>&Lambda;</mi><mi>&epsiv;</mi></msub><mo>-</mo><msub><mi>&Lambda;</mi><mn>1</mn></msub><mo>)</mo></mrow><msubsup><mi>V</mi><mi>j</mi><mi>n</mi></msubsup></mrow></math> indicating the amount of change in charge generated at the jth electrode during the kth measurement. a n ( s ) = ( is ) n n ! , <math><mrow><msub><mi>a</mi><mi>m</mi></msub><mrow><mo>(</mo><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><mo>=</mo><mfrac><msup><mrow><mo>(</mo><mi>i</mi><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><mi>m</mi></msup><mrow><mi>m</mi><mo>!</mo></mrow></mfrac><mo>,</mo></mrow></math> s represents a complex number s ═ s1+Is2The function of the conjugate of (a) to (b), I = - 1 , s1and s2Are all real numbers.
Step four: reconstructing the variation of dielectric constant of any point
<math><mrow><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&ap;</mo><mfrac><mn>1</mn><msup><mrow><mn>2</mn><mi>&pi;</mi></mrow><mn>2</mn></msup></mfrac><msub><mrow><mo>&Integral;</mo><mo>&Integral;</mo></mrow><msup><mi>R</mi><mn>2</mn></msup></msub><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><mi>I</mi><msub><mi>s</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow><mrow><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup></mrow></mfrac><msup><mi>e</mi><mrow><mi>I</mi><mrow><mo>(</mo><mo>-</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>1</mn></msub><mi>x</mi><mo>+</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>2</mn></msub><mi>y</mi><mo>)</mo></mrow></mrow></msup><msub><mi>ds</mi><mn>1</mn></msub><msub><mi>ds</mi><mn>2</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
Where δ ∈ (x, y) is a dielectric constant change value at a position of the circular region corresponding to the rectangular coordinate system coordinate (x, y). The theoretical derivation of the calculations in the above image reconstruction method is:
assuming a potential in the sensitive field within the region omega
Figure G2009100799475D00046
The equation satisfied is:
Figure G2009100799475D00047
wherein z is a complex number representing position (x, y), ε (z) andrespectively, the dielectric constant and the potential distribution.
According to the principle of divergence, there are
= 0
Wherein v (z) is L2Arbitrary continuous functions in the Lebesgue (Lebesgue) space. ds represents at the boundaryUpper unit arc length.
When the region Ω contains a dielectric constant distribution of ∈ (z), the mapping from the boundary potential to the boundary current density can be expressed as:
Figure G2009100799475D000412
in particular, when the dielectric constant is a constant, Λ1Can be expressed as:
Figure G2009100799475D000413
for a dielectric constant e, which contains perturbations, of 1+ δ e, and perturbations occur only in the range of Ω,
Figure G2009100799475D000414
at the same time
Figure G2009100799475D00051
And satisfy the boundary conditions
Figure G2009100799475D00052
If it is assumed that this is satisfied in the whole sensitive field
Figure G2009100799475D00053
Subtracting (10) from (9) yields:
namely:
Figure G2009100799475D00055
based on the above analysis, let
Figure G2009100799475D00056
<math><mrow><mi>v</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>e</mi><mrow><mi>i</mi><mover><mi>sz</mi><mo>&OverBar;</mo></mover></mrow></msup><mo>.</mo></mrow></math> Where s is s1+is2Is a complex number, s1And s2Is a real number.
The left side of equation (14) is denoted as t(s), i.e.:
<math><mrow><mi>t</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>&Integral;</mo><mrow><mo>&PartialD;</mo><mi>&Omega;</mi></mrow></msub><msup><mi>e</mi><mrow><mi>i</mi><mover><mi>sz</mi><mo>&OverBar;</mo></mover></mrow></msup><mrow><mo>(</mo><msub><mi>&Lambda;</mi><mrow><mn>1</mn><mo>+</mo><mi>&delta;&epsiv;</mi></mrow></msub><mo>-</mo><msub><mi>&Lambda;</mi><mn>1</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>e</mi><mi>isz</mi></msup><mo>)</mo></mrow><mi>dz</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>15</mn><mo>)</mo></mrow></mrow></math>
arranged as a plurality s ═ s1+is2Is expressed by a rectangular coordinate system of
<math><mrow><mi>t</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>&ap;</mo><mo>-</mo><mn>2</mn><mrow><mo>(</mo><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup><mo>)</mo></mrow><msub><mo>&Integral;</mo><mi>&Omega;</mi></msub><mi>&delta;&epsiv;</mi><msup><mi>e</mi><mrow><mo>-</mo><mi>i</mi><mrow><mo>(</mo><msub><mrow><mo>-</mo><mn>2</mn><mi>s</mi></mrow><mn>1</mn></msub><mo>,</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>2</mn></msub><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></msup><mi>dxdy</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow></math>
Through Fourier inverse transformation, the variation of the dielectric constant distribution can be obtained:
<math><mrow><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>&ap;</mo><mfrac><mn>1</mn><msup><mrow><mn>2</mn><mi>&pi;</mi></mrow><mn>2</mn></msup></mfrac><msub><mrow><mo>&Integral;</mo><mo>&Integral;</mo></mrow><msup><mi>R</mi><mn>2</mn></msup></msub><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><msub><mi>is</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow><mrow><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup></mrow></mfrac><msup><mi>e</mi><mrow><mi>i</mi><mrow><mo>(</mo><msub><mrow><mo>-</mo><mn>2</mn><mi>s</mi></mrow><mn>1</mn></msub><mo>,</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>2</mn></msub><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></msup><msub><mi>ds</mi><mn>1</mn></msub><msub><mi>ds</mi><mn>2</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>17</mn><mo>)</mo></mrow></mrow></math>
it can be demonstrated that as δ ε (x, y) approaches zero, the error through δ ε (x, y) reconstruction also approaches zero.
3. The advantages and the effects are as follows: aiming at the circular measuring area, the method overcomes the limitations that the traditional algorithm needs to calculate a sensitivity matrix and can not independently calculate the reconstruction result of a partial area, directly realizes image reconstruction according to the capacitance measured value, and can only directly carry out image reconstruction on the partial area.
(IV) description of the drawings
FIG. 1 is a schematic diagram of a circular sensor used in the practice of the present invention
FIG. 2 is a schematic diagram of a U-shaped simulation model
FIG. 3 is a schematic diagram of a reconstruction result of a U-shaped simulation model
The figure is well illustrated as follows:
1 metal tube layer 2 insulating material layer 3 electrode
(V) detailed description of the preferred embodiments
In the process of image reconstruction by the method of the invention, the applied sensor is shown in figure 1 and mainly comprises three layers of structures, wherein the outer layer is a metal tube layer 1 for fixing and shielding the structure, the middle structure layer is an insulating material layer 2, the inner structure layer 3 is N electrodes attached to the insulating material layer 2 for realizing synchronous measurement of a real part and an imaginary part of electrical impedance, the electrodes are uniformly distributed on the same circumference and are mutually insulated between adjacent electrodes.
The invention relates to a direct image reconstruction method based on capacitance tomography of a circular sensor, which comprises the following specific operation steps:
the method comprises the following steps: for an ECT sensor with N electrodes on the same cross section, the N electrodes are marked as an electrode i (i is more than or equal to 1 and less than or equal to N) in a counterclockwise mode, and a traditional 1-by-1 excitation measurement mode is adopted, namely, N-1 actions are included in one measurement process. Step 1, applying alternating voltage with the amplitude of V to an electrode 1, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring to obtain N-1 capacitance values of the electrode 1 and electrodes 2 to N respectively; step 2, applying alternating voltage with the amplitude V to the electrode 2, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring to obtain N-2 capacitance values of the electrode 2 and the electrodes 3 to N respectively; step 3, applying alternating voltage with the amplitude of V to the electrode 3, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring to obtain N-3 capacitance values of the electrode 3 and the electrodes 4 to N respectively; in the same way, in the step N-1, an alternating voltage with the amplitude of V is applied to the electrode N-1, the rest N-1 electrodes are grounded or keep the same potential with the ground, and the electrode N-1 and the electrode N are obtained through measurement1 capacitance value. The total measurement results in N x (N-1)/2 independent measurement capacitance change values. Such as Δ Ci,jIs the capacitance variation between electrode pairs i-j (i ≠ j, j is greater than or equal to 1 and less than or equal to N).
Step two: firstly, preprocessing the measured capacitance value through linear transformation to obtain N (N-1)/2 independent measured charge change values. Such as Δ qj kIs the amount of change in charge on the jth electrode at the kth measurement.
<math><mrow><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>&Delta;q</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&Delta;q</mi><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>&Delta;q</mi><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msubsup><mi>&Delta;q</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><msub><mi>&Delta;C</mi><mn>1,1</mn></msub></mtd><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>1,2</mn></msub></mtd><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>1,3</mn></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>2,1</mn></msub></mtd><mtd><msub><mi>&Delta;C</mi><mn>2,2</mn></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mn>2,3</mn></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><msub><mi>&Delta;C</mi><mn>3,1</mn></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mn>3,2</mn></msub></mtd><mtd><msub><mi>C</mi><mn>3,3</mn></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>2</mn></mrow></msub></mtd><mtd><msub><mrow><mo>-</mo><mi>&Delta;C</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>3</mn></mrow></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mi>&Delta;C</mi><mrow><mi>N</mi><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr></mtable></mfenced><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>V</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mrow><mi>V</mi></mrow><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mrow><mi>V</mi></mrow><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
Wherein, <math><mrow><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>i</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>j</mi><mo>&NotEqual;</mo><mi>i</mi></mrow><mi>N</mi></munderover><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></mrow></math> is the change of self capacitance, Δ C, on the ith electrodei,jIs the amount of capacitance change between electrode pairs i-j (i ≠ j). Vj kThe voltage virtually applied to the jth (j is more than or equal to 1 and less than or equal to N) electrode during the kth measurement is satisfied
<math><mrow><msubsup><mi>V</mi><mi>j</mi><mi>k</mi></msubsup><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mi>cos</mi><mrow><mo>(</mo><mi>k</mi><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mn>1</mn><mo>.</mo><mo>.</mo><mo>.</mo><mi>N</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mrow><mo>(</mo><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>.</mo><mo>.</mo><mo>.</mo><mi>N</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Step three: calculating the Scattering transform t(s) of discrete electrodes
<math><mrow><mi>t</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>&Delta;&theta;</mi><mi>A</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>m</mi></msub><mrow><mo>(</mo><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mo>[</mo><msup><mi>e</mi><mrow><mo>-</mo><mi>im</mi><msub><mi>&theta;</mi><mi>i</mi></msub></mrow></msup><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mi>n</mi></msubsup><mo>+</mo><mi>I&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mrow><mi>n</mi><mo>+</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mo>]</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
Wherein A represents the area of the electrode, <math><mrow><msubsup><mi>&Delta;q</mi><mi>j</mi><mi>n</mi></msubsup><mo>=</mo><mi>A</mi><mrow><mo>(</mo><msub><mi>&Lambda;</mi><mi>&epsiv;</mi></msub><mo>-</mo><msub><mi>&Lambda;</mi><mn>1</mn></msub><mo>)</mo></mrow><msubsup><mi>V</mi><mi>j</mi><mi>n</mi></msubsup></mrow></math> indicating the amount of change in charge generated at the jth electrode during the kth measurement. a n ( s ) = ( is ) n n ! , <math><mrow><msub><mi>a</mi><mi>m</mi></msub><mrow><mo>(</mo><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><mo>=</mo><mfrac><msup><mrow><mo>(</mo><mi>i</mi><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><mi>m</mi></msup><mrow><mi>m</mi><mo>!</mo></mrow></mfrac><mo>,</mo></mrow></math> s represents a complex number s ═ s1+Is2The function of the conjugate of (a) to (b), I = - 1 , s1and s2Are all real numbers.
Step four: reconstructing the variation of dielectric constant of any point
<math><mrow><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&ap;</mo><mfrac><mn>1</mn><msup><mrow><mn>2</mn><mi>&pi;</mi></mrow><mn>2</mn></msup></mfrac><msub><mrow><mo>&Integral;</mo><mo>&Integral;</mo></mrow><msup><mi>R</mi><mn>2</mn></msup></msub><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><mi>I</mi><msub><mi>s</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow><mrow><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup></mrow></mfrac><msup><mi>e</mi><mrow><mi>I</mi><mrow><mo>(</mo><mo>-</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>1</mn></msub><mi>x</mi><mo>+</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>2</mn></msub><mi>y</mi><mo>)</mo></mrow></mrow></msup><msub><mi>ds</mi><mn>1</mn></msub><msub><mi>ds</mi><mn>2</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
Where δ ∈ (x, y) is a dielectric constant change value at a position of the circular region corresponding to the rectangular coordinate system coordinate (x, y).
Numerical simulations were used to evaluate this new method. Consider a model of the dielectric constant distribution of a U-shaped region, shown in figure 2. The dielectric constant of the white areas is equal to 1 (representing air) and the black areas is equal to 3 (representing oil).
In polar coordinates expressed by the parameters r and theta, equation (4) can be written as
<math><mrow><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>&ap;</mo><mfrac><mn>1</mn><msup><mrow><mn>2</mn><mi>&pi;</mi></mrow><mn>2</mn></msup></mfrac><msub><mrow><mo>&Integral;</mo><mo>&Integral;</mo></mrow><msup><mi>R</mi><mn>2</mn></msup></msub><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><msub><mi>is</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow><mrow><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup></mrow></mfrac><msup><mi>e</mi><mrow><mi>i</mi><mrow><mo>(</mo><msub><mrow><mo>-</mo><mn>2</mn><mi>s</mi></mrow><mn>1</mn></msub><mo>,</mo><msub><mrow><mn>2</mn><mi>s</mi></mrow><mn>2</mn></msub><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></msup><msub><mi>ds</mi><mn>1</mn></msub><msub><mi>ds</mi><mn>2</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow></math>
<math><mrow><mo>=</mo><mfrac><mn>1</mn><msup><mrow><mn>2</mn><mi>&pi;</mi></mrow><mn>2</mn></msup></mfrac><msubsup><mo>&Integral;</mo><mn>0</mn><msub><mi>R</mi><mn>0</mn></msub></msubsup><msubsup><mo>&Integral;</mo><mrow><mo>-</mo><mi>&pi;</mi></mrow><mi>&pi;</mi></msubsup><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msup><mi>re</mi><mi>i&theta;</mi></msup><mo>)</mo></mrow></mrow><mi>r</mi></mfrac><msup><mi>e</mi><mrow><mi>i</mi><mrow><mo>(</mo><mo>-</mo><mn>2</mn><mi>r</mi><mi>cos</mi><mi>&theta;</mi><mo>,</mo><mn>2</mn><mi>r</mi><mi>sin</mi><mi>&theta;</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></msup><mi>d&theta;dr</mi></mrow></math>
Wherein R is0Is the area radius for numerical integration, optionally 5 times the pipe radius. The product of the Gaussian-Louvre equations yields δ ε (x, y). The reconstructed image of the model in fig. 2 is shown in fig. 3.
Comparing fig. 2 and fig. 3, it can be seen that the new image reconstruction method of the present invention has a good image reconstruction result in this case. In implementing the algorithm set forth above, the primary computational task is to compute the double numerical integral. The gaussian-like let integral can be used, and the algorithm has good real-time performance because the weight equation and the position of the gaussian point can be predetermined.

Claims (1)

1. A direct image reconstruction method based on the capacitance tomography of a circular sensor is characterized in that: the method comprises the following specific operation steps:
the method comprises the following steps: for a capacitance tomography sensor with N electrodes on the same section, the N electrodes are marked as an electrode i (i is more than or equal to 1 and less than or equal to N) in a counterclockwise way, and a traditional excitation measurement mode is adopted, namely N-1 actions are included in one scanning process; step 1, applying an AC voltage with an amplitude V to the electrode 1, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring the electrode 1 and the electrodes 2 to N together1 capacitance value; step 2, applying alternating voltage with the amplitude V to the electrode 2, grounding the other N-1 electrodes or keeping the same potential with the ground, and measuring the N-2 capacitance values of the electrode 2 and the electrodes 3 to N respectively; step 3, applying alternating voltage with the amplitude of V to the electrode 3, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring the N-3 capacitance values of the electrode 3 and the electrodes 4 to N respectively; in the same way, in the step N-1, an alternating voltage with the amplitude V is applied to the electrode N-1, the rest N-1 electrodes are grounded or keep the same potential with the ground, 1 capacitance value is obtained by measuring the electrode N-1 and the electrode N, and the capacitance change values of N x (N-1)/2 independent measurement capacitances, such as delta C, are obtained by measuring in totali,jIs the capacitance variation between electrode pairs i-j (i is not equal to j, j is more than or equal to 1 and less than or equal to N);
step two: the measured capacitance values are first pre-processed by linear transformation to yield N x (N-1)/2 independently measured charge changes, e.g.
Figure FSB00000466667500011
The change amount of the charge on the jth electrode in the kth measurement;
<math><mrow><mfenced open='[' close=']'><mtable><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mi>&Delta;</mi><msub><mi>C</mi><mn>1,1</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>1,2</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>1,3</mn></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>2,1</mn></msub></mtd><mtd><mi>&Delta;</mi><msub><mi>C</mi><mn>2,2</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>2,3</mn></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mn>2</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>3,1</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>3,2</mn></msub></mtd><mtd><msub><mi>C</mi><mn>3,3</mn></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mn>3</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mn>1</mn></mrow></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mn>2</mn></mrow></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mn>3</mn></mrow></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr></mtable></mfenced><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>V</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSB00000466667500013
is the change of self capacitance, Δ C, on the ith electrodei,jIs the capacitance variation between electrode pairs i-j (i ≠ j);
Figure FSB00000466667500014
the voltage virtually applied to the jth (j is more than or equal to 1 and less than or equal to N) electrode during the kth measurement is satisfied
<math><mrow><msubsup><mi>V</mi><mi>j</mi><mi>k</mi></msubsup><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mi>cos</mi><mrow><mo>(</mo><mi>k</mi><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mn>1</mn><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mi>N</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mrow><mo>(</mo><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mi>N</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Step three: calculating the Scattering transform t(s) of discrete electrodes
<math><mrow><mi>t</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>&Delta;&theta;</mi><mi>A</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>m</mi></msub><mrow><mo>(</mo><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mo>[</mo><msup><mi>e</mi><mrow><mo>-</mo><mi>im</mi><msub><mi>&theta;</mi><mi>j</mi></msub></mrow></msup><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mi>n</mi></msubsup><mo>+</mo><mi>I&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mrow><mi>n</mi><mo>+</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mo>]</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
Wherein A represents the area of the electrode,representing the amount of change in charge generated at the jth electrode at the nth measurement;
Figure FSB00000466667500025
Figure FSB00000466667500026
to representA complex number s ═ s1+Is2The function of the conjugate of (a) to (b),
Figure FSB00000466667500027
s1and s2Are all real numbers;
step four: reconstructing the variation of dielectric constant of any point
<math><mrow><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&ap;</mo><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>&pi;</mi><mn>2</mn></msup></mrow></mfrac><msub><mrow><mo>&Integral;</mo><mo>&Integral;</mo></mrow><msup><mi>R</mi><mn>2</mn></msup></msub><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><mi>I</mi><msub><mi>s</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow><mrow><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup></mrow></mfrac><msup><mi>e</mi><mrow><mi>I</mi><mrow><mo>(</mo><mo>-</mo><mn>2</mn><msub><mi>s</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><mn>2</mn><msub><mi>s</mi><mn>2</mn></msub><mi>y</mi><mo>)</mo></mrow></mrow></msup><msub><mi>ds</mi><mn>1</mn></msub><msub><mi>ds</mi><mn>2</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
Where δ ∈ (x, y) is a dielectric constant change value at a position of the circular region corresponding to the rectangular coordinate system coordinate (x, y).
CN2009100799475A 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor Active CN101520478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100799475A CN101520478B (en) 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100799475A CN101520478B (en) 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor

Publications (2)

Publication Number Publication Date
CN101520478A CN101520478A (en) 2009-09-02
CN101520478B true CN101520478B (en) 2011-08-17

Family

ID=41081172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100799475A Active CN101520478B (en) 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor

Country Status (1)

Country Link
CN (1) CN101520478B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163404B (en) * 2013-02-01 2015-07-15 北京航空航天大学 Current-voltage mapping construction method based on adjacent stimulus measurement model
CN103116101B (en) * 2013-02-01 2015-07-01 北京航空航天大学 Adjacent excitation measurement mode based voltage-current mapping construction method
CN103454318B (en) * 2013-09-13 2015-06-24 天津大学 Electrical capacitance tomography sensor with double-layer rotating electrode
CN103776873B (en) * 2014-02-18 2016-04-06 北京航空航天大学 A kind of method mapped by voltage-to-current map construction current-voltage
CN104614010B (en) * 2015-02-16 2017-01-25 天津大学 Method of building flexibility matrix based on ultrasonic focusing information
CN106596658A (en) * 2015-10-14 2017-04-26 上海海洋大学 Multiphase flow capacitance normalization method used for electrical capacitance tomography
CN106296766B (en) * 2016-08-03 2019-01-25 清华大学深圳研究生院 A kind of image reconstructing method of the capacitance chromatography imaging based on ROF model
CN107091858B (en) * 2017-03-27 2020-02-14 北京航空航天大学 Method for constructing voltage-current mapping from current-voltage mapping
CN107860800A (en) * 2017-09-21 2018-03-30 山东省科学院海洋仪器仪表研究所 A kind of capacitance chromatography imaging method for bubble flow
CN108333434B (en) * 2018-01-31 2020-08-18 北京航空航天大学 Split-program parallel structure capacitor array measuring circuit
CN109934885B (en) * 2019-02-28 2023-02-03 河南师范大学 Electrical resistance tomography image reconstruction method with sharp edge preservation
CN110207862B (en) * 2019-05-28 2020-07-03 北京航空航天大学 Tactile pressure sensor based on electrical impedance tomography and signal acquisition method
CN110501587B (en) * 2019-08-09 2021-06-11 北京航空航天大学 Radon inverse transformation capacitance tomography method based on power line distribution
CN111061399B (en) * 2019-12-31 2021-10-26 北京航空航天大学 Method for processing capacitance signal based on iterative algorithm and applying capacitance signal to touch screen positioning
CN111077193B (en) * 2019-12-31 2021-10-22 北京航空航天大学 Capacitive sensor and imaging positioning method for processing capacitive signal thereof
CN111596172B (en) * 2020-05-29 2022-05-20 天津大学 High-voltage alternating-current cable defect online positioning method based on induced charge tomography
CN111999564A (en) * 2020-08-07 2020-11-27 云南电网有限责任公司电力科学研究院 Method and device for calculating internal dielectric constant value of cable accessory
CN112068179A (en) * 2020-08-13 2020-12-11 南昌大学 Positron imaging method based on Leeberg sampling
CN115201272B (en) * 2022-07-26 2024-08-27 重庆大学 ERT-ECT bimodal composite electrode design method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314373B1 (en) * 1996-11-27 2001-11-06 Forschungszentrum Rossendorf E.V. Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
CN1854726A (en) * 2004-06-29 2006-11-01 西安交通大学 Two-phase fluid grid and capacitor chromatography imaging method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314373B1 (en) * 1996-11-27 2001-11-06 Forschungszentrum Rossendorf E.V. Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
CN1854726A (en) * 2004-06-29 2006-11-01 西安交通大学 Two-phase fluid grid and capacitor chromatography imaging method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
朱小菲.12电极ECT数据采集系统的设计.《信息技术》.2008,(第5期),143-154. *
阎润生等.电容层析成像算法的比较.《仪器仪表学报》.2004,第25卷(第4期),619-620. *
高彦丽等.电容层析成像技术中图像重建算法的发展及研究.《传感器与微系统》.2007,第26卷(第10期),9-14. *

Also Published As

Publication number Publication date
CN101520478A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
CN101520478B (en) Direct image reconstruction method based on capacitance tomography of round sensor
Yang et al. Image reconstruction algorithms for electrical capacitance tomography
Ren et al. Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography
Cao et al. Electrical capacitance tomography for sensors of square cross sections using Calderon's method
CN108711178A (en) A kind of methods in ECT image reconstruction method based on loop control theory
CN107369187A (en) The electricity tomography regularization reconstruction method for the sum that is deteriorated based on adjoint point
CN103462605A (en) Biological electrical impedance tomography method
CN106248569A (en) A kind of corrosion diagnosis of grounding grid method based on endogenous formula EIT
Cao et al. Image reconstruction technique of electrical capacitance tomography for low-contrast dielectrics using Calderon's method
Cao et al. Direct image reconstruction for electrical capacitance tomography by using the enclosure method
Zhang et al. A numerical computation forward problem model of electrical impedance tomography based on generalized finite element method
CN104535294B (en) Corrected L-curve electrical tomography reconstruction method based on second-order differential
CN104965134A (en) Echo state network-based transformer station grounding grid earth surface potential distribution calculation method
Xia et al. Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system
Taylor et al. Design of electrode arrays for 3D capacitance tomography in a planar domain
Tian et al. Experimental imaging and algorithm optimization based on deep neural network for electrical capacitance tomography for LN2-VN2 flow
CN116485927A (en) Non-contact type electrical impedance imaging technology image reconstruction method based on double sensitive fields
Huang et al. ECT image reconstruction method based on multi-exponential feature extraction
Deabes et al. A nonlinear fuzzy assisted image reconstruction algorithm for electrical capacitance tomography
CN106249052A (en) A kind of capacitance type potential transformer stray capacitance computational methods
CN111337547B (en) Complex multi-frequency real-time capacitance tomography method based on multiple measurement vectors
Li et al. An improved generalized finite element method for electrical resistance tomography forward model
Hu et al. A self-adapting Landweber algorithm for the inverse problem of electrical capacitance tomography (ECT)
Zhu et al. Simultaneous reconstruction of conductivity and permittivity in electrical impedance tomography
Xu et al. Galerkin boundary element method for the forward problem of ERT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant