CN101520478B - Direct image reconstruction method based on capacitance tomography of round sensor - Google Patents

Direct image reconstruction method based on capacitance tomography of round sensor Download PDF

Info

Publication number
CN101520478B
CN101520478B CN2009100799475A CN200910079947A CN101520478B CN 101520478 B CN101520478 B CN 101520478B CN 2009100799475 A CN2009100799475 A CN 2009100799475A CN 200910079947 A CN200910079947 A CN 200910079947A CN 101520478 B CN101520478 B CN 101520478B
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100799475A
Other languages
Chinese (zh)
Other versions
CN101520478A (en
Inventor
曹章
徐立军
丁洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2009100799475A priority Critical patent/CN101520478B/en
Publication of CN101520478A publication Critical patent/CN101520478A/en
Application granted granted Critical
Publication of CN101520478B publication Critical patent/CN101520478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明是一种基于圆形传感器的电容层析成像的图像重建直接方法,包括下列具体操作步骤:步骤一:对于同一截面上具有N个电极的ECT传感器,将N个电极逆时针标号为电极i(1≤i≤N),采用传统的1-by-1激励测量模式,即一次扫描过程中,包括N-1个动作。步骤二:首先通过线性变换将测量的电容值进行预处理,得到N*(N-1)/2个独立测量电荷变化值。步骤三:计算离散电极的散射变换t(s)。步骤四:进行任一点介电常数变化量的重建。本发明是针对圆形测量区域,克服传统算法须计算灵敏度矩阵且无法独立计算部分区域重建结果的局限性,根据电容测量值直接实现图像重建,且可以只对部分区域直接进行图像重建。由于这种方法实时性高,将其推广至ECT,具有重要的实用价值和应用前景。

Figure 200910079947

The present invention is a direct image reconstruction method based on electric capacitance tomography of a circular sensor, comprising the following specific operation steps: Step 1: For an ECT sensor with N electrodes on the same section, label the N electrodes counterclockwise as electrodes i(1≤i≤N), the traditional 1-by-1 excitation measurement mode is adopted, that is, N-1 actions are included in one scanning process. Step 2: Firstly, the measured capacitance value is preprocessed by linear transformation to obtain N*(N-1)/2 independently measured charge change values. Step 3: Calculate the scattering transformation t(s) of the discrete electrodes. Step 4: Reconstruct the variation of permittivity at any point. The invention is aimed at a circular measurement area, overcomes the limitation that the traditional algorithm needs to calculate the sensitivity matrix and cannot independently calculate the reconstruction results of some areas, directly realizes image reconstruction according to the capacitance measurement value, and can only directly perform image reconstruction on some areas. Due to the high real-time performance of this method, it has important practical value and application prospect to extend it to ECT.

Figure 200910079947

Description

一种基于圆形传感器的电容层析成像的图像重建直接方法A direct approach to image reconstruction for electrical capacitance tomography based on circular sensors

(一)技术领域(1) Technical field

本发明涉及一种图像重建方法,特别是涉及一种基于圆形传感器的电容层析成像的图像重建直接方法。属于图像重建技术领域。The invention relates to an image reconstruction method, in particular to a direct method of image reconstruction based on electric capacitance tomography of a circular sensor. The invention belongs to the technical field of image reconstruction.

(二)背景技术(2) Background technology

电容层析成像技术(electrical capacitance tomography-ECT)是根据测量的电容数据来重建绝缘材料的空间介电常数的分布。ECT相比其它层析成像技术有一些优点,例如:低成本,快速响应,便携性,非侵入性和鲁棒性。在许多工业领域中具有广阔的应用前景,ECT的核心技术是,根据边界电容的一组测量值的变化量,采用图像重建方法重建内部的介电常数分布的变化量。Electrical capacitance tomography (ECT) is based on the measured capacitance data to reconstruct the distribution of the space permittivity of insulating materials. ECT has several advantages over other tomographic techniques such as: low cost, fast response, portability, non-invasiveness and robustness. It has broad application prospects in many industrial fields. The core technology of ECT is to use the image reconstruction method to reconstruct the variation of the internal permittivity distribution according to the variation of a set of measured values of boundary capacitance.

在过去,大多数图像重建算法是基于敏感度定理的,该定理由1971年Geselowitz的文章“心电图的导线理论在阻抗式测容积法的应用”电气电子工程师协会,生物医学工程学报,BME-18 38-41。(Geselowitz D B 1971 An application of electrocardiographic lead theory toimpedance plethysmography.IEEE Trans.Biomed.Eng.BME-18 38-41)和1972年Lehr的文章“一种用于阻抗式容积场计算的向量求导方法”,电气电子工程师协会,生物医学工程学报,BME-19 156-7(Lehr J 1972 A Vector Derivation Useful in Impedance Plethysmographic FieldCalculations IEEE Trans.Biomed.Eng.BME-19 156-7)中提出,是一种采用摄动原理的线性化方法。2005年Soleimani M和Lionheart W R B的文章“采用实验数据的电容层析成像的非线性图像重建”,测量科学与技术16 1987-96。(Soleimani M and Lionheart W R B 2005Nonlinear image reconstruction for electrical capacitance tomography using experimental data.Meas.Sci.Technol.16 1987-96)。In the past, most image reconstruction algorithms were based on the sensitivity theorem derived from the 1971 Geselowitz article "Application of the Wire Theory of the Electrocardiogram to Impedance Volumetrics" Institute of Electrical and Electronics Engineers, Biomedical Engineering Transactions, BME-18 38-41. (Geselowitz D B 1971 An application of electrocardiographic lead theory toimpedance plethysmography.IEEE Trans.Biomed.Eng.BME-18 38-41) and Lehr's 1972 article "A Vector Derivation Method for Impedance Volume Field Calculation" , Institute of Electrical and Electronics Engineers, Biomedical Engineering Journal, BME-19 156-7 (Lehr J 1972 A Vector Derivation Useful in Impedance Plethysmographic Field Calculations IEEE Trans.Biomed.Eng.BME-19 156-7), is a kind of A linearization method for the perturbation principle. 2005 Soleimani M and Lionheart W R B article "Nonlinear image reconstruction of electrical capacitance tomography using experimental data", Measurement Science and Technology 16 1987-96. (Soleimani M and Lionheart W R B 2005Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Meas. Sci. Technol. 16 1987-96).

由于ECT具有‘软’场特性,即空间灵敏度的分布随着空间介电常数分布的变化而变化。在过去的几年中,有研究人员采用更新的灵敏度矩阵进行迭代的图像重建,但非常耗时,且该类迭代的收敛性尚未得到证实。详见2004年Fang W的文章“一种电容层析成像图像重建的非线性算法”,测量科学与技术15 2124-32。Li Y和Yang W Q2008年的文章“对于复杂分布的非线性Landweber迭代法进行图像重建”,测量科学与技术19 94014。Smolik W等人在2006年的文章“更新灵敏度矩阵的电容层析成像图像重建算法的实际数据验证”,第四届国际过程层析成像会议(华沙,波兰)第85-89页(Fang W 2004 A nonlinear image reconstructionalgorithm for electrical capacitance tomography Meas.Sci.Technol.15 2124-32.Li Y and YangW Q 2008 Image reconstruction by nonlinear Landweber iteration for complicated distributionsMeas.Sci.Technol.19 94014。Smolik W,Mirkowski J,Olszewski T and Szabatin R 2006Verification of image reconstruction algorithm with sensitivity matrix updating for real data inelectrical capacitance tomography.In:Proc.4th Int.Symp.On Process Tomography,(Warsaw,Poland)p 85-9)。Since ECT has a 'soft' field characteristic, that is, the distribution of spatial sensitivity changes with the distribution of spatial permittivity. In the past few years, some researchers used an updated sensitivity matrix for iterative image reconstruction, but it was very time-consuming, and the convergence of this type of iteration has not been confirmed. See Fang W's 2004 article "A Nonlinear Algorithm for Image Reconstruction in Electrical Capacitance Tomography" for details, Measurement Science and Technology 15 2124-32. Li Y and Yang W Q2008 article "Image reconstruction with nonlinear Landweber iterative method for complex distributions", Measurement Science and Technology 19 94014. Smolik W et al. 2006 "Real data validation of an electrical capacitance tomography image reconstruction algorithm with an updated sensitivity matrix", 4th International Conference on Process Tomography (Warsaw, Poland) pp. 85-89 (Fang W 2004 A nonlinear image reconstructionalgorithm for electrical capacitance tomography Meas.Sci.Technol.15 2124-32.Li Y and YangW Q 2008 Image reconstruction by nonlinear Landweber iteration for complicated distributionsMeas.Sci.Technol.19 94014。Smolik W,Mirkowski J,Olszewski T and Szabatin R 2006 Verification of image reconstruction algorithm with sensitivity matrix updating for real data electrical capacitance tomography. In: Proc. 4th Int. Symp. On Process Tomography, (Warsaw, Poland) p 85-9).

1980年,Calderon提出了一个解决二维逆问题的新的线性化方法。Allers和Santosa实施Calderon的算法通过把逆问题简化成一个矩问题,在电阻层析成像中将电导率展成Zernike多项式的形式求解。详见A.Allers和F.Santosa的文章”电阻层析成像中一种线性化问题的稳定性和分辨力分析”,逆问题7,515-533(1991)(A.Allers,and F.Santosa,″Stability andresolution analysis of a linearized problem in electrical impedance tomography,″Inverse Probl 7,515-533(1991))。Bikowski和Mueller把Calderon方法应用于二维ERT来重建电导率的分布。详见J.Bikowski,和J.L.Mueller的文章“采用Calderon方法的二维EIT图像重建”,反问题与图像,2,43-61(2008)(J.Bikowski,and J.L.Mueller,″2D EIT reconstructions using Calderon′smethod,″Inverse Problems and Imaging 2,43-61(2008))。In 1980, Calderon proposed a new linearization method for solving the two-dimensional inverse problem. Allers and Santosa implemented Calderon's algorithm by reducing the inverse problem to a moment problem and solving the electrical conductivity as Zernike polynomials in electrical resistance tomography. See A.Allers and F.Santosa's article "Stability and resolution analysis of a linearization problem in electrical resistance tomography", Inverse Problem 7, 515-533 (1991) (A.Allers, and F.Santosa , "Stability and resolution analysis of a linearized problem in electrical impedance tomography," Inverse Probl 7, 515-533 (1991)). Bikowski and Mueller applied the Calderon method to two-dimensional ERT to reconstruct the conductivity distribution. See J.Bikowski, and J.L.Mueller's article "2D EIT reconstructions using the Calderon method", Inverse Problems and Images, 2, 43-61 (2008) (J.Bikowski, and J.L.Mueller, "2D EIT reconstructions using Calderon's method, "Inverse Problems and Imaging 2, 43-61 (2008)).

但是由于ECT传感器存在屏蔽层,同时文献中电阻层析成像采用的是电流激励、测量电压的激励测量策略,而ECT中采用的是电压激励、测量电流的激励测量模式,Calderon的算法无法直接用于ECT。由于这种方法属于一种直接方法,且实时性高,将其推广至ECT,即可以只对部分区域直接进行图像重建,具有重要的应用价值。However, due to the existence of a shielding layer in the ECT sensor, and the electrical resistance tomography in the literature uses an excitation measurement strategy of current excitation and voltage measurement, while ECT uses an excitation measurement mode of voltage excitation and current measurement, Calderon’s algorithm cannot be used directly. in ECT. Since this method is a direct method and has high real-time performance, it is of great application value to extend it to ECT, that is, to directly perform image reconstruction on only a part of the region.

(三)发明内容(3) Contents of the invention

1、目的:本发明的目的是提供一种基于圆形传感器的电容层析成像的图像重建直接方法,它克服了现有技术的不足,可以实现快速图象重建。1. Purpose: The purpose of the present invention is to provide a direct method for image reconstruction based on electrical capacitance tomography of a circular sensor, which overcomes the deficiencies in the prior art and can realize fast image reconstruction.

2、技术方案:本发明是一种基于圆形传感器的电容层析成像的图像重建直接方法,包括下列具体操作步骤:2. Technical solution: The present invention is a direct method for image reconstruction based on electrical capacitance tomography of a circular sensor, comprising the following specific steps:

步骤一:对于同一截面上具有N个电极的ECT传感器,将N个电极逆时针标号为电极i(1≤i≤N),采用传统的1-by-1激励测量模式,即,一次测量过程中,包括N-1个动作。第1步,电极1上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极1分别与电极2到N共N-1个电容值;第2步,电极2上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极2分别与电极3到N共N-2个电容值;第3步,电极3上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极3分别与电极4到N共N-3个电容值;以此类推,第N-1步,电极N-1上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极N-1与电极N共1个电容值。共测量得到N*(N-1)/2个独立测量电容变化值。如ΔCi,j是电极对i-j(i≠j,1≤j≤N)之间的电容变化量。Step 1: For an ECT sensor with N electrodes on the same section, label the N electrodes counterclockwise as electrode i (1≤i≤N), and adopt the traditional 1-by-1 excitation measurement mode, that is, one measurement process , including N-1 actions. In the first step, an AC voltage with an amplitude of V is applied to electrode 1, and the other N-1 electrodes are grounded or kept at the same potential as the ground, and N-1 capacitance values are obtained from electrode 1 and electrodes 2 to N respectively; Step 2, apply an AC voltage with an amplitude of V on electrode 2, and the other N-1 electrodes are all grounded or kept at the same potential as the ground, and N-2 capacitance values are obtained from electrode 2 and electrodes 3 to N respectively; the third Step 1: Apply an AC voltage with an amplitude of V on the electrode 3, and the other N-1 electrodes are all grounded or kept at the same potential as the ground, and the measured electrode 3 and electrodes 4 to N have a total of N-3 capacitance values; and so on , step N-1, apply an AC voltage with an amplitude of V on the electrode N-1, and the other N-1 electrodes are all grounded or kept at the same potential as the ground, and a total capacitance of electrode N-1 and electrode N is measured . A total of N*(N-1)/2 independently measured capacitance change values are obtained. For example, ΔC i,j is the capacitance variation between the electrode pair ij (i≠j, 1≤j≤N).

步骤二:首先通过线性变换将测量的电容值进行预处理,得到N*(N-1)/2个独立测量电荷变化值。如Δqj k为第k次测量时第j个电极上的电荷变化量。Step 2: Firstly, the measured capacitance value is preprocessed by linear transformation to obtain N*(N-1)/2 independently measured charge change values. For example, Δq j k is the amount of charge change on the jth electrode during the kth measurement.

ΔqΔq 11 kk ΔqΔq 22 kk ΔqΔq 33 kk .. .. .. ΔqΔq NN kk == ΔCΔC 1,11,1 -- ΔCΔC 1,21,2 -- ΔCΔC 1,31,3 .. .. .. -- ΔCΔC 11 ,, NN -- ΔCΔC 2,12,1 ΔCΔC 2,22,2 -- ΔCΔC 2,32,3 .. .. .. -- ΔCΔC 22 ,, NN -- ΔCΔC 3,13,1 -- ΔCΔC 3,23,2 CC 3,33,3 .. .. .. -- ΔCΔC 33 ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. -- ΔCΔC NN ,, 11 -- ΔCΔC NN ,, 22 -- ΔCΔC NN ,, 33 .. .. .. ΔCΔC NN ,, NN VV 11 kk VV 22 kk VV 33 kk .. .. .. VV NN kk -- -- -- (( 11 ))

其中, Δ C i , i = Σ j = 1 , j ≠ i N Δ C i , j 是第i个电极上的自身电容变化量,ΔCi,j是电极对i-j(i≠j)之间的电容变化量。Vj k为第k次测量时第j(1≤j≤N)个电极上虚拟施加的电压,满足in, Δ C i , i = Σ j = 1 , j ≠ i N Δ C i , j is the capacitance variation on the i-th electrode, and ΔC i,j is the capacitance variation between the electrode pair ij (i≠j). V j k is the virtual applied voltage on the jth (1≤j≤N) electrode during the kth measurement, satisfying

VV jj kk == coscos (( kk jj NN 22 ππ )) ,, kk == 11 .. .. .. NN // 22 sinsin (( (( kk -- NN // 22 )) jj NN 22 ππ )) ,, kk == NN // 22 ++ 11 .. .. .. NN -- 11 -- -- -- (( 22 ))

步骤三:计算离散电极的散射变换t(s)Step 3: Calculate the scattering transformation t(s) of the discrete electrodes

tt (( sthe s )) == ΔθΔθ AA ΣΣ mm == 11 NN 22 aa mm (( sthe s ‾‾ )) ΣΣ nno == 11 NN 22 aa nno (( sthe s )) ΣΣ jj == 11 NN [[ ee -- imim θθ jj (( ΔΔ qq jj nno ++ IΔIΔ qq jj nno ++ NN // 22 )) ]] -- -- -- (( 33 ))

其中,A表示电极的面积, Δq j n = A ( Λ ϵ - Λ 1 ) V j n 表示第k次测量时第j个电极上产生的电荷变化量。 a n ( s ) = ( is ) n n ! , a m ( s ‾ ) = ( i s ‾ ) m m ! , s表示复数s=s1+Is2的共轭函数, I = - 1 , s1和s2均为实数。Among them, A represents the area of the electrode, Δq j no = A ( Λ ϵ - Λ 1 ) V j no Indicates the amount of charge change generated on the jth electrode during the kth measurement. a no ( the s ) = ( is ) no no ! , a m ( the s ‾ ) = ( i the s ‾ ) m m ! , s represents the conjugate function of the complex number s=s 1 +Is 2 , I = - 1 , Both s 1 and s 2 are real numbers.

步骤四:进行任一点介电常数变化量的重建Step 4: Reconstruct the variation of permittivity at any point

δϵδϵ (( xx ,, ythe y )) ≈≈ 11 22 ππ 22 ∫∫ ∫∫ RR 22 tt (( sthe s 11 ++ II sthe s 22 )) sthe s 11 22 ++ sthe s 22 22 ee II (( -- 22 sthe s 11 xx ++ 22 sthe s 22 ythe y )) dsds 11 dsds 22 -- -- -- (( 44 ))

其中,δε(x,y)为圆形区域由直角坐标系坐标(x,y)对应的位置上的介电常数变化值。上述图像重建方法中计算的理论推导是:Wherein, δε(x, y) is the change value of the dielectric constant at the position corresponding to the coordinate (x, y) of the rectangular coordinate system in the circular area. The theoretical derivation of the calculations in the above image reconstruction method is:

假设在区域Ω内,敏感场中电势

Figure G2009100799475D00046
满足的方程为:Assume that within the region Ω, the potential in the sensitive field
Figure G2009100799475D00046
The satisfied equation is:

Figure G2009100799475D00047
Figure G2009100799475D00047

其中z是一个代表位置(x,y)的复数,ε(z)和分别表示介电常数和电势的分布。where z is a complex number representing the position (x, y), ε(z) and are the distributions of permittivity and potential, respectively.

根据散度定理,有According to the divergence theorem, we have

== 00

其中,v(z)是L2勒贝格(Lebesgue)空间中任意的连续函数。ds代表在边界上的单位弧长。where v(z) is any continuous function in L 2 Lebesgue (Lebesgue) space. ds stands for at border The unit arc length on .

当区域Ω包含介电常数分布为ε(z)时,从边界电势到边界电流密度的映射可表示为:When the region Ω contains a dielectric constant distribution ε(z), the mapping from the boundary potential to the boundary current density can be expressed as:

Figure G2009100799475D000412
Figure G2009100799475D000412

特别地,当介电常数为一常数时,Λ1可表示为:In particular, when the dielectric constant is a constant, Λ1 can be expressed as:

Figure G2009100799475D000413
Figure G2009100799475D000413

对于一个包含扰动的介电常数ε=1+δε,且扰动仅发生在Ω范围内时,For a permittivity ε=1+δε including disturbance, and the disturbance only occurs in the range of Ω,

Figure G2009100799475D000414
Figure G2009100799475D000414

同时at the same time

Figure G2009100799475D00051
Figure G2009100799475D00051

且满足边界条件and satisfy the boundary conditions

Figure G2009100799475D00052
Figure G2009100799475D00052

如果假设在整个敏感场中满足If the assumption is satisfied in the entire sensitive field

Figure G2009100799475D00053
Figure G2009100799475D00053

用(9)减去(10)式可得:Subtract (10) from (9) to get:

即:Right now:

Figure G2009100799475D00055
Figure G2009100799475D00055

根据以上的分析,令

Figure G2009100799475D00056
v ( z ) = e i sz ‾ . 这里s=s1+is2是一个复数,s1和s2是实数。According to the above analysis, let
Figure G2009100799475D00056
v ( z ) = e i sz ‾ . Here s=s 1 +is 2 is a complex number, and s 1 and s 2 are real numbers.

将方程(14)的左边表示为t(s),即:Denote the left side of equation (14) as t(s), namely:

tt (( sthe s )) == ∫∫ ∂∂ ΩΩ ee ii szsz ‾‾ (( ΛΛ 11 ++ δϵδϵ -- ΛΛ 11 )) (( ee iszisz )) dzdz -- -- -- (( 1515 ))

整理成关于复数s=s1+is2的直角坐标系表示,有Organized into a Cartesian coordinate system representation about the complex number s=s 1 +is 2 , there is

tt (( sthe s )) ≈≈ -- 22 (( sthe s 11 22 ++ sthe s 22 22 )) ∫∫ ΩΩ δϵδϵ ee -- ii (( -- 22 sthe s 11 ,, 22 sthe s 22 )) ·&Center Dot; (( xx ,, ythe y )) dxdydxdy -- -- -- (( 1616 ))

通过Fourier逆变换,可以得到介电常数分布的变化量:Through the Fourier inverse transformation, the variation of the permittivity distribution can be obtained:

δϵδϵ (( xx ,, ythe y )) == δϵδϵ (( zz ))

≈≈ 11 22 ππ 22 ∫∫ ∫∫ RR 22 tt (( sthe s 11 ++ isis 22 )) sthe s 11 22 ++ sthe s 22 22 ee ii (( -- 22 sthe s 11 ,, 22 sthe s 22 )) ·&Center Dot; (( xx ,, ythe y )) dsds 11 dsds 22 -- -- -- (( 1717 ))

可以证明当δε(x,y)接近零时,通过δε(x,y)重建的误差也接近于零。It can be shown that when δε(x, y) approaches zero, the error reconstructed by δε(x, y) also approaches zero.

3、优点及功效:针对圆形测量区域,克服传统算法须计算灵敏度矩阵且无法独立计算部分区域重建结果的局限性,根据电容测量值直接实现图像重建,且可以只对部分区域直接进行图像重建。3. Advantages and efficacy: For circular measurement areas, it overcomes the limitations of traditional algorithms that need to calculate the sensitivity matrix and cannot independently calculate the reconstruction results of some areas, and directly realizes image reconstruction according to the capacitance measurement value, and can only directly perform image reconstruction on some areas .

(四)附图说明(4) Description of drawings

图1.本发明中实施采用的圆形传感器示意图Fig. 1. The schematic diagram of the circular sensor implemented in the present invention

图2.U型仿真模型示意图Figure 2. Schematic diagram of U-shaped simulation model

图3.U型仿真模型的重建结果示意图Figure 3. Schematic diagram of the reconstruction results of the U-shaped simulation model

图中符好说明如下:The symbols in the figure are explained as follows:

1金属管层  2绝缘物质层  3电极1 metal tube layer 2 insulating material layer 3 electrodes

(五)具体实施方式(5) Specific implementation methods

在本发明的方法进行图像重建的过程中,所应用的传感器如附图1所示,它主要由三层结构组成,其外层为起结构固定和屏蔽作用的金属管层1,中间结构层为绝缘物质层2,内部结构层3为附着在绝缘物质层2上实现电阻抗实部和虚部的同步测量的N个电极,所述电极均匀分布在同一圆周上,在相邻电极间相互绝缘。In the process of image reconstruction in the method of the present invention, the applied sensor is as shown in accompanying drawing 1, and it mainly is made up of three-layer structure, and its outer layer is the metal tube layer 1 that plays structural fixation and shielding effect, and middle structural layer It is an insulating material layer 2, and the internal structure layer 3 is N electrodes attached to the insulating material layer 2 to realize the synchronous measurement of the real part and the imaginary part of the electrical impedance. insulation.

本发明是一种基于圆形传感器的电容层析成像的图像重建直接方法,包括下列具体操作步骤:The present invention is a direct image reconstruction method based on electrical capacitance tomography of a circular sensor, comprising the following specific operation steps:

步骤一:对于同一截面上具有N个电极的ECT传感器,将N个电极逆时针标号为电极i(1≤i≤N),采用传统的1-by-1激励测量模式,即,一次测量过程中,包括N-1个动作。第1步,电极1上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极1分别与电极2到N共N-1个电容值;第2步,电极2上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极2分别与电极3到N共N-2个电容值;第3步,电极3上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极3分别与电极4到N共N-3个电容值;以此类推,第N-1步,电极N-1上施加幅值为V的交流电压,其余N-1个电极均接地或与地保持同电位,测量得到电极N-1与电极N共1个电容值。共测量得到N*(N-1)/2个独立测量电容变化值。如ΔCi,j是电极对i-j(i≠j,1≤j≤N)之间的电容变化量。Step 1: For an ECT sensor with N electrodes on the same section, label the N electrodes counterclockwise as electrode i (1≤i≤N), and adopt the traditional 1-by-1 excitation measurement mode, that is, one measurement process , including N-1 actions. In the first step, an AC voltage with an amplitude of V is applied to electrode 1, and the other N-1 electrodes are grounded or kept at the same potential as the ground, and N-1 capacitance values are obtained from electrode 1 and electrodes 2 to N respectively; Step 2, apply an AC voltage with an amplitude of V on electrode 2, and the other N-1 electrodes are all grounded or kept at the same potential as the ground, and N-2 capacitance values are obtained from electrode 2 and electrodes 3 to N respectively; the third Step 1: Apply an AC voltage with an amplitude of V on the electrode 3, and the other N-1 electrodes are all grounded or kept at the same potential as the ground, and the measured electrode 3 and electrodes 4 to N have a total of N-3 capacitance values; and so on , step N-1, apply an AC voltage with an amplitude of V on the electrode N-1, and the other N-1 electrodes are all grounded or kept at the same potential as the ground, and a total capacitance of electrode N-1 and electrode N is measured . A total of N*(N-1)/2 independently measured capacitance change values are obtained. For example, ΔC i,j is the capacitance variation between the electrode pair ij (i≠j, 1≤j≤N).

步骤二:首先通过线性变换将测量的电容值进行预处理,得到N*(N-1)/2个独立测量电荷变化值。如Δqj k为第k次测量时第j个电极上的电荷变化量。Step 2: Firstly, the measured capacitance value is preprocessed by linear transformation to obtain N*(N-1)/2 independently measured charge change values. For example, Δq j k is the amount of charge change on the jth electrode during the kth measurement.

ΔqΔq 11 kk ΔqΔq 22 kk ΔqΔq 33 kk .. .. .. ΔqΔq NN kk == ΔCΔC 1,11,1 -- ΔCΔC 1,21,2 -- ΔCΔC 1,31,3 .. .. .. -- ΔCΔC 11 ,, NN -- ΔCΔC 2,12,1 ΔCΔC 2,22,2 -- ΔCΔC 2,32,3 .. .. .. -- ΔCΔC 22 ,, NN -- ΔCΔC 3,13,1 -- ΔCΔC 3,23,2 CC 3,33,3 .. .. .. -- ΔCΔC 33 ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. -- ΔCΔC NN ,, 11 -- ΔCΔC NN ,, 22 -- ΔCΔC NN ,, 33 .. .. .. ΔCΔC NN ,, NN VV 11 kk VV 22 kk VV 33 kk .. .. .. VV NN kk -- -- -- (( 11 ))

其中, Δ C i , i = Σ j = 1 , j ≠ i N Δ C i , j 是第i个电极上的自身电容变化量,ΔCi,j是电极对i-j(i≠j)之间的电容变化量。Vj k为第k次测量时第j(1≤j≤N)个电极上虚拟施加的电压,满足in, Δ C i , i = Σ j = 1 , j ≠ i N Δ C i , j is the capacitance variation on the i-th electrode, and ΔC i,j is the capacitance variation between the electrode pair ij (i≠j). V j k is the virtual applied voltage on the jth (1≤j≤N) electrode during the kth measurement, satisfying

VV jj kk == coscos (( kk jj NN 22 ππ )) ,, kk == 11 .. .. .. NN // 22 sinsin (( (( kk -- NN // 22 )) jj NN 22 ππ )) ,, kk == NN // 22 ++ 11 .. .. .. NN -- 11 -- -- -- (( 22 ))

步骤三:计算离散电极的散射变换t(s)Step 3: Calculate the scattering transformation t(s) of the discrete electrodes

tt (( sthe s )) == ΔθΔθ AA ΣΣ mm == 11 NN 22 aa mm (( sthe s ‾‾ )) ΣΣ nno == 11 NN 22 aa nno (( sthe s )) ΣΣ jj == 11 NN [[ ee -- imim θθ ii (( ΔΔ qq jj nno ++ IΔIΔ qq jj nno ++ NN // 22 )) ]] -- -- -- (( 33 ))

其中,A表示电极的面积, Δq j n = A ( Λ ϵ - Λ 1 ) V j n 表示第k次测量时第j个电极上产生的电荷变化量。 a n ( s ) = ( is ) n n ! , a m ( s ‾ ) = ( i s ‾ ) m m ! , s表示复数s=s1+Is2的共轭函数, I = - 1 , s1和s2均为实数。Among them, A represents the area of the electrode, Δq j no = A ( Λ ϵ - Λ 1 ) V j no Indicates the amount of charge change generated on the jth electrode during the kth measurement. a no ( the s ) = ( is ) no no ! , a m ( the s ‾ ) = ( i the s ‾ ) m m ! , s represents the conjugate function of the complex number s=s 1 +Is 2 , I = - 1 , Both s 1 and s 2 are real numbers.

步骤四:进行任一点介电常数变化量的重建Step 4: Reconstruct the variation of permittivity at any point

δϵδϵ (( xx ,, ythe y )) ≈≈ 11 22 ππ 22 ∫∫ ∫∫ RR 22 tt (( sthe s 11 ++ II sthe s 22 )) sthe s 11 22 ++ sthe s 22 22 ee II (( -- 22 sthe s 11 xx ++ 22 sthe s 22 ythe y )) dsds 11 dsds 22 -- -- -- (( 44 ))

其中,δε(x,y)为圆形区域由直角坐标系坐标(x,y)对应的位置上的介电常数变化值。Wherein, δε(x, y) is the change value of the dielectric constant at the position corresponding to the coordinate (x, y) of the rectangular coordinate system in the circular area.

用数值仿真来评估这种新方法。考虑一种U型区域的介电常数分布模型,由附图2示。白色区域的介电常数等于1(代表空气),黑色区域等于3(代表油)。Numerical simulations are used to evaluate this new method. Consider a dielectric constant distribution model of a U-shaped region, as shown in Figure 2. The dielectric constant of the white area is equal to 1 (representing air), and the black area is equal to 3 (representing oil).

用参数r和θ表示的极坐标中,方程(4)可以写成In polar coordinates expressed with parameters r and θ, equation (4) can be written as

δϵδϵ (( xx ,, ythe y ))

≈≈ 11 22 ππ 22 ∫∫ ∫∫ RR 22 tt (( sthe s 11 ++ isis 22 )) sthe s 11 22 ++ sthe s 22 22 ee ii (( -- 22 sthe s 11 ,, 22 sthe s 22 )) ·· (( xx ,, ythe y )) dsds 11 dsds 22 -- -- -- (( 55 ))

== 11 22 ππ 22 ∫∫ 00 RR 00 ∫∫ -- ππ ππ tt (( rere iθiθ )) rr ee ii (( -- 22 rr coscos θθ ,, 22 rr sinsin θθ )) ·· (( xx ,, ythe y )) dθdrdθdr

其中,R0是用于数值积分的区域半径,可选为5倍的管道半径。用高斯-勒让得求积公式得到δε(x,y)。附图2中模型的重建图像如附图3所示。where R0 is the region radius used for numerical integration, optionally 5 times the pipe radius. Use the Gauss-Legend quadrature formula to get δε(x, y). The reconstructed image of the model in Figure 2 is shown in Figure 3.

比较附图2和附图3,可以看出本发明中的新图像重建方法在这种情况下有很好的图像重建结果。在实施上面提出的算法过程中,主要计算任务是计算二重数值积分。可采用高斯-勒让得积分,由于权重方程和高斯点的位置可以预先确定,因此该算法具有很好的实时性能。Comparing the accompanying drawings 2 and 3, it can be seen that the new image reconstruction method of the present invention has very good image reconstruction results in this case. During the implementation of the algorithm presented above, the main computational task is to calculate the double numerical integral. Gaussian-Legendre integral can be used, because the weight equation and the position of Gaussian points can be determined in advance, so the algorithm has good real-time performance.

Claims (1)

1. A direct image reconstruction method based on the capacitance tomography of a circular sensor is characterized in that: the method comprises the following specific operation steps:
the method comprises the following steps: for a capacitance tomography sensor with N electrodes on the same section, the N electrodes are marked as an electrode i (i is more than or equal to 1 and less than or equal to N) in a counterclockwise way, and a traditional excitation measurement mode is adopted, namely N-1 actions are included in one scanning process; step 1, applying an AC voltage with an amplitude V to the electrode 1, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring the electrode 1 and the electrodes 2 to N together1 capacitance value; step 2, applying alternating voltage with the amplitude V to the electrode 2, grounding the other N-1 electrodes or keeping the same potential with the ground, and measuring the N-2 capacitance values of the electrode 2 and the electrodes 3 to N respectively; step 3, applying alternating voltage with the amplitude of V to the electrode 3, grounding the rest N-1 electrodes or keeping the same potential with the ground, and measuring the N-3 capacitance values of the electrode 3 and the electrodes 4 to N respectively; in the same way, in the step N-1, an alternating voltage with the amplitude V is applied to the electrode N-1, the rest N-1 electrodes are grounded or keep the same potential with the ground, 1 capacitance value is obtained by measuring the electrode N-1 and the electrode N, and the capacitance change values of N x (N-1)/2 independent measurement capacitances, such as delta C, are obtained by measuring in totali,jIs the capacitance variation between electrode pairs i-j (i is not equal to j, j is more than or equal to 1 and less than or equal to N);
step two: the measured capacitance values are first pre-processed by linear transformation to yield N x (N-1)/2 independently measured charge changes, e.g.
Figure FSB00000466667500011
The change amount of the charge on the jth electrode in the kth measurement;
<math><mrow><mfenced open='[' close=']'><mtable><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mi>&Delta;</mi><msubsup><mi>q</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mi>&Delta;</mi><msub><mi>C</mi><mn>1,1</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>1,2</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>1,3</mn></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mn>1</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>2,1</mn></msub></mtd><mtd><mi>&Delta;</mi><msub><mi>C</mi><mn>2,2</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>2,3</mn></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mn>2</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>3,1</mn></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mn>3,2</mn></msub></mtd><mtd><msub><mi>C</mi><mn>3,3</mn></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mn>3</mn><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mn>1</mn></mrow></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mn>2</mn></mrow></msub></mtd><mtd><mo>-</mo><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mn>3</mn></mrow></msub></mtd><mtd><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo></mtd><mtd><mi>&Delta;</mi><msub><mi>C</mi><mrow><mi>N</mi><mo>,</mo><mi>N</mi></mrow></msub></mtd></mtr></mtable></mfenced><mfenced open='[' close=']'><mtable><mtr><mtd><msubsup><mi>V</mi><mn>1</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mn>2</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mn>3</mn><mi>k</mi></msubsup></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><mo>&CenterDot;</mo></mtd></mtr><mtr><mtd><msubsup><mi>V</mi><mi>N</mi><mi>k</mi></msubsup></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure FSB00000466667500013
is the change of self capacitance, Δ C, on the ith electrodei,jIs the capacitance variation between electrode pairs i-j (i ≠ j);
Figure FSB00000466667500014
the voltage virtually applied to the jth (j is more than or equal to 1 and less than or equal to N) electrode during the kth measurement is satisfied
<math><mrow><msubsup><mi>V</mi><mi>j</mi><mi>k</mi></msubsup><mo>=</mo><mfenced open='{' close=''><mtable><mtr><mtd><mi>cos</mi><mrow><mo>(</mo><mi>k</mi><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mn>1</mn><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mi>N</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>sin</mi><mrow><mo>(</mo><mrow><mo>(</mo><mi>k</mi><mo>-</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mfrac><mi>j</mi><mi>N</mi></mfrac><mn>2</mn><mi>&pi;</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd><mi>k</mi><mo>=</mo><mi>N</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mo>&CenterDot;</mo><mi>N</mi><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
Step three: calculating the Scattering transform t(s) of discrete electrodes
<math><mrow><mi>t</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mi>&Delta;&theta;</mi><mi>A</mi></mfrac><munderover><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>m</mi></msub><mrow><mo>(</mo><mover><mi>s</mi><mo>&OverBar;</mo></mover><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mfrac><mi>N</mi><mn>2</mn></mfrac></munderover><msub><mi>a</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><munderover><mi>&Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mo>[</mo><msup><mi>e</mi><mrow><mo>-</mo><mi>im</mi><msub><mi>&theta;</mi><mi>j</mi></msub></mrow></msup><mrow><mo>(</mo><mi>&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mi>n</mi></msubsup><mo>+</mo><mi>I&Delta;</mi><msubsup><mi>q</mi><mi>j</mi><mrow><mi>n</mi><mo>+</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mo>]</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math>
Wherein A represents the area of the electrode,representing the amount of change in charge generated at the jth electrode at the nth measurement;
Figure FSB00000466667500025
Figure FSB00000466667500026
to representA complex number s ═ s1+Is2The function of the conjugate of (a) to (b),
Figure FSB00000466667500027
s1and s2Are all real numbers;
step four: reconstructing the variation of dielectric constant of any point
<math><mrow><mi>&delta;&epsiv;</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>&ap;</mo><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>&pi;</mi><mn>2</mn></msup></mrow></mfrac><msub><mrow><mo>&Integral;</mo><mo>&Integral;</mo></mrow><msup><mi>R</mi><mn>2</mn></msup></msub><mfrac><mrow><mi>t</mi><mrow><mo>(</mo><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><mi>I</mi><msub><mi>s</mi><mn>2</mn></msub><mo>)</mo></mrow></mrow><mrow><msubsup><mi>s</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>s</mi><mn>2</mn><mn>2</mn></msubsup></mrow></mfrac><msup><mi>e</mi><mrow><mi>I</mi><mrow><mo>(</mo><mo>-</mo><mn>2</mn><msub><mi>s</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><mn>2</mn><msub><mi>s</mi><mn>2</mn></msub><mi>y</mi><mo>)</mo></mrow></mrow></msup><msub><mi>ds</mi><mn>1</mn></msub><msub><mi>ds</mi><mn>2</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
Where δ ∈ (x, y) is a dielectric constant change value at a position of the circular region corresponding to the rectangular coordinate system coordinate (x, y).
CN2009100799475A 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor Active CN101520478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100799475A CN101520478B (en) 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100799475A CN101520478B (en) 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor

Publications (2)

Publication Number Publication Date
CN101520478A CN101520478A (en) 2009-09-02
CN101520478B true CN101520478B (en) 2011-08-17

Family

ID=41081172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100799475A Active CN101520478B (en) 2009-03-13 2009-03-13 Direct image reconstruction method based on capacitance tomography of round sensor

Country Status (1)

Country Link
CN (1) CN101520478B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163404B (en) * 2013-02-01 2015-07-15 北京航空航天大学 Current-voltage mapping construction method based on adjacent stimulus measurement model
CN103116101B (en) * 2013-02-01 2015-07-01 北京航空航天大学 Adjacent excitation measurement mode based voltage-current mapping construction method
CN103454318B (en) * 2013-09-13 2015-06-24 天津大学 Electrical capacitance tomography sensor with double-layer rotating electrode
CN103776873B (en) * 2014-02-18 2016-04-06 北京航空航天大学 A kind of method mapped by voltage-to-current map construction current-voltage
CN104614010B (en) * 2015-02-16 2017-01-25 天津大学 Method of Constructing Sensitivity Matrix Based on Ultrasonic Focus Perturbation Information
CN106596658A (en) * 2015-10-14 2017-04-26 上海海洋大学 Multiphase flow capacitance normalization method used for electrical capacitance tomography
CN106296766B (en) * 2016-08-03 2019-01-25 清华大学深圳研究生院 A kind of image reconstructing method of the capacitance chromatography imaging based on ROF model
CN107091858B (en) * 2017-03-27 2020-02-14 北京航空航天大学 Method for constructing voltage-current mapping from current-voltage mapping
CN107860800A (en) * 2017-09-21 2018-03-30 山东省科学院海洋仪器仪表研究所 A kind of capacitance chromatography imaging method for bubble flow
CN108333434B (en) * 2018-01-31 2020-08-18 北京航空航天大学 A Split-Program Parallel Structure Capacitance Array Measuring Circuit
CN109934885B (en) * 2019-02-28 2023-02-03 河南师范大学 Electrical resistance tomography image reconstruction method with sharp edge preservation
CN110207862B (en) * 2019-05-28 2020-07-03 北京航空航天大学 Tactile pressure sensor and signal acquisition method based on electrical impedance tomography
CN110501587B (en) * 2019-08-09 2021-06-11 北京航空航天大学 Radon inverse transformation capacitance tomography method based on power line distribution
CN111061399B (en) * 2019-12-31 2021-10-26 北京航空航天大学 Method for processing capacitance signal based on iterative algorithm and applying capacitance signal to touch screen positioning
CN111077193B (en) * 2019-12-31 2021-10-22 北京航空航天大学 A capacitive sensor and an imaging positioning method for processing its capacitive signal
CN111596172B (en) * 2020-05-29 2022-05-20 天津大学 High-voltage alternating-current cable defect online positioning method based on induced charge tomography
CN111999564A (en) * 2020-08-07 2020-11-27 云南电网有限责任公司电力科学研究院 Calculation method and calculation device of internal dielectric constant value of cable accessories
CN112068179A (en) * 2020-08-13 2020-12-11 南昌大学 Positron imaging method based on Leeberg sampling
CN115201272B (en) * 2022-07-26 2024-08-27 重庆大学 A design method for ERT-ECT dual-modality composite electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314373B1 (en) * 1996-11-27 2001-11-06 Forschungszentrum Rossendorf E.V. Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
CN1854726A (en) * 2004-06-29 2006-11-01 西安交通大学 Two-phase fluid grid and capacitor chromatography imaging method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6314373B1 (en) * 1996-11-27 2001-11-06 Forschungszentrum Rossendorf E.V. Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
CN1854726A (en) * 2004-06-29 2006-11-01 西安交通大学 Two-phase fluid grid and capacitor chromatography imaging method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
朱小菲.12电极ECT数据采集系统的设计.《信息技术》.2008,(第5期),143-154. *
阎润生等.电容层析成像算法的比较.《仪器仪表学报》.2004,第25卷(第4期),619-620. *
高彦丽等.电容层析成像技术中图像重建算法的发展及研究.《传感器与微系统》.2007,第26卷(第10期),9-14. *

Also Published As

Publication number Publication date
CN101520478A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
CN101520478B (en) Direct image reconstruction method based on capacitance tomography of round sensor
Ren et al. Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography
CN107369187B (en) Electricity tomography regularization reconstruction method based on adjoint point variation sum
CN108711178B (en) Capacitance tomography image reconstruction method based on closed-loop control principle
Cao et al. Electrical capacitance tomography for sensors of square cross sections using Calderon's method
CN103462605A (en) Biological electrical impedance tomography method
CN109035352A (en) L1-L2 spatially adaptive electricity tomography regularization reconstruction method
CN101794453A (en) Reconstruction method of node mapping image based on regression analysis
Zhang et al. Image reconstruction of planar electrical capacitance tomography based on DBSCAN and self-adaptive ADMM algorithm
CN108376124B (en) A Fast Calculation Method for Admittance Matrix of Multi-conductor System for Electrical Imaging
Zhang et al. A numerical computation forward problem model of electrical impedance tomography based on generalized finite element method
Zhao et al. An Lq–Lp optimization framework for image reconstruction of electrical resistance tomography
CN104535294B (en) Corrected L-curve electrical tomography reconstruction method based on second-order differential
CN104574462B (en) A kind of improvement L-curve electricity tomographic reconstruction method based on curvature estimation
CN103065286A (en) Image reconstruction method in quasi-static electrical impedance imaging
CN102961137A (en) Electric impedance tomography method of brain based on layered reconstruction
CN109118553A (en) Electrical impedance tomography content Boundary Reconstruction method based on geometric constraints
Liang et al. Coplanar electrical/ultrasonic dual-modality tomography for water continuous gas/oil/water three-phase distribution imaging
CN105701824A (en) Electrical tomographic image reconstruction method based on circular-arc grid subdivision
Zhu et al. Simultaneous reconstruction of conductivity and permittivity in electrical impedance tomography
Yang et al. An accurate position measurement approach for a single particle in a channel using electrical impedance spectroscopy
Song et al. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution
Zhang Image reconstruction algorithm for electrical impedance tomography using updated sensitivity matrix
Song et al. An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography
CN111999564A (en) Calculation method and calculation device of internal dielectric constant value of cable accessories

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant