CN101517498A - 模型预测控制器解分析过程 - Google Patents

模型预测控制器解分析过程 Download PDF

Info

Publication number
CN101517498A
CN101517498A CNA2007800348056A CN200780034805A CN101517498A CN 101517498 A CN101517498 A CN 101517498A CN A2007800348056 A CNA2007800348056 A CN A2007800348056A CN 200780034805 A CN200780034805 A CN 200780034805A CN 101517498 A CN101517498 A CN 101517498A
Authority
CN
China
Prior art keywords
variable
constraint
matrix
unrestricted
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800348056A
Other languages
English (en)
Inventor
T·J·彼得森
A·R·普努鲁
K·F·埃米希霍尔茨
R·K·旺
D·巴雷特-佩顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Publication of CN101517498A publication Critical patent/CN101517498A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明涉及模型预测控制器解分析过程。通过为操作者提供与改变控制器限制对MPC控制器解的影响相关的定量输入来分析和描述来自多变量预测控制器(MPC)的解。所述信息允许操作者对改变的迅速响应和更优化的过程操作。

Description

模型预测控制器解分析过程
技术领域
本发明涉及控制系统,更具体而言,涉及将过程的动态和稳态行为向更优化的操作条件驱动的方法。
背景技术
多变量预测控制算法,例如来自Aspen Technologies,Inc的的DMCplusTM或来自Honeywell International Inc的RMPCT为计算的组合以将过程的动态和稳态行为向更优化的操作条件驱动。在控制方案中使用的稳态算法最普遍为线性规划(LP),但有时是二次规划(QP)。对于小的问题,理解LP和QP解相对而言是简单的。二维问题可以在纸上直观化并演示给操作者以获得对过程的理解。通过某些详细的建模背景,工程师和受过良好训练的操作者可以理解中等大小的问题(小于10维)。然而,更大、更交互的问题通常需要离线模拟。这可能需要花费大量时间来获得即使是定性的理解。
典型地,多变量预测控制器(MPC)的操作者可以观察当前的约束并可以访问过程的开环模型。然而,为全面理解约束组解除(relief),操作者将需要对过程模型的详细了解和根据模型跟踪独立和依赖关系的能力。为此,需要离线模拟或分析工具。否则,操作者不能了解要改变约束多少或接下来哪一个约束变为有效。
用于离线模拟的一个构思为使用在其中以约束的受控变量(CV)互换无约束操纵变量(MV)的矩阵枢转(pivot)。约束变得“独立”,并且无约束变量变得“依赖”。矩阵枢转可以被符号化为如下:
y 1 y 2 = A B C D x 1 x 2
x 1 y 2 = A - 1 - A - 1 B C A - 1 D - C A - 1 B y 1 x 2
然而,该方法不能提供关于操作者改变多少将影响控制器解的定量解答。
需要能够实时地分析任何大小的过去或当前动态矩阵控制(DMC)解的简单效用,以便为操作者提供用于DMC控制器约束解除的有意义的、定量的指令。
发明内容
本发明的实施例的方面涉及一种分析和描述来自MPC的解的方法,所述方法可以为操作者提供关于在MPC解中改变控制器限制的定量输入。
本发明的实施例的另一方面涉及使用所述方法来提供控制系统的操作者可以即刻可得的、可访问的、以及理解的信息。
本发明涉及一种分析来自多变量预测控制器的解的方法,包括从多变量预测控制器获得解,所述预测控制器具有导致了不同的变量约束状态的稳态优化器,其中所述解包括通过操纵变量预测的受控变量;以及对所述解进行操作以获得约束变量与无约束变量之间的关系,从而确定无约束变量如何响应约束变量的改变。所述解可以以矩阵的形式表示。
本发明还涉及一种用于过程设备的控制系统操作方法,包括:从包括与所述过程相关的操纵变量和受控变量的基础模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵。通过有效(active)约束条件分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件。基于所述有效约束条件分类计算每一个变量的可能的移动量。基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示。通过在所述模型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵,从而形成所述结果矩阵。使用所述结果矩阵和所述可能的移动量来计算所述无约束变量对所述约束变量的改变的响应。
本发明还涉及一种过程的控制系统,包括:存储装置,存储基础模型文件,所述基础模型文件包括与所述过程相关的操纵变量和受控变量;以及与所述存储装置相关的控制器,其从所述基础模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵。所述控制器通过下述步骤使用优化解来描述无约束变量如何响应约束变量的改变,所述步骤为:通过有效约束条件分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件;基于所述有效约束条件分类计算每一个变量的可能的移动量;基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示;使用所述模型矩阵从所述操纵变量预测受控变量;通过在所述模型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵来形成所述结果矩阵;以及使用所述结果矩阵和所述可能的移动量计算所述无约束变量对所述约束变量的改变的响应。
当与详细的描述和附图结合时,本发明的这些和其他方面将变得显而易见。
附图说明
现在将结合附图描述本发明,其中:
图1是示出了根据本发明的过程的基本步骤的流程图。
具体实施方式
在这里描述的本发明的优选实施例涉及动态矩阵控制器(DMC)。然而,本发明旨在更广泛地应用到一般的多变量预测控制器(MPC)以及其中希望在各种应用中优化过程限制的控制方案。
这里使用的术语操作者旨在表示任何终端用户。例如,终端用户可以为操作者、过程工程师、值班班长(shift lead)、控制工程师、或管理者。
为了示范本发明的基本功能性,提出一个简单的问题。以最简单的形式,提供用于DMC控制器的约束敏感性分析工具,其不具有变换、斜坡(ramp)、最小移动MV。基本功能包括约束变量分析,其确定在下一个约束变得有效之前约束可以被移动多少,并识别下一个约束。还完成无约束变量分析,其确定哪些约束正使控制器向上(或向下)移动某些无约束变量(例如,进给量(feed)),并确定所有有效约束对该变量的敏感性(闭环增益)。完成不可行性分析,其确定可以移动哪些约束变量以及移动多少以便使解变得可行。测试或基于Excel的界面将用于分析结果。图形用户界面是有效的。
为了增加分析更复杂问题的能力,提供MV的自动识别和计算和CV变换,并将结果并入到分析中。此外,可以启动下列能力:识别并处理最小移动MV的能力、识别并处理斜坡变量和斜坡连接关系(ramp-linkedrelationship)的能力、可用的约束解除机制的经济优先级、处理外部目标的能力、通过优先级分类分析不可行性的能力、用循环配对的图形描述(无约束的MV对约束CV)表达解的能力、以及从历史数据单步调试(stepthrough)顺序解的能力。该技术将用于组合应用,在所述组合应用中一个优化函数用于多个组合的控制器。GUI和超文本标记语言(HTML)界面是可能的。
在最高级别,工具还将提供识别和解释QP目标函数的能力,提供分析多个分级组用于解除不可行性的能力,提供分析和并入有效增益倍增因子的能力。还可以提供链接到商业数据库,例如,
Figure A20078003480500091
的AspenWatch或Honeywell International Inc.的Process History Database。
更具体而言,参考图1的流程图,本发明完成的过程开始于以向操作者提供与变量有关的信息。第一步骤为从文件或数据库读取控制器定义。这提供了操纵、前馈和受控变量的数目和名称。接下来,读入模型文件并为每一个独立(MV或前馈)-依赖(CV)变量对提取模型“增益”。通常,模型是动态的,所以仅仅使用模型的稳态部分(即,增益)用于该计算。在过程的变化中,模型可以为非线性控制器中的变量之间的线性化关系。模型也可以为实时优化问题中的变量之间的线性化关系。
下面以4MV X 7CV矩阵示出了MV与CV之间的稳态响应的实例。
  CV1   CV2   CV3   CV4   CV5   CV6   CV7
  MV1   G11   G12   G13   G14   G15   G16   G17
  MV2   G21   G22   G23   G24   G25   G26   G27
  MV3   G31   G32   G33   G34   G35   G36   G37
  MV4   G41   G42   G43   G44   G45   G46   G47
读入所有变量的目标值和约束状态,并将变量分类为约束和无约束的。将违背变量(violated variable)分类为无约束的,将非有效操纵变量分类为约束的。数据应该是一致的,即,全都来自相同的执行周期。可以从文件或从计算机数据库读取状态。数据可来自当前或历史上的控制器执行。
对于每一个变量,沿每一方向计算可允许的稳态移动(AM)直到达到下一个约束。对于所有变量完成该计算。该计算基于有效约束指示而变化。
对于无约束的变量,δ表示直到变量遇到约束之前的改变。例如,无约束变量在操作者高限制与操作者低限制之间。可允许的向上移动(AMup)等于操作者高限制(OPHIGH)减去稳态目标。这可以被表示为:
AM up=OPHIGH-稳态目标。
可允许的向下移动(AM down)等于稳态目标减去操作者低限制(OPLO)。这可以被表示为:
AM down=稳态目标-OPLO。
对于违背变量,δ被计算为直到变量变为可行之前的改变的量。例如,如果变量超过操作者高限制,
AM down=稳态目标-OPHIGH。
对约束变量,δ表示直到达到下一个约束之前的改变。例如,如果工程限制(工程Hi)是超过操作限制的下一个限制,那么,对于约束在操作者高限制的变量,
AM up=工程Hi-OPHIGH。
在计算可允许的稳态移动时,有可能单变量具有多组限制,包括例如,操作者、工程师、设备、安全、范围等等。用户可以选择或取消选择考虑哪些限制用于计算可允许的改变。例如,用户可以取消选择工程限制,并使用测量的范围计算可允许的移动。
接下来的步骤是创建约束变量对无约束变量(代替MV对CV)的影响的闭环矩阵。对于每一个无约束/违背变量,显示影响其的约束变量。这些是对选择的无约束变量具有非零矩阵元的约束。可以通过根据约束条件改变增益矩阵的阶来完成。向顶部移动无约束MV,向左边移动约束CV。产生的矩阵由四部分构成,包括:
(a)无约束MV到约束CV的模型;
(b)约束MV到约束CV的模型;
(c)无约束MV到无约束CV的模型;
(d)约束MV到无约束CV的模型。
模型矩阵可以被象征性地显示为:
  CVC   CVU
  MVU   A   C
  MVC   B   D
代数地,从MV模型预测CV。
CVC=A*MVU+B*MVC
CVU=C*MVU+D*MVC
以矩阵的形式,关系如下:
CV C CV U = A B C D MV U MV C
如果等式是标量,其表示具有两个未知量的两个等式,可以互换已知量和未知量。可以以矩阵形式实现相同的等式,以如下互换或枢转约束CV与无约束MV。
MV U CV U A - 1 A - 1 B C A - 1 D - C A - 1 B CV C MV C
定性地,产生的公式和矩阵示出了无约束变量如何响应约束变量的改变,如下所示。
  MVU   CVU
  CVC   G枢转   ...
  MVC   ...   ...
枢转该实例矩阵以示出其中MV3、MV4、CV2、CV6被约束的形式。
  CV1   MV1   CV3   CV4   CV5   MV2   CV7
  CV2   GP11   GP12   GP13   GP14   GP15   GP16   GP17
  CV6   GP21   GP22   GP23   GP24   GP25   GP26   GP27
  MV3   GP31   GP32   GP33   GP34   GP35   GP36   GP37
  MV4   GP41   GP42   GP43   GP44   GP45   GP46   GP47
该矩阵中的每一个元表示对应于约束变量的单位改变的无约束变量的改变量。非常接近零的矩阵元被认为是零。
创建闭环矩阵的替代方式为模拟控制器并一次一个地以小量ε扰动每一个约束。对于每一个约束-无约束变量对,改变或无约束变量对ε的比率为闭环矩阵的增益。
结果为,对于每一个无约束/违背变量,显示了影响其的约束变量。然后使用该闭环矩阵中的信息来为操作者计算关于这样的总体三类信息的所有信息,该三类信息涉及上述的约束变量、无约束变量以及违背变量。
对于每一个约束i,过程可以计算直到达到另一约束之前沿两个方向其可以被移动多远(CMi)。移动的量和下一个约束被记录并显示用于操作者的使用。具体而言,可以找到约束i的可允许的移动(AM)的最小值和无约束变量j的可允许的移动(AMj)/闭环增益GPij的比率。使用该计算,使用正确的符号是很重要的。例如,如果计算约束可以向上移动多远,那么如果增益元为负则应该使用无约束变量的可允许的向下移动。
还可以计算每一个约束的限制弛豫(limit relaxation)值。通过将通常是来自计算本身的结果的约束的影子值(shadow value)乘以CM,即直到下一个约束之前的移动,来计算该值。还可以使用来自另一程序例如规划和调度或实时优化的影子值来代替来自控制器优化的影子值。
通过可以使用该工具可以获得下列目标的解。
对于约束分析,可以确定下列问题的答案。
●在另一约束变得有效之前,约束可以被改变多少?
●下一个有效约束是什么?
对于无约束变量分析,可以确定下列问题的答案。
●如果希望增加或减少变量,哪些约束影响改变?
●这些约束的敏感性(闭环增益)如何?
●基于可能的影响的幅度,或总的LP优化目标功能的成本,约束的优先级如何?
对于不可行性分析,可以确定下列问题的答案。
●为了使解变得可行,可以改变哪些变量,改变多少?
可以理解,本发明为操作者和工程师提供了关于改变控制器限制对MPC控制器解的影响的定量输入。在本发明之前,工程师仅仅通过进行多个离线MPC模拟才可以得到有关约束依赖和解除机制的信息。使所有操作者可以立刻得到、访问和理解这些信息可以允许对改变迅速响应并由此允许更优化的过程操作。
可以对这里所描述的本发明做出各种修改,可以在权利要求所限定的本发明的精神和范围内做出装置和方法的许多不同实施例,而不背离这样的精神和范围。旨在将包含在随附的说明书中的所有内容仅仅理解为示例性的而不是限制。

Claims (30)

1.一种分析来自多变量预测控制器的解的方法,包括:
从多变量预测控制器获得解,所述预测控制器具有导致不同的变量约束状态的稳态优化器,其中所述解包括从操纵变量预测的受控变量;以及
对所述解进行操作以获得约束变量与无约束变量之间的关系,从而确定无约束变量如何响应约束变量的改变。
2.根据权利要求1的方法,其中以矩阵表示所述解,并且对所述解的操作包括在所述矩阵中枢转所述约束的受控变量与所述无约束的操纵变量。
3.根据权利要求1的方法,其中通过模拟所述控制器并以预定的量扰动每一个约束形成的矩阵表示所述解,其中将无约束变量的改变与所述预定的量的比率限定为每一个约束和无约束变量对的增益。
4.根据权利要求1的方法,还包括:使用所述约束与无约束变量之间的关系来计算为达到无约束或约束变量的下一个约束,约束变量需要改变的量。
5.根据权利要求4的方法,还包括:为每一个变量确定一组限制并选择限制以用于计算所述改变的量。
6.根据权利要求1的方法,其中每一个变量具有限制,并且还包括计算每一个变量的限制弛豫的值。
7.根据权利要求1的方法,还包括:使用所述约束与无约束变量之间的关系来确定约束的改变可以影响无约束变量的程度。
8.根据权利要求1的方法,还包括:使用所述约束与无约束变量之间的关系来确定将违背变量的约束移动到可行性范围所需要的改变的量。
9.一种用于过程设备的控制系统操作方法,包括:
从包括与所述过程相关的操纵变量和受控变量的基础模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵;
通过有效约束条件分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件;
基于所述有效约束条件分类来计算每一个变量的可能的移动量;
基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示;
通过在所述模型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵来形成所述结果矩阵;以及
使用所述结果矩阵和所述可能的移动量来计算所述无约束变量对所述约束变量的改变的响应。
10.根据权利要求9的方法,其中计算无约束变量的可能的移动量产生操作者高限制、操作者低限制或步长限制。
11.根据权利要求9的方法,其中每一个变量具有限制组,并且计算所述可能的移动量包括从所述限制组中选择限制以用于所述计算。
12.根据权利要求9的方法,其中计算约束变量的可能的移动量包括确定接下来将达到哪一个约束条件。
13.根据权利要求9的方法,其中计算违背变量的可能的移动量包括确定什么移动将使所述变量返回到限制。
14.根据权利要求9的方法,其中改变所述增益矩阵的阶包括向所述矩阵的顶部移动无约束的操纵变量和向所述矩阵的左边移动约束的受控变量。
15.根据权利要求9的方法,其中改变所述增益矩阵的阶产生这样的矩阵,所述矩阵具有(i)无约束的操纵变量到约束的受控变量的模型,(ii)约束的操纵变量到约束的受控变量的模型,(iii)无约束的操纵变量到无约束的受控变量的模型,以及(iv)约束的操纵变量到无约束的受控变量的模型。
16.根据权利要求9的方法,其中使用所述结果矩阵包括确定在达到另一约束之前约束变量可以被改变多远。
17.根据权利要求9的方法,其中使用所述结果矩阵包括确定影响每一个无约束变量的所有约束变量。
18.根据权利要求9的方法,其中使用所述结果矩阵包括确定每一个约束的改变对于相关的无约束变量的影响有多大。
19.根据权利要求9的方法,其中使用所述结果矩阵包括为每一个约束计算实现可行性所必要的移动。
20.一种过程的控制系统,包括:
存储装置,存储基础模型文件,所述基础模型文件包括与所述过程相关的操纵变量和受控变量;以及
与所述存储装置相关的控制器,其从所述基础模型文件基于所述操纵变量与所述受控变量之间的稳态响应提取原始增益矩阵,其中所述控制器通过下述步骤使用优化解来描述无约束变量如何响应约束变量的改变:
通过有效约束条件来分类所述操纵变量和受控变量,其中所述分类基于约束条件、无约束条件或违背条件;
基于所述有效约束条件分类来计算每一个变量的可能的移动量;
基于所述有效约束条件改变所述增益矩阵的阶以获得优化解的模型矩阵表示;
通过在所述模型矩阵中枢转所述约束的受控变量与所述无约束的操纵变量形成结果矩阵来形成所述结果矩阵;以及
使用所述结果矩阵和所述可能的移动量来计算所述无约束变量对所述约束变量的改变的响应。
21.根据权利要求20的控制系统,其中所述控制器通过评估优化函数结果的可能改变来计算无约束变量的可能的移动量。
22.根据权利要求21的控制系统,其中所述优化函数结果为操作者高限制、操作者低限制或步长限制。
23.根据权利要求20的控制系统,其中所述控制器通过确定接下来将达到哪一个约束条件来计算约束变量的可能的移动量。
24.根据权利要求20的控制系统,其中所述控制器通过确定什么移动将使所述变量返回到限制来计算违背变量的可能的移动量。
25.根据权利要求20的控制系统,其中所述控制器通过向所述矩阵的顶部移动无约束的操纵变量并向所述矩阵的左边移动约束的受控变量来改变所述增益矩阵的阶。
26.根据权利要求20的控制系统,其中所述控制器改变所述增益矩阵的阶产生以这样的矩阵,所述矩阵具有(i)无约束的操纵变量到约束的受控变量的模型,(ii)约束的操纵变量到约束的受控变量的模型,(iii)无约束的操纵变量到无约束的受控变量的模型,以及(iv)约束的操纵变量到无约束的受控变量的模型。
27.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来确定在达到另一约束之前约束变量可以被改变多远。
28.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来确定影响每一个无约束变量的所有约束变量。
29.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来确定每一个约束的改变对于相关的无约束变量的影响有多大。
30.根据权利要求20的控制系统,其中所述控制器通过使用所述结果矩阵来为每一个约束计算实现可行性所必要的移动。
CNA2007800348056A 2006-09-22 2007-09-19 模型预测控制器解分析过程 Pending CN101517498A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/525,221 US7949417B2 (en) 2006-09-22 2006-09-22 Model predictive controller solution analysis process
US11/525,221 2006-09-22

Publications (1)

Publication Number Publication Date
CN101517498A true CN101517498A (zh) 2009-08-26

Family

ID=39086140

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800348056A Pending CN101517498A (zh) 2006-09-22 2007-09-19 模型预测控制器解分析过程

Country Status (8)

Country Link
US (1) US7949417B2 (zh)
EP (2) EP2064600B1 (zh)
JP (2) JP2010504590A (zh)
CN (1) CN101517498A (zh)
BR (1) BRPI0716856A2 (zh)
CA (1) CA2663695C (zh)
MY (1) MY145873A (zh)
WO (1) WO2008039346A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508436A (zh) * 2011-11-21 2012-06-20 湖南大学 机械手摩擦力动力学精确分析与控制应用方法
CN102707743A (zh) * 2012-05-30 2012-10-03 广东电网公司电力科学研究院 基于多变量预测控制的超超临界机组汽温控制方法及系统
CN106537270A (zh) * 2014-07-21 2017-03-22 霍尼韦尔国际公司 用于全厂范围控制和优化的级联模型预测控制(mpc)方法
CN109828459A (zh) * 2017-11-23 2019-05-31 中国科学院沈阳自动化研究所 一种基于多变量约束区间预测控制的平稳控制实现方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060010946A1 (en) * 2004-07-15 2006-01-19 Midwestern Bio-Ag Products & Services, Inc. Pelleted organic calcium phosphate compositions
US7797063B2 (en) * 2006-08-24 2010-09-14 Exxonmobil Research And Engineering Company Method for model gain matrix modification
US8046089B2 (en) * 2008-06-20 2011-10-25 Honeywell International Inc. Apparatus and method for model predictive control (MPC) of a nonlinear process
CA2751804C (en) * 2009-02-24 2016-12-06 Gestion Andre & Paquerette Ltee Method and system for limiting a dynamic parameter of a vehicle
US8155764B2 (en) * 2009-02-27 2012-04-10 Honeywell International Inc. Multivariable model predictive control for coalbed gas production
US9335042B2 (en) 2010-08-16 2016-05-10 Emerson Process Management Power & Water Solutions, Inc. Steam temperature control using dynamic matrix control
US9217565B2 (en) * 2010-08-16 2015-12-22 Emerson Process Management Power & Water Solutions, Inc. Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
US9447963B2 (en) 2010-08-16 2016-09-20 Emerson Process Management Power & Water Solutions, Inc. Dynamic tuning of dynamic matrix control of steam temperature
US8620705B2 (en) * 2010-09-21 2013-12-31 Exxonmobil Research And Engineering Company Method of connecting different layers of optimization
US8670945B2 (en) 2010-09-30 2014-03-11 Honeywell International Inc. Apparatus and method for product movement planning to support safety monitoring in inventory management systems
US9163828B2 (en) 2011-10-31 2015-10-20 Emerson Process Management Power & Water Solutions, Inc. Model-based load demand control
JP5969919B2 (ja) * 2012-12-28 2016-08-17 アズビル株式会社 最適化装置および方法ならびに制御装置および方法
US9727035B2 (en) * 2013-05-02 2017-08-08 Aspen Technology, Inc. Computer apparatus and method using model structure information of model predictive control
DK177915B1 (en) * 2013-05-28 2015-01-05 Core As Process control method
WO2017035377A1 (en) * 2015-08-26 2017-03-02 Lin And Associates History compare software
WO2017058843A1 (en) * 2015-10-02 2017-04-06 Exxonnmobil Research And Engineering Company Hydrocarbon processing analysis
RU2625051C1 (ru) 2016-02-18 2017-07-11 Акционерное общество "Лаборатория Касперского" Система и способ обнаружений аномалий в технологической системе
WO2017205238A1 (en) 2016-05-23 2017-11-30 Lin And Associates, Inc Dynamic progressive awareness
US11069102B2 (en) 2016-05-23 2021-07-20 Lin and Associates, Inc. Dynamic progressive awareness
US10190522B2 (en) * 2016-06-17 2019-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid partial and full step quadratic solver for model predictive control of diesel engine air path flow and methods of use
US11073804B2 (en) * 2017-11-07 2021-07-27 Exxonmobil Research & Engineering Company Interface between processing environment optimization layers

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US473631A (en) * 1892-04-26 loepere
US627889A (en) * 1897-11-19 1899-06-27 William James Asher Collar-shaping machine.
GB1583545A (en) 1976-08-04 1981-01-28 Martin Sanchez J Control systems
IL62597A (en) 1980-04-07 1984-03-30 Martin Sanchez Juan Adaptive-predictive control system
US4736316A (en) * 1986-08-06 1988-04-05 Chevron Research Company Minimum time, optimizing and stabilizing multivariable control method and system using a constraint associated control code
US5541833A (en) 1987-03-30 1996-07-30 The Foxboro Company Multivariable feedforward adaptive controller
US5043863A (en) 1987-03-30 1991-08-27 The Foxboro Company Multivariable adaptive feedforward controller
US4937763A (en) 1988-09-06 1990-06-26 E I International, Inc. Method of system state analysis
ATE143509T1 (de) 1990-06-21 1996-10-15 Honeywell Inc Auf variablem horizont basierende adaptive steuerung mit mitteln zur minimierung der betriebskosten
US5144549A (en) 1990-06-29 1992-09-01 Massachusetts Institute Of Technology Time delay controlled processes
JPH04309101A (ja) * 1991-04-08 1992-10-30 Toshiba Corp モデル予測制御の入力装置
US5260865A (en) 1991-04-01 1993-11-09 Beauford Martin H Nonlinear model based distillation control
US5343407A (en) 1991-11-01 1994-08-30 Phillips Petroleum Company Nonlinear model based distillation control
US5396416A (en) 1992-08-19 1995-03-07 Continental Controls, Inc. Multivariable process control method and apparatus
US5740033A (en) 1992-10-13 1998-04-14 The Dow Chemical Company Model predictive controller
US5351184A (en) 1993-01-26 1994-09-27 Honeywell Inc. Method of multivariable predictive control utilizing range control
CA2157198A1 (en) 1993-03-02 1994-09-15 James David Keeler Method and apparatus for analyzing a neural network within desired operating parameter constraints
US5825646A (en) 1993-03-02 1998-10-20 Pavilion Technologies, Inc. Method and apparatus for determining the sensitivity of inputs to a neural network on output parameters
US5457625A (en) 1994-04-13 1995-10-10 The M. W. Kellogg Company Maximizing process production rates using permanent constraints
US5519605A (en) 1994-10-24 1996-05-21 Olin Corporation Model predictive control apparatus and method
US5568378A (en) 1994-10-24 1996-10-22 Fisher-Rosemount Systems, Inc. Variable horizon predictor for controlling dead time dominant processes, multivariable interactive processes, and processes with time variant dynamics
US5566065A (en) 1994-11-01 1996-10-15 The Foxboro Company Method and apparatus for controlling multivariable nonlinear processes
US5570282A (en) 1994-11-01 1996-10-29 The Foxboro Company Multivariable nonlinear process controller
US5758047A (en) 1995-06-14 1998-05-26 Lu; Zhuxin Joseph Method of process controller optimization in a multivariable predictive controller
AU1843597A (en) 1996-01-31 1997-08-22 Asm America, Inc. Model-based predictive control of thermal processing
US6438430B1 (en) 1996-05-06 2002-08-20 Pavilion Technologies, Inc. Kiln thermal and combustion control
US6839599B2 (en) 1996-05-06 2005-01-04 Pavilion Technologies, Inc. Kiln/cooler control and upset recovery using a combination of model predictive control and expert systems
US7058617B1 (en) 1996-05-06 2006-06-06 Pavilion Technologies, Inc. Method and apparatus for training a system model with gain constraints
US7149590B2 (en) 1996-05-06 2006-12-12 Pavilion Technologies, Inc. Kiln control and upset recovery using a model predictive control in series with forward chaining
US7418301B2 (en) 1996-05-06 2008-08-26 Pavilion Technologies, Inc. Method and apparatus for approximating gains in dynamic and steady-state processes for prediction, control, and optimization
US6278899B1 (en) 1996-05-06 2001-08-21 Pavilion Technologies, Inc. Method for on-line optimization of a plant
US7610108B2 (en) 1996-05-06 2009-10-27 Rockwell Automation Technologies, Inc. Method and apparatus for attenuating error in dynamic and steady-state processes for prediction, control, and optimization
US6381504B1 (en) 1996-05-06 2002-04-30 Pavilion Technologies, Inc. Method for optimizing a plant with multiple inputs
US8311673B2 (en) 1996-05-06 2012-11-13 Rockwell Automation Technologies, Inc. Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization
US6493596B1 (en) 1996-05-06 2002-12-10 Pavilion Technologies, Inc. Method and apparatus for controlling a non-linear mill
US6047221A (en) 1997-10-03 2000-04-04 Pavilion Technologies, Inc. Method for steady-state identification based upon identified dynamics
US5933345A (en) 1996-05-06 1999-08-03 Pavilion Technologies, Inc. Method and apparatus for dynamic and steady state modeling over a desired path between two end points
US6122555A (en) 1997-05-05 2000-09-19 Honeywell International Inc. System and methods for globally optimizing a process facility
US5920478A (en) 1997-06-27 1999-07-06 Oakleaf Engineering, Inc. Multi-input multi-output generic non-interacting controller
US6421570B1 (en) 1997-08-22 2002-07-16 Honeywell Inc. Systems and methods for accessing data using a cyclic publish/subscribe scheme with report by exception
US6453308B1 (en) 1997-10-01 2002-09-17 Aspen Technology, Inc. Non-linear dynamic predictive device
US6064809A (en) 1998-06-05 2000-05-16 The Board Of Trustees Of The University Of Illinois Fast model predictive ellipsoid control process
WO2000010059A1 (en) 1998-08-17 2000-02-24 Aspen Technology, Inc. Sensor validation apparatus and method
US6594620B1 (en) 1998-08-17 2003-07-15 Aspen Technology, Inc. Sensor validation apparatus and method
US6253113B1 (en) 1998-08-20 2001-06-26 Honeywell International Inc Controllers that determine optimal tuning parameters for use in process control systems and methods of operating the same
BR9803848A (pt) 1998-10-08 2000-10-31 Opp Petroquimica S A Sistema para inferência em linha de propriedades fìsicas e quìmicas, sistema para inferência em linha de variáveis de processo, e, sistema de controle em linha
US6542782B1 (en) 1998-12-31 2003-04-01 Z. Joseph Lu Systems for generating and using a lookup table with process facility control systems and models of the same, and methods of operating such systems
US6347254B1 (en) 1998-12-31 2002-02-12 Honeywell Inc Process facility control systems using an efficient prediction form and methods of operating the same
US6298454B1 (en) * 1999-02-22 2001-10-02 Fisher-Rosemount Systems, Inc. Diagnostics in a process control system
US6952808B1 (en) 1999-07-01 2005-10-04 Honeywell Inc. Process variable gauge interface and methods regarding same
US6577323B1 (en) 1999-07-01 2003-06-10 Honeywell Inc. Multivariable process trend display and methods regarding same
US6901560B1 (en) 1999-07-01 2005-05-31 Honeywell Inc. Process variable generalized graphical device display and methods regarding same
US6587108B1 (en) 1999-07-01 2003-07-01 Honeywell Inc. Multivariable process matrix display and methods regarding same
US6445963B1 (en) 1999-10-04 2002-09-03 Fisher Rosemount Systems, Inc. Integrated advanced control blocks in process control systems
US6421575B1 (en) 1999-12-01 2002-07-16 Metso Paper Automation Oy Method and control arrangement for controlling sheet-making process
JP2001255903A (ja) * 2000-03-14 2001-09-21 Toshiba Corp プロセス制御システム
US6760716B1 (en) 2000-06-08 2004-07-06 Fisher-Rosemount Systems, Inc. Adaptive predictive model in a process control system
US6721609B1 (en) 2000-06-14 2004-04-13 Fisher-Rosemount Systems, Inc. Integrated optimal model predictive control in a process control system
EP1295185B9 (en) 2000-06-29 2005-01-05 Aspen Technology, Inc. Computer method and apparatus for constraining a non-linear approximator of an empirical process
GB0016695D0 (en) 2000-07-08 2000-08-23 Radioscape Ltd Digital transactions for the delivery of media files
WO2002005042A2 (en) 2000-07-12 2002-01-17 Aspen Technology, Inc. Automated closed loop step testing of process units
US7209793B2 (en) 2000-07-12 2007-04-24 Aspen Technology, Inc. Automated closed loop step testing of process units
US6697767B2 (en) 2000-10-18 2004-02-24 The National University Of Singapore Robust process identification and auto-tuning control
US20020177908A1 (en) 2001-03-18 2002-11-28 Sudarshan Bhat System and method for optimizing optical coupling in a cross connect switch
US7437071B2 (en) 2001-03-18 2008-10-14 Cisco Technology, Inc. Distributive optical switching control system
US6650947B2 (en) 2001-03-23 2003-11-18 Metso Automation Oy Multi-variable control loop assessment
DE60223253T2 (de) 2001-05-25 2008-11-27 Parametric Optimization Solutions Ltd. Verbesserte prozesssteuerung
JP3812381B2 (ja) 2001-07-30 2006-08-23 松下電器産業株式会社 溶接ワイヤ送給装置
CN1329110C (zh) 2001-09-26 2007-08-01 伊内奥斯美国公司 一体化的化工工艺控制
US6901300B2 (en) 2002-02-07 2005-05-31 Fisher-Rosemount Systems, Inc.. Adaptation of advanced process control blocks in response to variable process delay
US7376472B2 (en) 2002-09-11 2008-05-20 Fisher-Rosemount Systems, Inc. Integrated model predictive control and optimization within a process control system
US7050863B2 (en) * 2002-09-11 2006-05-23 Fisher-Rosemount Systems, Inc. Integrated model predictive control and optimization within a process control system
EP1418477A1 (en) 2002-11-06 2004-05-12 Abb Research Ltd. Method for controlling an electric power transmission network
US7328074B2 (en) 2002-12-02 2008-02-05 United Technologies Corporation Real-time quadratic programming for control of dynamical systems
US6882889B2 (en) 2002-12-02 2005-04-19 United Technologies Corporation Constrained dynamic inversion control algorithm
ATE484011T1 (de) 2002-12-09 2010-10-15 Rockwell Automation Inc System und verfahren zur adaptiven steuerung von prozessen mit veränderlicher dynamik
CN100514230C (zh) 2002-12-09 2009-07-15 搭篷技术公司 具有可变动态特性的过程的自适应控制的一种系统和方法
US20050187643A1 (en) 2004-02-19 2005-08-25 Pavilion Technologies, Inc. Parametric universal nonlinear dynamics approximator and use
US7152023B2 (en) 2003-02-14 2006-12-19 United Technologies Corporation System and method of accelerated active set search for quadratic programming in real-time model predictive control
US6807510B1 (en) 2003-05-05 2004-10-19 Honeywell Acsa Inc. Model predictive controller for coordinated cross direction and machine direction control
US7272454B2 (en) 2003-06-05 2007-09-18 Fisher-Rosemount Systems, Inc. Multiple-input/multiple-output control blocks with non-linear predictive capabilities
US7197485B2 (en) 2003-07-16 2007-03-27 United Technologies Corporation Square root method for computationally efficient model predictive control
GB0320670D0 (en) 2003-09-04 2003-10-01 Curvaceous Software Ltd Multi-variable operations
US7204101B2 (en) 2003-10-06 2007-04-17 Air Liquide Large Industries U.S. Lp Methods and systems for optimizing argon recovery in an air separation unit
TWI225576B (en) 2003-10-06 2004-12-21 Univ Tsinghua Process controlling method with merged two-control loops
US7536232B2 (en) 2004-08-27 2009-05-19 Alstom Technology Ltd Model predictive control of air pollution control processes
JP4382632B2 (ja) * 2004-11-04 2009-12-16 株式会社山武 制御装置
US20060282178A1 (en) 2005-06-13 2006-12-14 United Technologies Corporation System and method for solving equality-constrained quadratic program while honoring degenerate constraints
GB0515726D0 (en) 2005-07-30 2005-09-07 Curvaceous Software Ltd Multi-variable operations
US20070059838A1 (en) 2005-09-13 2007-03-15 Pavilion Technologies, Inc. Dynamic constrained optimization of chemical manufacturing
US7451004B2 (en) 2005-09-30 2008-11-11 Fisher-Rosemount Systems, Inc. On-line adaptive model predictive control in a process control system
US7877154B2 (en) 2005-09-30 2011-01-25 Fisher-Rosemount Systems, Inc. Method and system for controlling a batch process
US7174605B1 (en) 2005-10-18 2007-02-13 Clairson, Inc. Handles for attachment to wired products
US20070088448A1 (en) 2005-10-19 2007-04-19 Honeywell International Inc. Predictive correlation model system
US8719327B2 (en) 2005-10-25 2014-05-06 Fisher-Rosemount Systems, Inc. Wireless communication of process measurements
US7587252B2 (en) 2005-10-25 2009-09-08 Fisher-Rosemount Systems, Inc. Non-periodic control communications in wireless and other process control systems
US7620460B2 (en) 2005-10-25 2009-11-17 Fisher-Rosemount Systems, Inc. Process control with unreliable communications
US7650195B2 (en) 2005-10-27 2010-01-19 Honeywell Asca Inc. Automated tuning of large-scale multivariable model predictive controllers for spatially-distributed processes
US7257501B2 (en) 2005-11-17 2007-08-14 Honeywell International Inc. Apparatus and method for identifying informative data in a process control environment
CN1788900B (zh) 2005-12-13 2010-04-28 苏州宝时得电动工具有限公司 锯片夹紧装置
US7376471B2 (en) 2006-02-21 2008-05-20 United Technologies Corporation System and method for exploiting a good starting guess for binding constraints in quadratic programming with an infeasible and inconsistent starting guess for the solution
US20070225835A1 (en) 2006-03-23 2007-09-27 Yucai Zhu Computer method and apparatus for adaptive model predictive control
US7840287B2 (en) 2006-04-13 2010-11-23 Fisher-Rosemount Systems, Inc. Robust process model identification in model based control techniques
US8005575B2 (en) * 2006-06-01 2011-08-23 General Electric Company Methods and apparatus for model predictive control in a real time controller
US7587253B2 (en) 2006-08-01 2009-09-08 Warf (Wisconsin Alumni Research Foundation) Partial enumeration model predictive controller
US7930044B2 (en) 2006-09-07 2011-04-19 Fakhruddin T Attarwala Use of dynamic variance correction in optimization
US7844352B2 (en) 2006-10-20 2010-11-30 Lehigh University Iterative matrix processor based implementation of real-time model predictive control
US8571689B2 (en) 2006-10-31 2013-10-29 Rockwell Automation Technologies, Inc. Model predictive control of fermentation in biofuel production
US8634940B2 (en) 2006-10-31 2014-01-21 Rockwell Automation Technologies, Inc. Model predictive control of a fermentation feed in biofuel production
US7831318B2 (en) 2006-10-31 2010-11-09 Rockwell Automation Technologies, Inc. Model predictive control of fermentation temperature in biofuel production
US20080103747A1 (en) 2006-10-31 2008-05-01 Macharia Maina A Model predictive control of a stillage sub-process in a biofuel production process
US7933849B2 (en) 2006-10-31 2011-04-26 Rockwell Automation Technologies, Inc. Integrated model predictive control of batch and continuous processes in a biofuel production process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508436A (zh) * 2011-11-21 2012-06-20 湖南大学 机械手摩擦力动力学精确分析与控制应用方法
CN102508436B (zh) * 2011-11-21 2014-07-16 湖南大学 机械手摩擦力动力学精确分析与控制应用方法
CN102707743A (zh) * 2012-05-30 2012-10-03 广东电网公司电力科学研究院 基于多变量预测控制的超超临界机组汽温控制方法及系统
CN102707743B (zh) * 2012-05-30 2014-07-23 广东电网公司电力科学研究院 基于多变量预测控制的超超临界机组汽温控制方法及系统
CN106537270A (zh) * 2014-07-21 2017-03-22 霍尼韦尔国际公司 用于全厂范围控制和优化的级联模型预测控制(mpc)方法
CN109828459A (zh) * 2017-11-23 2019-05-31 中国科学院沈阳自动化研究所 一种基于多变量约束区间预测控制的平稳控制实现方法

Also Published As

Publication number Publication date
CA2663695A1 (en) 2008-04-03
JP2013033497A (ja) 2013-02-14
EP2423766A1 (en) 2012-02-29
MY145873A (en) 2012-05-15
WO2008039346A3 (en) 2009-03-12
WO2008039346A2 (en) 2008-04-03
CA2663695C (en) 2013-12-17
EP2423766B1 (en) 2013-10-23
US7949417B2 (en) 2011-05-24
EP2064600B1 (en) 2012-11-14
EP2064600A2 (en) 2009-06-03
JP2010504590A (ja) 2010-02-12
US20080077257A1 (en) 2008-03-27
BRPI0716856A2 (pt) 2013-10-01

Similar Documents

Publication Publication Date Title
CN101517498A (zh) 模型预测控制器解分析过程
Sandoval et al. Simultaneous design and control of processes under uncertainty: A robust modelling approach
Ricardez-Sandoval et al. Integration of design and control for chemical processes: A review of the literature and some recent results
Tan et al. A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization
US5410634A (en) Self-optimizing method and machine
US4910660A (en) Self-optimizing method and machine
US11573541B2 (en) Future state estimation device and future state estimation method
Dornheim et al. Model-free adaptive optimal control of episodic fixed-horizon manufacturing processes using reinforcement learning
Rawlings et al. Bringing new technologies and approaches to the operation and control of chemical process systems.
Thompson Optimal economic dispatch and risk management of thermal power plants in deregulated markets
Wu Model-based design for effective control system development
Vošček et al. Modelling, analysis and control design of hybrid dynamical systems
Makowski Modeling techniques for complex environmental problems
Bhat et al. Robust design of proportional integral controllers: a Taguchi-grey approach
Vacca et al. Analysis and optimization of a two-way valve using response surface methodology
Mohamed Investigation of engineering software packages used in learning and teaching of process control engineering at Murdoch University
Holzwarth et al. Virtual reality extension for digital twins of machine tools
Savolainen Added value of extended dynamic simulation in process design and operational planning
Feeley et al. Optimal digital control of a laboratory-scale paper machine headbox
Wilcoxen Intertemporal optimization in general equilibrium: A practical introduction
Sau Cantó Identification, supervision and control of an industrial reagent dosing process
Chvátalová et al. Corporate Performance Analysis Using the Maple System: Integration of Theory and Practice
Halmevaara Simulation assisted performance optimization of large-scale multiparameter technical systems
Mousseau Architectural and Algorithmic Requirements for a Next-Generation System Analysis Code
Cerri et al. Simulation-based optimisation of the life cycle cost of industrial systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090826