CN101515179B - 一种多机器人队形变换方法 - Google Patents

一种多机器人队形变换方法 Download PDF

Info

Publication number
CN101515179B
CN101515179B CN2009100958912A CN200910095891A CN101515179B CN 101515179 B CN101515179 B CN 101515179B CN 2009100958912 A CN2009100958912 A CN 2009100958912A CN 200910095891 A CN200910095891 A CN 200910095891A CN 101515179 B CN101515179 B CN 101515179B
Authority
CN
China
Prior art keywords
robot
coordinate
formation
gravity
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100958912A
Other languages
English (en)
Other versions
CN101515179A (zh
Inventor
陈耀武
蒋荣欣
张亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2009100958912A priority Critical patent/CN101515179B/zh
Publication of CN101515179A publication Critical patent/CN101515179A/zh
Application granted granted Critical
Publication of CN101515179B publication Critical patent/CN101515179B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

本发明公开了一种多机器人队形变换方法,包括以下步骤:在坐标系中求得得到各机器人的坐标,将各个机器人所在的点依次连接形成一多边形,计算求出该多边形重心的坐标,队形变换时分为静态变换和动态变换两种模式:在静态变换模式下,以所有机器人的行走距离之和最短、队列收敛时间最少作为衡量指标,求出所要变换队形中各个机器人的坐标,根据坐标对应关系实现队形变换;在动态变换模式下,以所有机器人的行走距离之和最短、队列收敛时间最少以及队形变换约束条件作为衡量指标,求出所要变换队形中各个机器人的坐标,最后根据坐标对应关系实现队形变换。本发明方法不受机器人数量的限制,而且对单个机器人性能没有要求,实现较为简单。

Description

一种多机器人队形变换方法
技术领域
本发明涉多机器人系统协作领域,尤其涉及一种多机器人队形变换方法。
背景技术
多机器人编队是典型的多机器人系统协作课题,要求从系统的角度探讨机器人群体的合作行为、信息交互及进化机制等。随着多机器人学的发展,目前多机器人编队控制已成为一个广受关注的问题。
编队控制,是指多机器人之间保持某种几何位置关系向目标行进,且保持队形或为适应周围环境的约束而变换队形的控制技术。很多研究者从不同角度提出了一些队形控制算法,包括:
几何法,从特定几何形状形成上研究机器人队形控制。这种方法易于实现,适合控制数量不大的机器人群体。
Leader-Follower方法,这种方法将队列中的机器人分为Leader与Follower两种角色,通过Leader运动的控制,来控制整个队列的运动。这种方法的优点是只需要给定Leader的行为或轨迹就可以控制整个机器人群体的行为。而该方法的缺点是系统中没有明确的队形反馈,例如队列保持或形变对机器人运动能力的要求超出了单个机器人的性能范围,就不能准确的执行预定动作。
行为控制法,首先为机器人规定一些期望的基本行为,一般情况下,机器人行为包括避障、保持队形和队形变换等。当机器人接受到外界环境刺激时,根据外部输入信息做出反应,并输出反应向量(比如说运动速度与航向)作为该行为的期望反应。行为选择模块通过一定的机制来综合各行为的输出,并将综合结果作为机器人对环境刺激的反应而输出。该方法中,协作是通过共享机器人之间的相对位置、状态等知识实现的。
发明内容
本发明提供了一种多机器人队形变换方法,该方法适合大群机器人的活动,而且不受单个机器人性能限制。
一种多机器人队形变换方法,包括以下步骤:
将所有机器人置于一坐标系中,得到各机器人所在位置的坐标,同时将各个机器人所在的点依次连接形成一多边形,计算求出该多边形重心的坐标,队形变换时分为静态变换和动态变换两种模式:
所述静态变换是指机器人在静止的情况下的变换,在静态变换模式下,以所述的多边形重心作为所要变换队形的重心,以所有机器人的行走距离之和最短、队列收敛时间最少作为衡量指标,求出所要变换队形中各个机器人的坐标,最后根据坐标对应关系实现队形变换;
静态模式又分为两种情况,一种是各机器人相对所要变换队形的重心的角度固定,此时所有机器人行走的距离之和最短为:
min Σ i n | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
队列收敛最小时间为:
min max i ∈ { 1 , . . . , n } | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
其中(xcg、ycg)为所要变换队形的重心坐标,(xi、yi)为第i机器人在所要变换队形中的坐标,θi为第i个机器人与所要变换队形重心的角度,n是指机器人的数量。
另一种是各机器人相对所要变换队形的重心的角度不固定,此时所有机器人行走的距离之和最短为:
min Σ i n | [ ( x cg + M x d i cos θ i ) - x i ′ ] 2 + [ ( y cg + M y d i sin θ i ) - y i ′ ] 2 |
队列收敛最小时间为:
min max i ∈ { 1 , . . . , N } | [ ( x cg + M x d i cos θ i ) - x i ′ ] 2 + [ ( y cg + M y d i sin θ i ) - y i ′ ] 2 |
其中Mx,My分别为x,y的旋转矩阵,满足:
M x M y = cos θ sin θ - sin θ cos θ
所述的动态变换是指机器人在移动过程当中的队形变换,在动态变换模式下,以所有机器人的行走距离之和最短、队列收敛时间最少以及所述的多边形重心与所要变换队形的重心之间的约束条件作为衡量指标,求出所要变换队形中各个机器人的坐标,最后根据坐标对应关系实现队形变换。
所有机器人行走的距离之和最短为:
min i Σ i n | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
队列收敛最小时间为:
min max i ∈ { 1 , . . . , N } | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
多边形重心与所要变换队形的重心之间的约束条件为:
- θ q ≤ arctan ( y cg - y cg ′ x cg - x cg ′ ) ≤ θ q a 1 x cg + b 1 ≤ y cg ≤ a 2 x cg + b 2
其中(xcg、ycg)为所要变换队形的重心坐标、(xcg’、ycg’)为所述多边形重心坐标,θq、a1、a2、b1、b2为设定的常数。其具体的值是根据机器人群组实际运动过程中所遭遇的外部环境,来计算得到。对队形变换而言,这些常数都是已知值。
本发明方法不受机器人数量的限制,而且对单个机器人性能没有要求,实现较为简单。
附图说明
图1为本发明机器人群静态变换前队形示意图;
图2为图1所示机器人群静态变换示意图;
图3为本发明机器人群动态变换前队形示意图;
图4为图3所示机器人群动态变换示意图。
具体实施方式
如图1所示,6个机器人随机分布在一平面当中,此时该6个机器人需要去完成某个任务,需要将该6个机器人编成如图2所示的正六边形。为了最有效率地把这6个机器人排成正六边形,通过如下方法来实现:
把每个机器人看作是平面上的一个点,然后将这6个点依次连接起来,可以得道一不规则的多边形,同时6个机器人所在的平面看作是一个坐标系,这里的坐标系可以是直角坐标系,也可以极坐标系,这样就可以确定每个机器人所在位置的坐标,根据现有重心计算公式,得到该多边形的重心坐标。为了计算方便,最好是将重心坐标设置为(0,0),并将该重心坐标设为正六边形的重心坐标。
在图1和图2所示的机器人当中,所有的机器人是静止不动的,而且每个机器人的性能是一样的。机器人从图1所示的多边形变换到正六边形,其变换效率的衡量指标有两个,一个所有机器人行走距离之和,另一个是从不规则多边形到正六边形的变换时间(即队列收敛时间)。行走的距离之和越短,说明机器人消耗的能量越少,收敛时间越短,变换效率越高。
根据这两个条件可以得到两个方程,其中所有机器人行走距离之和的最小值为:
min Σ i n | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
n表示机器人数量,该处等于6,当机器人数量变化时,n也随着改变;(xcg、ycg)为正六边形的坐标;θi表示第i个机器人相对重心水平偏离的角度;di表示第i个机器人到重心的距离。
队列收敛的最短时间为:
min max i ∈ { 1 , . . . , n } | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
通过上述两个方程,就可以得到正六形中的各个机器人的坐标,机器人通过上述坐标的对应关系,可以通过直线行走,实现队形变换,也就是说通过上述的队形变化,其变换效率是最高的。
上述方程中,其实是假定正六边形中各机器人相对重心水平偏离的角度是固定的,当然其偏离角度是可以变化的,即正六边形是可以绕重心旋转的,此时所有机器人行走距离之和的最小值为:
min Σ i n | [ ( x cg + M x d i cos θ i ) - x i ′ ] 2 + [ ( y cg + M y d i sin θ i ) - y i ′ ] 2 |
队列收敛最短时间为:
min max i ∈ { 1 , . . . , N } | [ ( x cg + M x d i cos θ i ) - x i ′ ] 2 + [ ( y cg + M y d i sin θ i ) - y i ′ ] 2 |
其中Mx,My分别为x,y的旋转矩阵,满足:
M x M y = cos θ sin θ - sin θ cos θ
通过上述两个方程,就可以得到正六形中的各个机器人的坐标,机器人通过上述坐标的对应关系,实现最高效率的队形变换。
如图3所示,4个在运动当中的机器人,其原来的队形是呈长方形的,当它们需要去执行某个具体任务时,需要将队形变换成菱形,4个机器人从长方形队形变换到菱形队形,同样是将4个机器人置于一坐标系中,得到长方形队形中各个机器人的坐标,变换效率的指标也是一样的,一个是机器人的行走距离之和,另一个是队列收敛的时间,通过这两个条件,得到两个方程,其中所有机器人行走距离之和最小值为:
min i Σ i n | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
队列收敛最小时间为:
min max i ∈ { 1 , . . . , N } | [ ( x cg + d i cos θ i ) - x i ′ ] 2 + [ ( y cg + d i sin θ i ) - y i ′ ] 2 |
n表示机器人数量,该处等于4,当机器人数量变化时,n也随着改变;(xcg、ycg)为菱形的坐标;θi表示第i个机器人相对重心水平偏离的角度;di表示第i个机器人到重心的距离。
因为机器人是在运动当中的,其运动带有约束条件:
- θ q ≤ arctan ( y cg - y cg ′ x cg - x cg ′ ) ≤ θ q a 1 x cg + b 1 ≤ y cg ≤ a 2 x cg + b 2
通过拉格郎日乘子法求解可以得到菱形队形中各个机器人的坐标,通过坐标的对应关系,实现机器人队形最优变换。

Claims (1)

1.一种多机器人队形变换方法,包括以下步骤:
将所有机器人置于一坐标系中,得到各机器人所在位置的坐标,同时将各个机器人所在的点依次连接形成一多边形,计算求出该多边形重心的坐标,队形变换时分为静态变换和动态变换两种模式:
在静态变换模式下,以所述的多边形重心作为所要变换队形的重心,以所有机器人的行走距离之和最短、队列收敛时间最少作为衡量指标,求出所要变换队形中各个机器人的坐标,最后根据坐标对应关系实现队形变换;
在动态变换模式下,以所有机器人的行走距离之和最短、队列收敛时间最少以及所述的多边形重心与所要变换队形的重心之间的约束条件作为衡量指标,求出所要变换队形中各个机器人的坐标,最后根据坐标对应关系实现队形变换;
所述的多边形重心与所要变换队形的重心之间的约束条件为:
- θ q ≤ arctan ( y cg - y cg ′ x cg - x cg ′ ) ≤ θ q a 1 x cg + b 1 ≤ y cg ≤ a 2 x cg + b 2
其中(xcg、ycg)为所要变换队形的重心坐标、(xcg’、ycg’)为所述多边形重心的坐标,θq、a1、a2、b1、b2为设定的常数。
CN2009100958912A 2009-02-17 2009-02-17 一种多机器人队形变换方法 Expired - Fee Related CN101515179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100958912A CN101515179B (zh) 2009-02-17 2009-02-17 一种多机器人队形变换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100958912A CN101515179B (zh) 2009-02-17 2009-02-17 一种多机器人队形变换方法

Publications (2)

Publication Number Publication Date
CN101515179A CN101515179A (zh) 2009-08-26
CN101515179B true CN101515179B (zh) 2010-07-28

Family

ID=41039656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100958912A Expired - Fee Related CN101515179B (zh) 2009-02-17 2009-02-17 一种多机器人队形变换方法

Country Status (1)

Country Link
CN (1) CN101515179B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053621B (zh) * 2009-11-06 2012-05-09 北京理工大学 一种任意队形的群移动机器人密度控制方法
CN102096415B (zh) * 2010-12-31 2012-09-26 重庆邮电大学 基于Ad-Hoc网络和leader-follower算法的多机器人编队方法
CN102331711A (zh) * 2011-08-12 2012-01-25 江苏合成物联网科技有限公司 一种移动自主机器人的编队控制方法
CN103220778B (zh) * 2013-03-11 2015-08-19 哈尔滨工业大学 一种基于无线传感器网络的移动节点队形变换方法及实现装置
CN103336527A (zh) * 2013-06-07 2013-10-02 湖南科技学院 节点编队方法、装置及系统
CN103777640B (zh) * 2014-01-15 2016-05-04 北京航空航天大学 一种分布式控制无人机群集中分簇编队方法
CN105955274B (zh) * 2016-05-25 2018-07-03 重庆大学 基于分布式圆心和半径估计的多机器人圆形编队控制方法
CN106774336B (zh) * 2017-01-04 2020-04-07 广东华中科技大学工业技术研究院 一种无人艇一字型队到倒v字型队队形变换方法
CN106950970B (zh) * 2017-05-05 2019-10-29 东华大学 一种基于客户端-服务器结构的多机器人协同编队方法
CN108594853B (zh) * 2018-04-27 2020-11-17 中国人民解放军陆军工程大学 无人机队形控制方法
CN112558609A (zh) * 2020-12-14 2021-03-26 北京理工大学 基于环状拓扑的多机器人系统的队形控制方法

Also Published As

Publication number Publication date
CN101515179A (zh) 2009-08-26

Similar Documents

Publication Publication Date Title
CN101515179B (zh) 一种多机器人队形变换方法
CN105425820B (zh) 一种针对具有感知能力的运动目标的多无人机协同搜索方法
Kilin et al. Spherical robot of combined type: Dynamics and control
CN101916071B (zh) 仿生机器鱼运动的cpg反馈控制方法
Zhang et al. Control of small formations using shape coordinates
CN102156484B (zh) 四足机器人对角步态的自适应控制方法
CN105005301A (zh) 一种基于群体智能算法的工业机器人作业点序列及轨迹规划方法
Wei et al. A centroidal Voronoi tessellation based intelligent control algorithm for the self-assembly path planning of swarm robots
Castillo-Lopez et al. Model predictive control for aerial collision avoidance in dynamic environments
CN103984230A (zh) 一种空间机械臂基座零扰动优化控制方法
CN106814610A (zh) 基于非线性模型预测控制的双足机器人步态优化的信赖域‑sqp方法
Alves et al. Conceptual bases of robot navigation modeling control and applications
Petrovic et al. Can UAV and UGV be best buddies? Towards heterogeneous aerial-ground cooperative robot system for complex aerial manipulation tasks
CN103728988A (zh) 基于内模的scara机器人轨迹跟踪控制方法
Mansouri et al. Distributed model predictive control for unmanned aerial vehicles
Huang et al. Recoat: A deep learning-based framework for multi-modal motion prediction in autonomous driving application
Wang et al. A cooperative strategy of multi-arm coal gangue sorting robot based on immune dynamic workspace
Chen et al. Energy saving control approach for trajectory tracking of autonomous mobile robots
Alexopoulos et al. A pursuit-evasion game between unmanned aerial vehicles
Liu et al. Intelligent robot motion trajectory planning based on machine vision
Yao et al. Improved dynamic windows approach based on energy consumption management and fuzzy logic control for local path planning of mobile robots
CN102033545B (zh) 一种轮腿式机器人的驱动牵引特性控制方法
Zhang et al. Sensorimotor self-learning model based on operant conditioning for two-wheeled robot
Matrosov et al. Control of the robot-wheel with a pendulum
Ghiasvand et al. Formation control of wheeled mobile robots based on fuzzy logic and system dynamics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100728

Termination date: 20200217