CN101501228B - 制备高强度、高硬度和高韧性的钛合金的方法 - Google Patents

制备高强度、高硬度和高韧性的钛合金的方法 Download PDF

Info

Publication number
CN101501228B
CN101501228B CN2007800238446A CN200780023844A CN101501228B CN 101501228 B CN101501228 B CN 101501228B CN 2007800238446 A CN2007800238446 A CN 2007800238446A CN 200780023844 A CN200780023844 A CN 200780023844A CN 101501228 B CN101501228 B CN 101501228B
Authority
CN
China
Prior art keywords
boron
titanium alloy
alloy
modified
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800238446A
Other languages
English (en)
Other versions
CN101501228A (zh
Inventor
丹尼尔·B·梅若克
赛沙查玉卢·塔米日萨堪达拉
瑞德哈瑞士那·B·博哈特
戴尔·J·迈克安东尼
杰里·L·菲尔兹
威廉姆斯·M·汉纳希雅科
罗布·L·戈尔博
弗雷德·C·优顿
埃里克·S·伯纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carpenter Technology Corp
Original Assignee
FMW Composite Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMW Composite Systems Inc filed Critical FMW Composite Systems Inc
Publication of CN101501228A publication Critical patent/CN101501228A/zh
Application granted granted Critical
Publication of CN101501228B publication Critical patent/CN101501228B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种制备高强度、高硬度和高韧性的钛合金的方法,包括将硼加入到钛合金中,使硼改性钛合金中的硼含量不超过共晶限值。保持硼改性钛合金中的碳含量低于避免脆裂的预期限值。将硼改性合金加热至β相变温度以上的温度,以去除任何过饱和的过量硼。使硼改性钛合金在足够慢的速率下发生形变,以防止微观结构损坏和韧性的降低。

Description

制备高强度、高硬度和高韧性的钛合金的方法
相关申请的交叉引用
不适用
关于联邦政府资助的研究或开发的声明
美国政府可以为所有政府目的而制造和使用本发明,且不需要支付任何费用。
对微缩平片附录的引用
不适用
发明背景
1.技术领域
本发明主要涉及一种增强传统钛合金的性能并且不降低其损伤容限的方法,尤其涉及一种制备具有组织均匀性的钛合金的方法,该方法可广泛用于钛合金家族,包括但不限于Ti-6wt.%Al-4wt.%V、Ti-5Al-2.5Sn、Ti-6Al-2Sn-4Zr-2Mo-O.1Si。
2.背景技术
钛合金具有使人感兴趣的物理和机械性能的组合,这使得它们适于在各种行业(如,航天工业)作为结构材料,相比钢铁等其它金属材料,钛合金可明显地减轻重量和减少维护成本。人们在进一步提高传统钛合金的强度和硬度方面已做过很多尝试,以期获得性能增强的钛合金。
这些方法包括添加具有高强度和硬度的微粒、短纤维或连续纤维。尽管这些现有技术方法显著提高了传统钛合金的强度和硬度,但是这种性能的提高同时伴随着由于脆性增强带来的韧性和损伤容限的剧烈减少,这限制了它们在对断裂敏感材料中的应用。通常在结构材料中用5%的延伸率区分韧性和脆性。
相应地,本发明的目的旨在提供一种新的制备钛合金的方法,该方法制备的钛合金与传统钛合金相比具有明显增强的强度和硬度,同时保持了足够的韧性。该方法包括添加少量低于临界含量的硼,以及使合金在特定温度范围和变形速率下变形,从而获得均匀组织。
发明内容
本发明提供的新方法在提高钛合金的强度和硬度的同时保持了钛合金的韧性,该方法通过添加硼和控制工艺来获得均匀组织。
本方法的重要特征如下:
1、钛合金中硼含量应该等于或低于共晶限值,以使其不具有任何粗糙的原始TiB颗粒;
2、使含硼钛合金被加热至高于β相变温度的温度(在此温度下钛合金完全转换为高温体心立方β相),从而完全除去任何过饱和的硼(在非平衡固化条件下,硼被捕获于钛的晶格里);以及
3、使硼改性钛合金在慢速率下发生形变,例如在低速率下挤压,以避免对TiB微观组成的破坏,该破坏将降低韧性。
附图说明
图1是二元硼钛合金的相图。
图2a是钛合金组份为(Ti-6Al-4V-1.7B)中的粗糙的原始TiB微粒在共晶体临界以上的电子显微图。
图2b所示为在粗糙的原始TiB微粒开始优先裂缝的样品拉伸的断裂图。
图3a具有不同的碳含量的压实Ti-6Al-4V-1B的韧性比温度的图。
图3b是具有不同碳含量的挤压后Ti-6Al-4V-1B的韧性比温度的图。
图4a是在1750°F(低于β相转变)压实Ti-6Al-4V-1B合金的背散射电子显微图。
图4b是在1980°F(高于β相转变)压实Ti-6Al-4V-1B合金的背散射电子显微图。
图5a沿着挤出方向,在滑块速度为100inch/min挤出合金Ti-6Al-4V-IB-0.1C的背散射电子显微图。
图5b沿着横向,在滑块速度为100inch/min挤出合金H-6AI-4V-1B-0.1C的背散射电子显微图。
图5c沿着挤出方向,在滑块速度为15inch/min挤出合金-6Al-4V-1B-0.1C的背散射电子显微图。
图5d沿着横向,在滑块速度为15inch/min挤出合金
Figure G2007800238446D00032
-6Al-4V-1B-0.1C的背散射电子显微图。
图6所示在低速率下拉伸Ti-6Al-4V-1B合金与典型的Ti-6Al-4V合金比较拉伸性能的图。
具体实施方式
本发明提供了一种通过添加硼和控制处理过程来提高钛合金的强度和硬度同时保持其韧性的新方法。该新的改良后的方法导致了颗粒的本质演变及均匀的微观结构特征。尽管下文中描述的是特异的粉末冶金处理技术,但本发明同样可以应用于其它冶金处理技术。
在预合金冶炼处理途径中,硼被加入熔融状态的钛合金中,并且熔体雾化后,获得含硼钛合金粉末。该粉末由经热等静压、锻炼、挤压和轧制等常规技术固化和/或成形。
本发明的方法包括四个重要的因素,描述如下。
1、硼水平等于或低于共晶限值
当硼完全溶解于液态钛时,其在固相中的溶解度可以忽略不计。图1中显示的二相钛硼合金的相图说明在温度为28040F(1540℃)和硼浓度为2wt.%时存在共晶反应。在对其它含有硼的钛合金控制共晶温度和含硼浓度被认为有相似的共晶反应。
当含有低于共晶限值的硼浓度组分的合金固化时,粗糙的原始TiB颗粒在两相区域(液体和TiB)中长大,并且保持完全固化的微观结构。尽管这些颗粒提供了显著改进的强度和硬度,韧性却剧烈地减少。粗糙的原始TiB颗粒用于Ti-6Al-4V-1.7B(所有浓度按重量百分数表示)合金的作用的实例在图2中予以了说明,该合金低于其共晶限值。
在图2(a)中可以看到大于200μm的粗糙的TiB颗粒的存在,以及图2(b)中记载了这些颗粒最初断裂的样本拉伸造成的成熟失败(~3%的韧性)。因此,本发明适用于任何含有低于共晶限值的硼浓度的并且不具有粗糙的原始TiB颗粒的传统钛合金。
2、碳水平低于关键限值
已发现,碳浓度也能够显著地影响硼改性的钛合金的韧性,以及保持碳水平低于关键限值以避免韧性的难以接受的损失是重要的。不同于硼,碳在钛中的固溶性高(高于0.5重量%)且碳在钛中可能会造成脆变。因此,碳的浓度应该根据合金的组分和处理过程参数来进行控制,已达到可以接受的韧性数值。例如,图3显示含有从0.05~0.35%的不同碳浓度的Ti-6Al-4V-1B在压实的(图.3a)和挤压的(图.3b)条件下的结果。在挑选出的处理过程条件下,这些不同说明由于碳浓度低于0.1%,韧性显著地降至4%以下。
3、在β相变温度之上的热暴露
由于硼在钛中的可以忽略的固溶性,剩下的硼在非均衡固化条件下(例如,经过气体雾化等快速固化技术制造粉末)捕获(过饱和)于钛的晶格里。
含有过饱和的硼的钛合金必定易脆,具有低的韧性数值。已发现,过饱和的硼能经过在高温下的热暴露析出。图3中举例说明了测定消除过饱和的最适温度的试验。从这些试验中,可以推断材料应该暴露在β相变温度之上(此温度下钛合金充分地转换为高温体心立方β相)以完全析出过度饱和的硼。热暴露还能影响微观结构参数,如TiB颗粒的大小、分布和内部颗粒间距,以及钛相的结晶颗粒大小和形态。这些微观结构显著地影响机械属性。
低温下的热暴露导致内部颗粒间距紧密,这限值了韧性。在β相变温度之上的暴露增大了内部颗粒的间距,改善了韧性。热暴露后冷却材料的速率改变结晶颗粒的大小和形态,这两点也能显著地影响韧性。在β相变温度之上由于相变反应中TiB颗粒的影响产生的精细颗粒等轴的a-β微观结构,控制慢慢从β相高温冷却到a相室温。β相温度随常规钛合金中主要合金元素的组成变化,如,1850±50°F用于T1-6Al-4V。
热暴露的实施可由经热等静压、挤压或其它适合的固化方法,或固化之前或之后的热处理,再或者热机械处理。HIP压实和挤出中热处理的作用在图3中显示。在β相温度以下和以上的Ti-6Al-4V-1B粉末微观结构显示如图4,这清楚的证明了热暴露温度在微观结构演变中的影响。
4、控制变形速率以避免微观结构的破坏
硼改性的钛合金注入变形的速率也对最终微观结构和机械属性有着显著地影响。Ti-6Al-4V-1B-0.1C材料在快速撞击速度(100inch/mm)和慢速(15inch/mm)下挤出的微观结构显示如图5。高速(图.5a和5b)下挤出的材料展示微观结构破坏表明TiB破裂和TiB末端的气穴,这些都降低韧性。另一方面,慢速(图.5c和5d)下挤出的材料完全没有微观的破坏。
尽管,得到的证实是使用选择的处理过程和变形速率,但本发明的方法可以适用于全部范围的固化途径和热机械处理过程,并且覆盖宽泛的安全变形速率范围,必要的去避免TiB微观组成的破坏。
图6为慢速挤压的Ti-64-1B的属性与典型的Ti-6Al-4V合金的属性的比较。在上述的控制条件下处理的硼改性的钛合金获得了-25%的硬度(系数)提高和-35%的强度提高,同时保持了相当的韧性水平(>10%)。
由此很容易看到,本发明新的改良后的方法提高了传统钛合金的强度和硬度,并且没有显著地破坏韧性,鉴于此,显著地增强了钛合金的结构性能。
经硼改性的钛合金可通过传统的处理方法制备,并且传统的金属加工(如,锻造、挤出、轧制)设备可用于操作控制处理过程。因此,实现运用本方法的改良后的操作不会增加任何材料或处理方法的成本。
强度和硬度提高了25-35%的钛合金可代替现有的具有高性能的昂贵成分,并且可使得用于重量和降低成本的新的结构设计概念成为可能。
虽然已经结合目前认为是最使用的和优选的实施例进行了描述,但是可以理解其并不限于公开的实施例,相反,本发明不受除了根据附上的权利要求以及它们的等同物的限制。

Claims (6)

1.一种制备高强度、高硬度和高韧性的钛合金的方法,包括:
将硼与钛合金结合,使得硼改性钛合金中的硼浓度不超过共晶限值,
维持硼改性钛合金中的碳浓度低于0.1%以避免脆裂,
将硼改性合金加热至β相变温度以上的温度,以去除任何过饱和的过量硼,以及
以足够慢的速度使硼改性钛合金变形,以防止微观结构的破坏以及韧性的降低。
2.根据权利要求1所述的方法,其特征在于,所述硼被加入熔融的钛合金中,并且熔体被雾化以获得含硼钛合金粉末。
3.根据权利要求2所述的方法,其特征在于,所述含硼钛合金粉末通过热等静压、锻造、挤出或轧制而被固化和/或成形。
4.根据权利要求2所述的方法,其特征在于,所述硼为液态或粉末状态。
5.根据权利要求1所述的方法,其特征在于,所述钛合金选自Ti-6Al-4V、Ti-5Al-2.5Sn和Ti-6Al-2Sn-4Zr-2Mo-0.1Si。
6.根据权利要求1所述的方法,其特征在于,所述被加热至β相变温度之上的硼改性合金以足够慢的速率被冷却以防止韧性的降低。
CN2007800238446A 2006-06-07 2007-05-24 制备高强度、高硬度和高韧性的钛合金的方法 Expired - Fee Related CN101501228B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/448,160 2006-06-07
US11/448,160 US7879286B2 (en) 2006-06-07 2006-06-07 Method of producing high strength, high stiffness and high ductility titanium alloys
PCT/US2007/012293 WO2007142837A1 (en) 2006-06-07 2007-05-24 Method of producing high strength, high stiffness and high ductility titanium alloys

Publications (2)

Publication Number Publication Date
CN101501228A CN101501228A (zh) 2009-08-05
CN101501228B true CN101501228B (zh) 2011-06-08

Family

ID=38801789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800238446A Expired - Fee Related CN101501228B (zh) 2006-06-07 2007-05-24 制备高强度、高硬度和高韧性的钛合金的方法

Country Status (5)

Country Link
US (1) US7879286B2 (zh)
EP (1) EP2038443A4 (zh)
KR (1) KR20090029782A (zh)
CN (1) CN101501228B (zh)
WO (1) WO2007142837A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US20120118433A1 (en) * 2010-11-12 2012-05-17 Fmw Composite Systems, Inc. Method of modifying thermal and electrical properties of multi-component titanium alloys
US20140044584A1 (en) * 2011-04-27 2014-02-13 Toho Titanium Co., Ltd. Alpha + beta or beta TITANIUM ALLOY AND METHOD FOR PRODUCTION THEREOF
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US20130014865A1 (en) * 2011-07-13 2013-01-17 Hanusiak William M Method of Making High Strength-High Stiffness Beta Titanium Alloy
KR101387551B1 (ko) * 2012-06-20 2014-04-24 한국기계연구원 내산화성 및 성형성이 우수한 고강도 티타늄 합금 및 이의 제조방법
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN107904441B (zh) * 2017-11-28 2020-05-05 杭州杭联汽车连杆有限公司 钛合金及其制备方法
CN108179314A (zh) * 2017-11-28 2018-06-19 杭州杭联汽车连杆有限公司 一种钛合金及其制造方法
CN110184499B (zh) * 2019-06-28 2020-06-05 西北有色金属研究院 一种提高tc4钛合金强度水平的微合金化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520879A (en) * 1990-11-09 1996-05-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method of producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2596489A (en) * 1951-03-02 1952-05-13 Remington Arms Co Inc Titanium-base alloys
US3379522A (en) * 1966-06-20 1968-04-23 Titanium Metals Corp Dispersoid titanium and titaniumbase alloys
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
US5041262A (en) * 1989-10-06 1991-08-20 General Electric Company Method of modifying multicomponent titanium alloys and alloy produced
JP3839493B2 (ja) * 1992-11-09 2006-11-01 日本発条株式会社 Ti−Al系金属間化合物からなる部材の製造方法
US7410610B2 (en) * 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
JP4890262B2 (ja) * 2003-12-11 2012-03-07 オハイオ ユニヴァーシティ チタン合金微細構造の精製方法および高温、高い歪み速度でのチタン合金の超塑性の形成

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520879A (en) * 1990-11-09 1996-05-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method of producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.B.BHAT.ETAL.Effect of Boron on the Beta Transus of Ti-6Al-4V Alloy.《SCRIPTA MATERIALIA》.2005,(第53期),217-222. *
S.Tamirisakandala.etal.Powder metallurgy Ti-6Al-4V-xB alloys: processing, microstructure, and properties.《Jouranl of Metals》.2004,60-63. *

Also Published As

Publication number Publication date
WO2007142837A1 (en) 2007-12-13
CN101501228A (zh) 2009-08-05
US7879286B2 (en) 2011-02-01
EP2038443A4 (en) 2010-04-14
US20070286761A1 (en) 2007-12-13
KR20090029782A (ko) 2009-03-23
EP2038443A1 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN101501228B (zh) 制备高强度、高硬度和高韧性的钛合金的方法
Ivasishin et al. Low-cost titanium hydride powder metallurgy
US7785530B2 (en) Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
US7922841B2 (en) Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
US4066449A (en) Method for processing and densifying metal powder
US4714587A (en) Method for producing very fine microstructures in titanium alloy powder compacts
US20100143177A1 (en) Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids
EP2325342B1 (en) Hot compaction and extrusion of L12 aluminum alloys
EP2295609A1 (en) Direct extrusion of shapes with L12 aluminum alloys
US3902862A (en) Nickel-base superalloy articles and method for producing the same
KR20120064687A (ko) 티타늄 합금의 미세구조 정련 방법 및 티타늄 합금의 고온-고변형률 초가소성 성형방법
US10174407B2 (en) Oxygen-enriched Ti-6AI-4V alloy and process for manufacture
Bian et al. Mechanisms of heat treatment and ductility improvement of high-oxygen Ti–6Al–4V alloy fabricated by metal injection molding
US10058917B2 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
EP2239071A2 (en) Ceracon forging of L12 aluminum alloys
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
US4655855A (en) Method for refining microstructures of prealloyed titanium powder compacted articles
US4808250A (en) Method for refining microstructures of blended elemental titanium powder compacts
US4832760A (en) Method for refining microstructures of prealloyed titanium powder compacts
JP2003055747A (ja) 焼結工具鋼及びその製造方法
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPS62224602A (ja) アルミニウム合金焼結鍛造品の製造方法
US20120118433A1 (en) Method of modifying thermal and electrical properties of multi-component titanium alloys
Gabbitas et al. Cost effective forging of titanium alloy parts and their mechanical properties
Bin et al. Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20170106

Address after: Bruce Mills of the U.S. state of West Virginia at North Point Road No. 78

Patentee after: The Prius limited liability company

Address before: American West Virginia

Patentee before: FMW Composite Systems Inc.

TR01 Transfer of patent right

Effective date of registration: 20170622

Address after: American Pennsylvania

Patentee after: carpenter technology corporation

Address before: Bruce Mills of the U.S. state of West Virginia at North Point Road No. 78

Patentee before: The Prius limited liability company

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110608

Termination date: 20210524

CF01 Termination of patent right due to non-payment of annual fee