CN101498833A - 兼有宏-微视场观测的超分辨差动共焦显微镜 - Google Patents

兼有宏-微视场观测的超分辨差动共焦显微镜 Download PDF

Info

Publication number
CN101498833A
CN101498833A CNA2009100793286A CN200910079328A CN101498833A CN 101498833 A CN101498833 A CN 101498833A CN A2009100793286 A CNA2009100793286 A CN A2009100793286A CN 200910079328 A CN200910079328 A CN 200910079328A CN 101498833 A CN101498833 A CN 101498833A
Authority
CN
China
Prior art keywords
spectroscope
differential confocal
detector
optical imagery
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2009100793286A
Other languages
English (en)
Inventor
赵维谦
王允
邱丽荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CNA2009100793286A priority Critical patent/CN101498833A/zh
Publication of CN101498833A publication Critical patent/CN101498833A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

本发明属于光学显微成像及光学精密测量技术领域,涉及一种兼有宏-微视场观测的超分辨差动共焦显微镜,主要包括激光器(1)、扩束器(2)、分光镜(4)、偏振分光镜(5)、量程扩展跟综测量系统(6)、测量物镜(7)、聚光镜(16)和(19)以及针孔(17)、(20)和探测器(18)、(21),还包括位于分光镜反射方向反方向的LED发光二极管(12),和位于分光镜(9)的反射方向的CCD探测器(11)。本发明中的LED发光二极管和CCD探测器,对被测样品的表面面型的进行成像,来实现共焦显微镜的宏视场观察,并采用差动共焦显微镜的光路布置提高共焦显微镜的轴向分辨力。

Description

兼有宏-微视场观测的超分辨差动共焦显微镜
技术领域
本发明属于光学显微成像及光学精密测量技术领域,涉及一种兼有宏-微视场观测的超分辨差动共焦显微镜,可用于样品的三维表面形貌、三维微细结构、微台阶、微沟槽、微位移、集成电路线宽的高精度测量。
技术背景
1957年美国M.Minsky等学者在对显微镜进行优化设计,力图消除杂散光的研究中首先提出共焦显微思想,并于1961年获得美国专利局授权,专利号为US3013467。共焦显微镜的成像原理是将点光源、点被测物和点探测器三者放置在彼此对应的共轭的位置,构成了光学成像中的点照明和点探测的具有层析功能的显微成像系统。典型的共焦显微镜的基本结构如图1所示,光源1发出的光经过扩束器针孔27、分光镜5、物镜7汇聚,在被测物表面聚焦成光斑并被反射,反射光沿原路返回,测量光束被分光镜5反射后进入探测器18前的针孔17中,在探测器18处形成点探测,探测器18主要接收从物镜7焦点处反射的信号光,焦点以外的反射光被针孔17遮挡。当被测点位于物镜7的焦平面A时,探测器18接收到的光能最大,当被测点偏离焦平面A时,反射光被聚焦在针孔17的前或后的某一位置,针孔17和探测器18就处于离焦状态,此时探测器18就仅能接收到一小部分光的能量,因此探测器18接收到的信号光的强度会随着被测点的位置变化而变化,这样就可以通过探测器检测到光强信号的强弱变化来测得被测点相对于焦平面的位置。当驱动被测物使被测物沿垂直于光轴方向的X-Y平面做扫描运动时,共焦显微镜就可以根据光轴Z方向的离焦信号、X和Y方向的位移大小,构建出被测物体的三维轮廓。
共焦显微镜因为具有层析成像的能力而被广泛应用于生物医学和工业样品的成像检测,并且由于其分辨率很高,可以对生物活体样本和微小工业产品进行微细成像,提供样品的微观信息而成为医学观察和制造业检测的有力工具;但是由于其成像原理是点扫描,可以测量的范围和观察视场小,在使用的过程中需要对被测物体的位置进行严格的对焦找正,不仅需要其他设备辅助而且也会耗费使用者大量的时间和精力,给使用带来了极大的不便。
近年来,围绕共焦显微镜的研究方面,出现了4PI共焦显微镜、共焦干涉显微镜和多光子显微镜等;并且围绕共焦显微镜的性能改进方面也已经研究出了光瞳滤波、移相掩膜、变形照明等技术。总体上看,上述的对共焦显微镜的改进提高了共焦显微镜的分辨性能,但是它们都没有涉及到共焦显微镜的定焦粗找正问题。
传统的光学成像技术具有视场大,光路简单,便于调节,成像直观易于观察分析等特点,并且随着近年来的CCD探测技术的发展,与CCD成像技术的结合可以实现观察测量的数字化,其测量效率和精度表现出很大的发展潜力。近年来传统光学成像技术与CCD探测技术结合用于定焦成像的技术快速发展。例如:《光电工程》的《用二次傅里叶变换实现CCD的精密定焦》,提出利用傅立叶变换原理和几何光学成像原理对CCD探测器正焦和离焦时的成像特点进行了理论分析,达到了很高的定焦精度。而使用光学成像技术与CCD探测技术结合,用图像分析的方法对差动共焦显微镜的样品位置进行粗找正,继而实现共焦显微镜在宏观视场的观察的报道,迄今为止尚未见到。
发明内容
本发明的目的在于克服已有技术用于三维形貌和三维微细结构测量时存在的上述不足,融合光学成像技术和差动共焦显微技术,提出一种兼有宏-微视场观测的超分辨差动共焦显微镜。该共焦显微镜在改善共焦显微镜超分辨成像能力的同时,还能提供宏视场观察,极大的简化了样品的定焦粗找正过程。
本发明的目的是通过下述装置实现的。
一种兼有宏-微视场观测的超分辨差动共焦显微镜,其特征在于包括激光器(1),依次放在激光器(1)发射端的扩束器(2)、偏振分光镜(5);放置在偏振分光镜(5)透射方向的λ/4玻片(6)、测量物镜(7);位于偏振分光镜(5)反射方向反方向的差动共焦系统(25);还包括一个光学成像光源部分(28)和一个光学成像接收系统(29);其中光学成像光源部分(28)位于扩束器(2)与偏振分光镜(5)之间,用于对样品的宏视场成像提供照明;光学成像接收系统(29)位于偏振分光镜(5)和差动共焦系统(25)之间,用于接收系统对样品所成的像。
差动共焦系统(25)包括:第三分光镜(15),依次放置在第三分光镜的透射方向的第一聚光镜(16)、第一针孔(17)和贴近针孔的第一探测器(18);依次放置在第三分光镜(15)的反射方向的第二聚光镜(19)、第二针孔(20)和贴近针孔的第二探测器(21);光学成像光源部分(28)包括依次排列的一个用作宏视场成像光源的LED发光二极管(12)、汇聚透镜(13)和第一分光镜(4);光学成像接收系统(29)包括:第二分光镜(9)、位于第二分光镜(9)反射方向的成像物镜(10)和CCD探测器(11)。
光学成像光源部分(28)还可以位于λ/4玻片(6)与测量物镜(7)之间或者位于λ/4玻片(6)与偏振分光镜(5)之间。
本发明装置还可以包括:用于控制光路中的光源在LED发光二极管(12)与激光器(1)之间切换的第一电子开关(3)、第二电子开关(14);其中第一电子开关(3)位于激光器(1)和第一分光镜(4)之间,第二电子开关(14)位于光学成像光源部分(28)中的汇聚透镜(13)和第一分光镜(4)之间。
本发明装置还可以包括一个光瞳滤波器(26),可以位于第一电子开关(3)之前,也可以位于第一电子开关(3)之后,还可以放置在偏振分光镜(5)和λ/4玻片(6)之间或λ/4玻片(6)和测量物镜(7)之间或偏振分光镜(5)和第二分光镜(9)之间或第二分光镜(9)和第三分光镜(15)之间;还可以使用两个相同的光瞳滤波器,分别位于差动共焦系统(25)中的第三分光镜(15)与两个聚焦镜之间;加入光瞳滤波器(26)是用于压缩测量物镜(7)的焦深,提高定焦灵敏度。
本发明还可以包括:分别与第一探测器(18)、第二探测器(21)相连的第一信号处理系统(23)、第二信号处理系统(22)和一个数据处理计算机(24),其中两个信号处理系统(23、22)接收两个探测器(18、21)的探测信号,经过放大处理后,由计算机(24)进行数据处理。
本发明对比已有的技术装置具有以下显著优点:
1.首次提出将光学成像技术与共焦显微技术结合,利用被测样品在CCD探测器上的成像信息作为显微镜物镜定焦的判断依据,对样品进行定焦粗找正。
2.融合共焦显微技术与光学成像技术,实现了共焦显微镜的大视场检测与微区域扫描的结合,压缩了实验设备。
3.采用了低相干的LED发光二极管作为CCD探测器成像光源,与差动共焦成像的光源分离,避免了激光光源的相干成像问题。
4.融合共焦显微技术与光学成像技术,采用电子开关分别控制两者光源,实现了共焦显微镜的大视场检测与微区域扫描测量的自动切换,无需重新定焦,简化了操作过程。
附图说明
图1为已有的共焦显微镜原理图;
图2为本发明兼有宏-微视场观测的超分辨差动共焦显微镜原理图;
图3为本装置差动响应曲线图。
其中:1-高稳定度激光器、2-扩束器、3-第一电子开关、4-第一分光镜、5-偏振分光镜、6-λ/4玻片、7-测量物镜、8-被测样品、9-第二分光镜、10-成像物镜、11-CCD探测器、12-LED发光二极管、13-汇聚透镜、14-第二电子开关、15-第三分光镜、16-第一聚光镜、17-第一针孔、18-第一探测器、19-第二聚光镜、20-第二针孔、21-第二探测器、22-第二信号处理系统、23-第一信号处理系统、24-计算机、25-差动共焦系统、26-光瞳滤波器、27-扩束器针孔、28-光学成像光源部分、29-光学成像接收部分。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明技术原理为:采用差动共焦显微成像技术将共焦显微镜接收光路布置为焦前和焦后两路探测光路,通过两路探测器探测到的具有不同位相的两路强度响应信号差动相减达到改善轴向分辨力和提高抗干扰能力的目的;另外,引入低相干光学成像系统,使用CCD探测器接收成像信号,使系统兼有宏视场观察功能,便于系统的定焦和被测样品的粗找正,达到了简化了操作过程的目的。
本发明兼有宏-微视场观测的超分辨差动共焦显微镜结构图如图2所示,包括:激光器(1),放在激光器(1)发射端的扩束器(2)、光学成像光源部分(28)、偏振分光镜(5),放置在偏振分光镜(5)透射方向的λ/4玻片(6)、测量物镜(7)、位于偏振分光镜(5)反射方向反方向的光学成像接收系统(29)和差动共焦系统(25);其中差动共焦系统(25)包括:第三分光镜(15);依次位于第三分光镜(15)的透射方向的第一聚光镜(16)、第一针孔(17)和贴近针孔的第一探测器(18);依次位于第三分光镜(15)的反射方向的第二聚光镜(19)、第二针孔(20)和贴近针孔的第二探测器(21);光学成像光源部分(28)包括:第一分光镜(4)、一个位于第一分光镜(4)的一个入射方向的用作宏视场成像光源的LED发光二极管(12)和汇聚透镜(13);光学成像接收系统(29)包括:第二分光镜(9)、位于第二分光镜(9)反射方向的成像物镜(10)和CCD探测器(11)。
本发明装置中的光学成像光源部分(28)还可以位于λ/4玻片(6)与测量物镜(7)之间或者位于λ/4玻片(6)与偏振分光镜(5)之间。用于控制光路中的光源在LED发光二极管(12)与激光器(1)之间切换的第一电子开关(3)、第二电子开关(14);其中第一电子开关(3)位于激光器(1)和第一分光镜(4)之间,第二电子开关(14)位于光学成像光源部分(28)中的汇聚透镜(13)和第一分光镜(4)之间。
本发明装置中还可以包括一个光瞳滤波器(26),该光瞳滤波器(26)可以位于第一电子开关(3)之前,也可以位于第一电子开关(3)之后,还可以放置在偏振分光镜(5)和λ/4玻片(6)之间、λ/4玻片(6)和测量物镜(7)之间、偏振分光镜(5)和第二分光镜(9)之间、第二分光镜(9)和第三分光镜(15)之间或者使用两个相同的光瞳滤波器,分别位于差动共焦系统(25)中的第三分光镜(15)与两个聚焦镜之间,用于压缩测量物镜(7)的焦深,提高定焦灵敏度。
本发明装置中还可以包括分别与第一探测器(18)、第二探测器(21)相连的第一信号处理系统(23)、第二信号处理系统(22)和一个数据处理计算机(24),其中两个信号处理系统(23、22)接收两个探测器(18、21)的探测信号,经过放大处理后,由计算机(24)进行数据处理。
本发明兼有宏-微视场观测的超分辨差动共焦显微镜测量原理如图2所示:打开第二电子开关14,关闭第一电子开关3,LED发光二极管12发出的光经过汇聚透镜13汇聚成平行光,经过第二电子开关14被第一分光镜4反射后透过偏振分光镜5变为偏振方向平行于纸面的p光,该p光透过λ/4玻片6被测量物镜7聚焦在被测样品8表面,被被测样品反射后返回光路,再次透过λ/4玻片6变为偏振方向垂直于纸面的s光,该s光被偏振分光镜反射到第二分光镜9,被第二分光镜9反射到成像透镜10后汇聚成像到位于成像透镜焦面上的CCD探测器11上,通过对CCD探测器接收到的图像进行分析,可以对被测样品进行宏视场观察,并且以此为判断依据对被测样品进行定焦粗找正,无需外界设备辅助,简化了找正过程。
然后打开第一电子开关3,关闭第二电子开关14,高稳定度激光器1发出的激光经过扩束器2扩束成宽光束激光后经过第一电子开关3,透过第一分光镜后和偏振分光镜5后变为偏振方向平行于纸面的p光,该p光透过λ/4玻片6被测量物镜7聚焦在被测样品8表面,后被被测样品反射后返回光路,再次透过λ/4玻片6变为偏振方向垂直于纸面的s光,该s光被偏振分光镜反射到第二分光镜9,透过第二分光镜9后被第三分光镜分成两束,一束被第一聚光镜16汇聚后进入位于第一聚光镜16焦点前距离为M的位置的第一针孔17,被第一探测器18接收;另一束被第二聚光镜19汇聚后进入位于第二聚光镜19焦点后距离为M的位置的第二针孔20,被第二探测器21接收。第二信号处理系统22和第一信号处理系统23将探测到的两个具有一定相位大小的信号放大处理后送入计算机24进行做差并且处理,即可实现具有微视场测量的超分辨显微探测。整个兼有宏-微视场观测的超分辨差动共焦显微镜中,第一分光镜4、第二分光镜9和第三分光镜15的透反比为1∶1。
在测量过程中当被测样品表面处于焦平面或者离焦时,激光器1、扩束器2、偏振分光镜5、λ/4玻片6、测量物镜7、第一聚光镜16、第一针孔17和第一探测器18构成“准共焦显微镜”,第一探测器18探测到的强度响应I1(u1,)为:
I 1 ( u 1 ) = [ sin ( u 1 / 2 ) ( u 1 / 2 ) ] 2 I 0
其中u1为轴向归一化坐标,,I0为入射光强,。
激光器1、扩束器2、偏振分光镜5、λ/4玻片6、测量物镜7、第二聚光镜19、第二针孔20和第二探测器21构成“准共焦显微镜”,第二探测器21探测到的强度响应I2(u2)为:
I 2 ( u 2 ) = [ sin ( u 2 / 2 ) ( u 2 / 2 ) ] 2 I 0
将I1(u1)和I2(u2)做差后得到:Idiff(u)=I1(u1)-I2(u2):
I diff ( u ) = I 1 ( u 1 ) - I 2 ( u 2 ) = { [ sin ( u 1 / 2 ) u 1 / 2 ] 2 - [ sin ( u 2 / 2 ) u 2 / 2 ] 2 } } I 0
计算机依据Idiff进行实时处理和计算,由Idiff强度曲线光强大小,重构出被测样品的微观三维形貌和三维尺度。
以上结合附图对本发明的具体实施方式作了说明,但这些说明不能被理解为限制了本发明的范围,本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上的改动都是本发明的保护范围。

Claims (6)

1.一种兼有宏-微视场观测的超分辨差动共焦显微镜,其特征在于包括激光器(1),依次放在激光器(1)发射端的扩束器(2)、偏振分光镜(5);放置在偏振分光镜(5)透射方向的λ/4玻片(6)、测量物镜(7);位于偏振分光镜(5)反射方向反方向的差动共焦系统(25);还包括一个光学成像光源部分(28)和一个光学成像接收系统(29);其中光学成像光源部分(28)位于扩束器(2)与偏振分光镜(5)之间,用于对样品的宏视场成像提供照明;光学成像接收系统(29)位于偏振分光镜(5)和差动共焦系统(25)之间,用于接收系统对样品所成的像。
2.根据权利1所述的兼有宏-微视场观测的超分辨差动共焦显微镜,其特征在于:差动共焦系统(25)包括:第三分光镜(15),依次放置在第三分光镜的透射方向的第一聚光镜(16)、第一针孔(17)和贴近针孔的第一探测器(18);依次放置在第三分光镜(15)的反射方向的第二聚光镜(19)、第二针孔(20)和贴近针孔的第二探测器(21);光学成像光源部分(28)包括依次排列的一个用作宏视场成像光源的LED发光二极管(12)、汇聚透镜(13)和第一分光镜(4);光学成像接收系统(29)包括:第二分光镜(9)、位于第二分光镜(9)反射方向的成像物镜(10)和CCD探测器(11)。
3.根据权利1和2所述的兼有宏-微视场观测的超分辨差动共焦显微镜,其特征在于:光学成像光源部分(28)还可以位于λ/4玻片(6)与测量物镜(7)之间或者位于λ/4玻片(6)与偏振分光镜(5)之间;
4.根据权利要求1和2所述的宏-微视场观测的超分辨差动共焦显微镜,其特征在于还可以包括:用于控制光路中的光源在LED发光二极管(12)与激光器(1)之间切换的第一电子开关(3)、第二电子开关(14);其中第一电子开关(3)位于激光器(1)和第一分光镜(4)之间,第二电子开关(14)位于光学成像光源部分(28)中的汇聚透镜(13)和第一分光镜(4)之间。
5.根据权利要求1和2所述的宏-微视场观测的超分辨差动共焦显微镜,其特征在于还可以包括一个光瞳滤波器(26),可以位于第一电子开关(3)之前,也可以位于第一电子开关(3)之后,还可以放置在偏振分光镜(5)和λ/4玻片(6)之间或λ/4玻片(6)和测量物镜(7)之间或偏振分光镜(5)和第二分光镜(9)之间或第二分光镜(9)和第三分光镜(15)之间;还可以使用两个相同的光瞳滤波器,分别位于差动共焦系统(25)中的第三分光镜(15)与两个聚焦镜之间;加入光瞳滤波器(26)是用于压缩测量物镜(7)的焦深,提高定焦灵敏度。
6.根据权利要求1和2所述的宏-微视场观测的超分辨差动共焦显微镜,其特征在于还可以包括:分别与第一探测器(18)、第二探测器(21)相连的第一信号处理系统(23)、第二信号处理系统(22)和一个数据处理计算机(24),其中两个信号处理系统(23、22)接收两个探测器(18、21)的探测信号,经过放大处理后,由计算机(24)进行数据处理。
CNA2009100793286A 2009-03-06 2009-03-06 兼有宏-微视场观测的超分辨差动共焦显微镜 Pending CN101498833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2009100793286A CN101498833A (zh) 2009-03-06 2009-03-06 兼有宏-微视场观测的超分辨差动共焦显微镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2009100793286A CN101498833A (zh) 2009-03-06 2009-03-06 兼有宏-微视场观测的超分辨差动共焦显微镜

Publications (1)

Publication Number Publication Date
CN101498833A true CN101498833A (zh) 2009-08-05

Family

ID=40945969

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2009100793286A Pending CN101498833A (zh) 2009-03-06 2009-03-06 兼有宏-微视场观测的超分辨差动共焦显微镜

Country Status (1)

Country Link
CN (1) CN101498833A (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036480A (zh) * 2012-12-11 2013-04-10 东南大学 一种基于led的电流互感器高压端光供能设备
CN103176268A (zh) * 2011-12-21 2013-06-26 佳能株式会社 显微镜
CN103459975A (zh) * 2011-04-14 2013-12-18 Fei公司 带有多个探测器的可切换显微镜布置
CN103837515A (zh) * 2014-03-17 2014-06-04 北京理工大学 一种共聚焦自动调节装置
CN104406951A (zh) * 2014-12-19 2015-03-11 北京理工大学 一种自动调焦微流控芯片检测装置
CN104471462A (zh) * 2012-02-23 2015-03-25 美国卫生与公共服务秘书部 多焦结构化照明显微系统和方法
CN104457581A (zh) * 2014-08-28 2015-03-25 深圳奥比中光科技有限公司 一种全场z向位移测量系统
CN104697982A (zh) * 2015-03-17 2015-06-10 北京理工大学 高空间分辨激光差动共焦质谱显微成像方法与装置
CN104913731A (zh) * 2014-11-16 2015-09-16 徐云鹏 一种激光差动共焦显微测控系统
CN106643557A (zh) * 2017-02-24 2017-05-10 哈尔滨工业大学 基于共焦显微原理的宏微结合面形测量装置及其测量方法
CN108286936A (zh) * 2017-04-18 2018-07-17 北京理工大学 激光微纳加工差动共焦在线监测一体化方法与装置
US10025082B2 (en) 2012-02-23 2018-07-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Multi-focal structured illumination microscopy systems and methods
CN108413867A (zh) * 2017-04-18 2018-08-17 北京理工大学 激光微纳加工分光瞳差动共焦在线监测一体化方法与装置
CN108510498A (zh) * 2018-04-12 2018-09-07 北京和众视野科技有限公司 纤维测量非冻结换视场自动判定算法
CN109187729A (zh) * 2018-11-13 2019-01-11 北京理工大学 后分光瞳共焦Raman-LIBS-质谱探测的飞秒激光加工监测方法与装置
CN109187494A (zh) * 2018-11-13 2019-01-11 北京理工大学 飞秒激光加工参数差动共焦拉曼光谱原位监测方法与装置
CN109856789A (zh) * 2019-02-26 2019-06-07 中国科学院苏州生物医学工程技术研究所 高内涵超分辨一体化显微成像系统及方法
CN110546545A (zh) * 2017-04-27 2019-12-06 欧蒙医学实验诊断股份公司 光学扫描装置和方法
CN111386439A (zh) * 2017-09-18 2020-07-07 安盟生技股份有限公司 干涉成像设备及其应用
CN112074765A (zh) * 2018-05-01 2020-12-11 纳米电子成像有限公司 用于自动显微镜聚焦的系统、装置和方法
CN112710251A (zh) * 2020-12-17 2021-04-27 东北电力大学 一种多模式光学在线测量装置及测量方法
JP2022514666A (ja) * 2018-12-21 2022-02-14 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング 顕微鏡

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759901B2 (en) * 2011-04-14 2017-09-12 Fei Company Switchable microscope arrangement with multiple detectors
CN103459975A (zh) * 2011-04-14 2013-12-18 Fei公司 带有多个探测器的可切换显微镜布置
US20140160265A1 (en) * 2011-04-14 2014-06-12 Fei Company Switchable microscope arrangement with multiple detectors
CN103459975B (zh) * 2011-04-14 2019-07-26 Fei 公司 带有多个探测器的可切换显微镜布置
CN103176268A (zh) * 2011-12-21 2013-06-26 佳能株式会社 显微镜
US9696534B2 (en) 2012-02-23 2017-07-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Multi-focal structured illumination microscopy systems and methods
CN104471462A (zh) * 2012-02-23 2015-03-25 美国卫生与公共服务秘书部 多焦结构化照明显微系统和方法
CN104471462B (zh) * 2012-02-23 2017-09-19 美国卫生与公共服务秘书部 多焦结构化照明显微系统和方法
US10025082B2 (en) 2012-02-23 2018-07-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Multi-focal structured illumination microscopy systems and methods
CN103036480A (zh) * 2012-12-11 2013-04-10 东南大学 一种基于led的电流互感器高压端光供能设备
CN103036480B (zh) * 2012-12-11 2015-10-07 东南大学 一种基于led的电流互感器高压端光供能设备
CN103837515A (zh) * 2014-03-17 2014-06-04 北京理工大学 一种共聚焦自动调节装置
CN104457581B (zh) * 2014-08-28 2017-03-22 深圳奥比中光科技有限公司 一种全场z向位移测量系统
CN104457581A (zh) * 2014-08-28 2015-03-25 深圳奥比中光科技有限公司 一种全场z向位移测量系统
CN104913731A (zh) * 2014-11-16 2015-09-16 徐云鹏 一种激光差动共焦显微测控系统
CN104406951A (zh) * 2014-12-19 2015-03-11 北京理工大学 一种自动调焦微流控芯片检测装置
CN104697982A (zh) * 2015-03-17 2015-06-10 北京理工大学 高空间分辨激光差动共焦质谱显微成像方法与装置
CN104697982B (zh) * 2015-03-17 2017-07-07 北京理工大学 高空间分辨激光差动共焦质谱显微成像方法与装置
CN106643557A (zh) * 2017-02-24 2017-05-10 哈尔滨工业大学 基于共焦显微原理的宏微结合面形测量装置及其测量方法
CN106643557B (zh) * 2017-02-24 2019-04-16 哈尔滨工业大学 基于共焦显微原理的宏微结合面形测量装置及其测量方法
CN108286936A (zh) * 2017-04-18 2018-07-17 北京理工大学 激光微纳加工差动共焦在线监测一体化方法与装置
CN108413867A (zh) * 2017-04-18 2018-08-17 北京理工大学 激光微纳加工分光瞳差动共焦在线监测一体化方法与装置
CN110546545A (zh) * 2017-04-27 2019-12-06 欧蒙医学实验诊断股份公司 光学扫描装置和方法
CN110546545B (zh) * 2017-04-27 2022-09-16 欧蒙医学实验诊断股份公司 光学扫描装置和方法
CN111386439B (zh) * 2017-09-18 2022-07-12 安盟生技股份有限公司 干涉成像设备及其应用
CN111386439A (zh) * 2017-09-18 2020-07-07 安盟生技股份有限公司 干涉成像设备及其应用
CN108510498A (zh) * 2018-04-12 2018-09-07 北京和众视野科技有限公司 纤维测量非冻结换视场自动判定算法
CN108510498B (zh) * 2018-04-12 2021-11-12 北京和众视野科技有限公司 纤维测量非冻结换视场自动判定方法
CN112074765A (zh) * 2018-05-01 2020-12-11 纳米电子成像有限公司 用于自动显微镜聚焦的系统、装置和方法
US11520133B2 (en) 2018-05-01 2022-12-06 Nanotronics Imaging, Inc. Systems, devices and methods for automatic microscope focus
US11796785B2 (en) 2018-05-01 2023-10-24 Nanotronics Imaging, Inc. Systems, devices and methods for automatic microscope focus
CN109187494A (zh) * 2018-11-13 2019-01-11 北京理工大学 飞秒激光加工参数差动共焦拉曼光谱原位监测方法与装置
CN109187729A (zh) * 2018-11-13 2019-01-11 北京理工大学 后分光瞳共焦Raman-LIBS-质谱探测的飞秒激光加工监测方法与装置
JP2022514666A (ja) * 2018-12-21 2022-02-14 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング 顕微鏡
CN109856789A (zh) * 2019-02-26 2019-06-07 中国科学院苏州生物医学工程技术研究所 高内涵超分辨一体化显微成像系统及方法
CN109856789B (zh) * 2019-02-26 2021-10-22 中国科学院苏州生物医学工程技术研究所 高内涵超分辨一体化显微成像系统及方法
CN112710251A (zh) * 2020-12-17 2021-04-27 东北电力大学 一种多模式光学在线测量装置及测量方法

Similar Documents

Publication Publication Date Title
CN101498833A (zh) 兼有宏-微视场观测的超分辨差动共焦显微镜
CN101526477B (zh) 激光差动共焦图谱显微层析成像装置
CN103926197B (zh) 高空间分辨双轴差动共焦图谱显微成像方法与装置
CN207556477U (zh) 一种表面形貌测量装置
CN103105143B (zh) 基于被测表面荧光激发的差动共焦显微测量装置
CN103278093B (zh) 一种差动双区域共焦轴向测量装置
CN102175143B (zh) 基于柱透镜光路的线扫描差动共焦测量装置
CN104482880B (zh) 激光受激发射损耗三维超分辨分光瞳差动共焦成像方法与装置
CN102425998B (zh) 光学元件抛光表面质量全参数检测装置和检测方法
CN101408478B (zh) 共焦组合超长焦距测量方法与装置
CN109945797A (zh) 一种表面形貌测量装置
CN101793495B (zh) 分割焦斑探测的超分辨双轴差动共焦测量方法与装置
CN103411957A (zh) 高空间分辨双轴共焦图谱显微成像方法与装置
CN102759328A (zh) 基于椭球反射双通照明差动共焦测量装置与方法
CN104482881B (zh) 激光受激发射损耗三维超分辨差动共焦成像方法与装置
CN105044895B (zh) 一种超分辨共焦显微成像装置与方法
CN102818522A (zh) 相位共轭反射双通照明共焦显微装置
CN104567674A (zh) 双边拟合共焦测量方法
CN109211875A (zh) 后置分光瞳激光差动共焦布里渊-Raman光谱测试方法及装置
CN102540447A (zh) 一种俘获及探测复用的扫描光镊系统
CN109187438A (zh) 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
CN113267252A (zh) 一种凝视型共聚焦显微形貌光谱四维探测系统
CN1614457A (zh) 具有高空间分辨成像能力的共焦干涉显微镜
CN102589466B (zh) 一种轮廓的显微方法
CN109357623A (zh) 一种用共焦显微镜系统测量手机面板厚度的方法与装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090805