CN101498630B - 一种样品预处理集成芯片 - Google Patents

一种样品预处理集成芯片 Download PDF

Info

Publication number
CN101498630B
CN101498630B CN2008100571869A CN200810057186A CN101498630B CN 101498630 B CN101498630 B CN 101498630B CN 2008100571869 A CN2008100571869 A CN 2008100571869A CN 200810057186 A CN200810057186 A CN 200810057186A CN 101498630 B CN101498630 B CN 101498630B
Authority
CN
China
Prior art keywords
raceway groove
sample pretreatment
hole
purifying
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100571869A
Other languages
English (en)
Other versions
CN101498630A (zh
Inventor
崔大付
陈兴
刘长春
张璐璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN2008100571869A priority Critical patent/CN101498630B/zh
Publication of CN101498630A publication Critical patent/CN101498630A/zh
Application granted granted Critical
Publication of CN101498630B publication Critical patent/CN101498630B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明样品预处理集成芯片,包括盖片和至少一层结构片,结构片上有微沟道和至少三个与微沟道相连通的孔,微沟道选自下面至少两种:具有错流分离或错流过滤的微结构的分离沟道,具有固相萃取微结构的纯化沟道,具有至少两条次级沟道汇合而成的混合沟道。具有分离或过滤、混合、纯化等预处理功能,用于血液、尿液等样品的预处理,获得DNA、蛋白质、氨基酸等满足后续检测需要的分析样品。其基于错流分离或错流过滤原理进行颗粒或细胞的分离或过滤,基于化学法进行细胞破裂,基于固相萃取原理进行目标分子的提纯。采用微机电系统技术研制出多种样品预处理集成微流控芯片,至少包括上述两种样品预处理功能,具有连续、高效的样品预处理效果。

Description

一种样品预处理集成芯片
技术领域
本发明涉及微流控生物芯片技术领域,是一种集成分离或过滤、混合、纯化等预处理功能的样品预处理芯片,具体来讲,采用错流分离或错流过滤方式进行分离或过滤,利用微沟道网络的优化设计进行液体混合,采用固相萃取法进行目标分子的提纯,最后,利用MEMS技术将上述预处理功能至少两种功能集成在微流控芯片上。
背景技术
随着微机电系统(MEMS)技术与分析科学、计算机科学及生命科学等的交叉研究,微流控生物芯片已开始向微全分析系统(micrototal analysis systems,μTAS)发展。μTAS是指把生物和化学等领域中所涉及的样品制备,生化反应,传感检测等基本操作单元集成或基本集成到一块几平方厘米的芯片上,由微通道形成网络,以可控流体贯穿整个系统,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术。微全分析系统具有如分析效率高、样品与试剂消耗少(微升级)、能耗低、集成度高等许多优点,在环境监测、食品卫生监测、医药卫生检测、药物筛选等领域具有广泛的应用前景。但是,目前微全分析系统并未实现真正意义上的全分析,还存在许多问题,比如系统功能单一、集成度较低、微型化程度有限等,大多数不包括样品前处理功能。
样品预处理是指对天然的、成分复杂的、不能直接进行分析检测的生物样品(如血液、尿液、环境样品等)进行预处理,以实现对待测物的检测。样品预处理主要是指待测物的分离、纯化、浓缩等操作,以及待测物样品与试剂的快速混合等,待测物可以是微粒、细胞、细菌等(如血液中的白细胞、孕妇血液中的胎儿细胞、尿液中的某种细菌),也可以是蛋白质、DNA、葡萄糖等各种生物分子。
已报道的用于细胞/颗粒分离或过滤的芯片技术主要包括:微过滤芯片技术、介电电泳芯片技术、超声波芯片技术、场效应分离芯片技术和磁珠分离芯片技术等。这些技术各具优缺点,如介电电泳芯片技术具有不受分离细胞尺寸的限制、易于实现自动化控制和芯片微型化的优点,但需特殊缓冲液以产生较强的交变电场,强电场以及特殊缓冲液对细胞有一定破坏作用。超声波芯片技术具有可连续分离、不易堵塞等优点,但是,超声波发生装置集成化和小型化困难,而且超声波对细胞也有一定的破坏作用。磁珠分离芯片技术具有特异性高、准确性好的优点,但磁珠制备复杂,而且控制磁珠的配套装置微型化、集成化也较困难。微过滤芯片技术具有工作原理简单、不需要特殊缓冲液、易于集成等优点,但主要采用盲端过滤方式进行细胞/颗粒分离。盲端过滤(又称死端过滤)由于它的给水流方向垂直于过滤介质的表面流动,固体被过滤介质截流,逐步形成滤饼,易造成芯片的堵塞,分离效率较低,一般只能完成单一颗粒的分离过滤。专利(申请号,200510012106.4)报道了一种错流过滤芯片,由于它的液体流动方向平行于过滤微结构表面,小尺寸颗粒/细胞在剪切力作用下通过过滤微结构,大尺寸颗粒/细胞不能通过过滤结构而处于悬浮状态随着液体向前流动,可大大减少芯片的堵塞问题,可实现不同尺寸细胞/颗粒的同时分离和收集。
已报道的用于待测分子纯化的芯片技术主要包括:固相萃取芯片技术、固相可逆固定芯片技术、磁珠纯化芯片技术和液-液萃取芯片技术等。这些技术各具有优缺点,如固相萃取(SPE)芯片技术具有纯化效率高,分析速度快等优点,难点在于在微米级沟道中固相载体的制备和固定。固相可逆固定(SPRI)芯片技术具有高的选择性,但待测分子脱附较困难。此外,SPRI芯片技术同样存在固相载体制备和固定困难等问题。液-液萃取芯片技术与常规液-液萃取技术相比,具有高选择性、萃取速度快、富集倍率高等优点。但是,目前用于DNA提纯的液-液萃取试剂大多具有挥发毒性,限制了该芯片技术在核酸纯化领域的应用。
总的来说,由于生物样品的复杂性,仅一步样品预处理操作或一种样品预处理技术往往不能满足后续分析检测的需要。以核酸样品为例,样品预处理包括细胞分离、破胞、脱蛋白、提取DNA等多步工作。目前的样品前处理芯片功能单一、预处理水平不高、集成度较低,大多数不能直接用于后续的生化反应及分析检测。
发明内容
为了解决现有技术的问题,本发明的目的在于制备一种集成两种及两种以上样品预处理功能的微流控芯片,实现原始样品的分离或过滤,混合,提纯等样品预处理操作,样品预处理产物可直接用于后续的生化反应或分析检测。
为达到上述目的,本发明设计的多层芯片结构将实现不同样品预处理功能的微结构集成到叠层结构中以提供一种基于MEMS技术的样品预处理集成芯片,包括:一层盖片和至少一层结构片,结构片上具有微沟道和至少三个与微沟道相连通的孔,所述微沟道选自下面至少两种:具有错流分离或错流过滤的微结构的分离沟道,具有固相萃取微结构的纯化沟道,具有至少两条次级沟道汇合而成的混合沟道。结构片可以是一片也可以是几片,结构片是硅片、玻璃片或聚合物片中的一种或几种。微沟道可在同一结构片上,也可在不同结构片上通过相应的孔相连通。结构片上的孔是盲孔或通孔。盖片包括至少三个通孔,并与结构片所对应的孔相连通,盖片是玻璃片、聚合物片(例如聚甲基丙烯酸甲酯片)或玻璃-聚二甲基硅氧烷复合盖片。另外,芯片还可包括连接片和基片,连接片是聚二甲基硅氧烷片,基片是玻璃片、硅片等,其中连接片用于结构片和基片的封接。
所述的结构片具有混合沟道和纯化沟道。所述的结构片具有混合沟道和纯化沟道,可以实现样品与试剂的混合以及分析物提纯这两种样品预处理功能。
所述的结构片具有分离沟道和纯化沟道,可以实现样品的分离或过滤以及分析物提纯这两种样品预处理功能。
所述的结构片具有分离沟道和混合沟道,可以实现样品的分离或过滤以及样品与试剂的混合这两种样品预处理功能。
所述的结构片具有分离沟道、混合沟道和纯化沟道,可以实现样品的分离或过滤、样品和试剂的混合与分析物提纯等多种样品预处理功能。该样品预处理集成芯片中盖片可具有一个或多个储液池,该盖片具有至少四个通孔,该通孔与结构片所对应的孔相连通。该样品预处理集成芯片中还包括连接片和基片,连接片是聚二甲基硅氧烷等,基片是玻璃或硅片等。
其中,混合沟道由至少两条次级微沟道汇合而成,汇合后的混合沟道是直沟道、弯曲沟道、折线沟道或不规则沟道,混合沟道中具有或不具有微柱、微脊等微结构。
其中,纯化沟道具有微柱或多孔硅的固相载体。固相载体可进行热氧化处理,用于纯化核酸。固相载体也可进行化学修饰,例如利用固相载体功能团接枝固定抗原用于纯化蛋白质抗体。
其中,分离沟道中微结构是微柱阵列或微坝,微结构的排列方向与沟道轴向平行,或者微结构的排列方向与沟道轴向成不等于90°的角度,微结构至少为一列,微结构将沟道沿轴向至少分为两条微通道。微柱阵列的间隙或微坝顶端与沟道顶部间的间隙(即沟道深度尺寸与微坝高度尺寸的差异)由所需分离细胞或颗粒的尺寸决定,尺寸大于微结构间隙的细胞或颗粒被分离微结构所阻挡留在原微通道中,尺寸小于微结构间隙的细胞或颗粒通过分离微结构进入另一个通道中,不同尺寸的细胞或颗粒在不同的微通道中流动并从不同的出口流出,实现不同尺寸细胞或颗粒的分离和收集。
混合沟道中的微结构是圆形、三角形、方形、长方形或不规则形状。微结构在混合通道的底部或顶部;或者微结构在混合通道底部和顶部都有。微结构可以与混合通道底部和顶部都连接,也可以只与混合通道底部或顶部中的一个连接。
纯化沟道中的微柱是圆柱、三角形柱、方柱、多边形柱或不规则形状微柱。
分离沟道的微柱是圆柱、三角形柱、方柱、多边形柱或不规则形状微柱。
对于具有混合和纯化功能的样品预处理集成芯片,混合沟道与纯化沟道可以是同一条,也可以是不同的两条。如果混合沟道与纯化沟道是同一条,则该沟道同时具有混合沟道和纯化沟道的结构特征,并可实现混合和纯化两个功能。
本发明的有益效果:本发明基于错流过滤原理进行颗粒或细胞的分离或过滤,基于化学法破裂细胞,基于固相萃取原理进行目标分子的提纯。采用微机电系统技术研制出多种样品预处理集成微流控芯片,芯片中设计分离或过滤微结构进行错流分离或错流过滤,可以大大减少如采用盲端过滤原理进行分离或过滤所产生的滤饼效应,可最大限度的避免芯片堵塞问题,同时由于采用错流过滤或错流分离还可实现各分离细胞或颗粒的平行收集。芯片中液体流动为层流,化学破胞试剂通过扩散作用与细胞混合,从而实现细胞的破裂。细胞溶液在化学破胞试剂溶液的夹流作用下进入混合沟道,这种鞘流式设计可大大提高液体的混合效率,同时在混合沟道中制备微柱、微脊等微结构也可提高混合效率,最终提高细胞破裂效率。本发明基于固相萃取原理进行DNA、蛋白质等生物分子的纯化或浓缩,以满足后续生化分析与检测的需要,本发明采用MEMS技术直接在芯片微沟道中制备微柱或多孔硅固相载体,具有制备简单、制备重复性好等优点。对固相载体热氧化或修饰后进行目标分子固相萃取,由于采用集成化的微柱或多孔硅作为固相载体,具有大的比表面积,可大大提高固相萃取的提取效率。本发明的样品预处理集成芯片具有两种或两种以上的样品预处理功能,通过对流体的控制实现真实样品的预处理操作,具有连续、高效的样品预处理效果。可用于血液、尿液等原始生物样品的预处理,获得纯度较高的DNA、蛋白质、氨基酸等满足后续检测需要的分析样品。
附图说明
图1:为本发明具有四层结构的样品预处理集成芯片示意图。
图2:为本发明具有四层结构的样品预处理集成芯片示意图。
图3:为本发明具有两层结构的样品预处理集成芯片示意图。
图4:为采用如图1所示的芯片提取全血样品基因组DNA的PCR扩增产物电泳图。
图5:为采用如图3所示的芯片提取干细胞样品基因组DNA的PCR扩增产物电泳图。
本发明摘要附图为图1B。
附图标记说明:
盖片-a               结构片-b         连接片-c
基片-d               进样孔-1         出样孔-2
进样孔-3             出样孔-4         通孔-5
通孔-6               通孔-7           通孔-8
通孔-9               通孔-10          分离沟道-11
混合及纯化沟道-12    储液池-13        出样孔-14
进样孔-15            出样孔-16        进样孔-17
盲孔-18              通孔-19          盲孔-20
通孔-21              通孔-22          通孔-23
盲孔-24              盲孔-25          通孔-26
盲孔-27              盲孔-28          分离沟道-29
混合沟道-30          纯化沟道-31      通孔-32
通孔-33              盲孔-34          盲孔-35
盲孔-36              混合及纯化沟道-37通孔-38
第一结构片-b1        第二结构片-b2    第三结构片-b3
具体实施方式
下面结合附图和实施例对本发明进一步说明,通过结合附图对各组成部分的详细说明将会更好地描述实现本发明。应该指出,所描述的实施例仅仅视为说明的目的,而不是对本发明的限制。
本发明基于MEMS技术的样品预处理集成芯片,如图1示出了一个具有四层结构的样品预处理集成芯片,其中:图1A为芯片各层俯视示意图;图1B为芯片中间层即结构片的背面示意图;图1C为芯片上层即盖片的背面示意图。
图1所示的样品预处理集成芯片由盖片a、结构片b、连接片c和基片d组成,盖片a与基片d之间有结构片b和连接片c,结构片b位于盖片a和连接片c之间,连接片c位于结构片b和基片d之间,如图1A所示。
盖片a可以是玻璃片、聚合物片,或玻璃-聚二甲基硅氧烷复合盖片。例如盖片a为聚甲基丙烯酸甲酯(PMMA)层,盖片a具有一个储液池13以及四个通孔,通孔与结构片所对应的孔相连通。盖片a具有四个通孔(进样孔1、进样孔3、出样孔2和出样孔4)和一个环形储液池13,如图1A和图1C所示。
中间结构片b是硅片层,包括分离沟道11,混合及纯化沟道12(混合沟道和纯化沟道合为一条沟道),以及六个通孔(六个通孔从左至右排列为:通孔5,通孔6,通孔7,通孔8,通孔9和通孔10),如图1 A和图1B所示。分离沟道11中具有微柱阵列结构或微坝结构。混合及纯化沟道12壁为经过热氧化处理或者化学修饰过的多孔硅固相载体,或者在混合及纯化沟道12中具有经过热氧化处理或者化学修饰过的微柱固相载体。连接片c为聚二甲基硅氧烷(PDMS),基片d为玻璃片或硅片,PDMS连接片c将结构片b和基片d封接起来。进样孔1和通孔5相通,出样孔2和通孔7相通,进样孔3和通孔8相通,出样孔4和通孔10相通。
储液池13与结构片b即硅片上的通孔6和通孔9相通,而与其它通孔不相通。
图2为另一具有四层结构的样品预处理集成芯片,由盖片a和三片结构片(分别为第一结构片b1、第二结构片b2、第三结构片b3)组成。其中:图2A为芯片整体外观示意图;图2B为芯片第一结构片的俯视示意图;图2C为芯片第二结构片的俯视示意图;图2D为芯片第三结构片的俯视示意图。
盖片a可以是玻璃片、聚合物片,或玻璃-聚二甲基硅氧烷复合片,盖片a包括四个通孔:出样孔14、进样孔15、出样孔16、进样孔17,如图2A所示。
第一结构片b1是硅片或PDMS片或其它聚合物片,用于细胞或颗粒分离。第一结构片b1包括两个盲孔(盲孔18和盲孔20)、三个通孔(通孔19,通孔21和通孔22)和分离沟道29。通孔22、通孔21、盲孔20、通孔19、分离沟道29、盲孔18从左至右顺序排列,分离沟道29的一端与盲孔18相连通,分离沟道29的另一端与通孔19相连,分离沟道29的另一端与盲孔20相连通,如图2B所示。
第二结构片b2是硅片或PDMS片或其它聚合物片,用于快速混合。第二层结构片b2包括两个盲孔(盲孔24和盲孔25)、两个通孔(通孔23和通孔26)和混合沟道30,如图2C所示,通孔26、盲孔25、盲孔24、混合沟道30、通孔23从左至右顺序排列,混合沟道30的一端与通孔23相连通,混合沟道30的另一端分别与盲孔24和盲孔25相连通。混合沟道30中可具有增加混合效果的微结构。
第三结构片b3是硅片或玻璃片,用于固相萃取。第三层结构片b3包括两个盲孔(盲孔27和盲孔28)和纯化沟道31,如图2D所示。盲孔28、纯化沟道31和盲孔27从左至右顺序排列,盲孔28与纯化沟道31的一端相接通,盲孔27与纯化沟道31的另一端相接通。纯化沟道31壁为经过热氧化处理或者化学修饰过的多孔氧化硅,或者在纯化沟道31中具有经过热氧化处理或者化学修饰过的微柱固相载体。
出样孔14、通孔22、通孔26和盲孔28相通,进样孔15、通孔21和盲孔25相通,出样孔16和盲孔20相通,进样孔17和盲孔18相通,通孔19和盲孔24,通孔23和盲孔27相通。
图3为仅具有两层结构的样品预处理集成芯片,其中图3A为芯片整体外观示意图;图3B为芯片结构片的俯视示意图。该样品预处理集成芯片由盖片a和结构片b组成,如图3A所示。盖片a包括三个通孔(通孔38,通孔32和通孔33)。通孔38、通孔32和通孔33从右至左顺序排列,该盖片a为PDMS-玻璃复合片或玻璃片。结构片b包括三个盲孔(盲孔34,盲孔35和盲孔36)、混合及纯化沟道37(混合沟道和纯化沟道合为一条沟道),如图3B所示,混合及纯化沟道37的一端分别与盲孔34和盲孔35连通,混合及纯化沟道37另一端与盲孔36连通。混合及纯化沟道37壁为经过热氧化处理或者化学修饰过的多孔硅固相载体,或者在混合及纯化沟道37中具有经过热氧化处理或者化学修饰过的微柱固相载体。该结构片b是硅片或玻璃片。
通孔38和盲孔34相通,通孔32和盲孔35相通,通孔33和盲孔36相通。
实施例1
基于MEMS技术的样品预处理集成芯片,主要包括细胞分离、细胞破裂和DNA提纯三个样品预处理功能,其原理分别如下:基于错流过滤原理实现血液样品中不同细胞的分离,根据红细胞和白细胞尺寸差异设计了坝式错流过滤微结构,在血液样品的流动过程中实现红细胞和白细胞的连续分离和在线收集;基于化学法破裂细胞,设计夹流式微沟道网络结构实现化学试剂与细胞的快速混合,最终实现细胞的溶解破裂;基于固相萃取原理提取基因组DNA,利用MEMS技术在芯片中制备集成固相载体,实现样品中DNA基因的快速提取。此外,经红细胞出口导出的红细胞和血浆还可与其他后续生化反应、分离检测等芯片相集成。
该样品预处理集成芯片尺寸为4cm×1.2cm×5mm(长×宽×高),进样、出样孔直径为2mm,包括盖片、结构片、连接片和基片,如图1A所示。
盖片是PMMA层,包括一个环形白细胞储液池13、两个进样孔(进样孔1和样孔3)和两个出样孔(出样孔2和出样孔4),其中白细胞储液池13连接细胞分离区的白细胞出口为通孔6以及细胞破裂和DNA纯化区的细胞入口为通孔9,用于储存从细胞分离区导出的白细胞并将该白细胞导入细胞破裂和DNA纯化区,如图1C所示。
结构片是硅片,包括细胞分离沟道11、混合及纯化沟道12(用于细胞破裂和DNA纯化),以及六个通孔(通孔5,通孔6,通孔7,通孔8,通孔9和通孔10),如图1B所示。设计细胞破裂和DNA提纯共用同一个沟道,即混合及纯化沟道12;胍盐为裂解血细胞的破胞试剂和固相萃取核酸的结合试剂。细胞分离沟道11中包括两排平行的微坝,微坝与封装底层的间隙为3.5μm。混合及纯化沟道12壁是多孔氧化硅载体。
连接片是PDMS层,基片是玻璃片,PDMS连接片将结构硅片和玻璃基片封接起来。
样品预处理集成芯片制备过程如下:(1)利用MEMS技术制备硅结构片b。清洗硅片;沉积氮化硅(Si3N4);光刻孔图形;KOH溶液湿法腐蚀;背面二次光刻微坝图形;深刻蚀;第三次光刻沟道和孔图形;深刻蚀,形成沟道和通孔;电化学阳极氧化制备多孔硅;热氧化;去掉其余Si3N4。(2)聚甲基丙烯酸甲酯(PMMA)盖片a采用传统机械方法制备。(3)PDMS前体旋涂于玻璃基片d上热固化后得PDMS连接片c。(4)PDMS连接片c直接将硅结构片b和玻璃基片d粘结封装,硅结构片b和PMMA盖片a采用环氧树脂胶粘接封装,盖片a的四个通孔处装配金属管并连接软管,完成样品预处理集成芯片的制备。
抗凝全血进行实验,红细胞和白细胞在错流过滤沟道中进行分离,红细胞导出芯片,白细胞进入细胞破裂和DNA提纯沟道;白细胞在胍盐结合液作用下破胞,同时白细胞中的DNA被释放并吸附在多孔氧化硅载体上;漂洗杂质;最后提纯DNA。进行了三次平行实验,整个血液样品预处理过程约为50min。芯片提取全血样品中的基因组DNA进行PCR扩增反应,PCR产物凝胶电泳结果如图4所示。从图中可知,三次平行实验均扩增出203-bp-gapd基因片段,并具有与阳性对照相当的扩增效率,表明提取DNA具有较高的纯度能用于后续的酶反应,并具有较好的重复性。
实施例2
基于MEMS技术的样品预处理集成芯片,主要包括细胞破裂和DNA提纯两个样品预处理功能,其原理分别如下:基于化学法破裂细胞,设计夹流式微沟道网络结构实现化学试剂与细胞的快速混合,最终实现细胞的溶解破裂;基于固相萃取原理提取基因组DNA,利用MEMS技术在芯片中制备集成固相载体,实现样品中基因的快速提取。
该样品预处理集成芯片尺寸为4cm×1.2cm×5mm(长×宽×高),进样、出样孔直径为2mm,包括盖片a和结构片b,如图3A所示。盖片a是玻璃片,用于密封芯片,包括三个通孔:通孔38、通孔32和通孔33,如图3A所示。结构片b是硅片,包括混合及纯化沟道37(用于细胞破裂和DNA纯化)和三个盲孔(盲孔34、盲孔35和盲孔36),如图3B所示。设计细胞破裂和DNA提纯共用同一个沟道,即混合及纯化沟道37;胍盐为裂解血细胞的破胞试剂和固相萃取核酸的结合试剂。混合及纯化沟37壁是多孔氧化硅载体。
样品预处理集成芯片制备过程如下:(1)利用MEMS技术制备硅结构片b。清洗硅片;沉积氮化硅(Si3N4);光刻;KOH溶液湿法腐蚀;电化学阳极氧化制备多孔硅;氧化;去掉其余Si3N4。(2)盖片a是键合玻璃,如图3所示位置超声波打孔。(3)硅片和打孔玻璃清洗干净后阳极键合封装,盖片a的三个通孔处粘接塑料管并连接软管,完成样品预处理集成芯片的制备。
干细胞培养液进行实验,细胞培养液和胍盐结合液同时导入芯片;在流动过程中,细胞与胍盐溶液逐渐混合,干细胞破裂,其中DNA被释放并吸附在多孔氧化硅载体上;漂洗杂质;最后提纯DNA。样品预处理过程少于40min。芯片提取全血样品中的基因组DNA进行PCR扩增反应,PCR产物凝胶电泳结果如图5所示。从图中可知,成功扩增出203-bp-gapd基因片段,表明提取DNA具有较高的纯度能用于后续的酶反应,并具有较好的重复性。
上述附图及具体实施例仅用于说明本发明,本发明并不局限于此。在由本发明权利要求所限定的发明实质和范围内对本发明进行细微的改变均落在本发明的保护范围内。如沟道和微柱形状、尺寸,多层基片的叠层方式等。

Claims (12)

1.一种样品预处理集成芯片,其特征在于,包括:一层盖片和至少一层结构片,结构片上具有微沟道和至少三个与微沟道相连通的孔,所述微沟道选自下面至少两种:具有错流分离或错流过滤的微结构的分离沟道,具有固相萃取微结构的纯化沟道,具有至少两条次级沟道汇合而成的混合沟道,所述的盖片包括至少三个通孔,并与结构片所对应的孔相连通。
2.如权利要求1所述的样品预处理集成芯片,其特征在于:所述的结构片具有混合沟道和纯化沟道。
3.如权利要求1所述的样品预处理集成芯片,其特征在于:所述的结构片具有分离沟道和纯化沟道。
4.如权利要求1所述的样品预处理集成芯片,其特征在于:所述的结构片具有分离沟道和混合沟道。
5.如权利要求1所述的样品预处理集成芯片,其特征在于:所述的结构片具有分离沟道、混合沟道和纯化沟道。
6.如权利要求1或2或4或5所述的样品预处理集成芯片,其特征在于:所述的混合沟道由至少两条次级微沟道汇合而成,汇合后的混合沟道是直沟道、弯曲沟道、折线沟道或不规则沟道,混合沟道中具有或不具有微结构。
7.如权利要求1或2或3或5所述的样品预处理集成芯片,其特征在于:所述的纯化沟道具有微柱或多孔硅的固相载体。
8.如权利要求7所述的样品预处理集成芯片,其特征在于:对所述的固相载体进行热氧化处理或化学修饰。
9.如权利要求1或3或4或5所述的样品预处理集成芯片,其特征在于:所述的分离沟道中微结构是微柱阵列或微坝,微结构的排列方向与分离沟道轴向平行或与分离沟道轴向成不等于90°的角度,微结构至少为一列,微结构将分离沟道沿轴向至少分为两条微通道,微柱阵列的间隙或微坝顶端与分离沟道顶部间的间隙由所需分离细胞或颗粒的尺寸决定。
10.如权利要求1或2或5所述的样品预处理集成芯片,其特征在于:所述的混合沟道与纯化沟道是同一条,或是不同的两条。
11.如权利要求1所述的样品预处理集成芯片,其特征在于:所述的盖片是玻璃片、聚合物片或玻璃-聚二甲基硅氧烷复合盖片,结构片是硅片、玻璃片或聚合物片中的一种或几种。
12.如权利要求5所述的样品预处理集成芯片,其特征在于:包括的盖片具有一个或多个储液池以及至少四个通孔,通孔与结构片所对应的孔相连通。
CN2008100571869A 2008-01-30 2008-01-30 一种样品预处理集成芯片 Expired - Fee Related CN101498630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100571869A CN101498630B (zh) 2008-01-30 2008-01-30 一种样品预处理集成芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100571869A CN101498630B (zh) 2008-01-30 2008-01-30 一种样品预处理集成芯片

Publications (2)

Publication Number Publication Date
CN101498630A CN101498630A (zh) 2009-08-05
CN101498630B true CN101498630B (zh) 2012-06-27

Family

ID=40945803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100571869A Expired - Fee Related CN101498630B (zh) 2008-01-30 2008-01-30 一种样品预处理集成芯片

Country Status (1)

Country Link
CN (1) CN101498630B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564832B (zh) * 2010-12-16 2016-02-03 孙续国 尿液细胞分离芯片及试剂
CN102350093A (zh) * 2011-07-21 2012-02-15 利穗科技(苏州)有限公司 一种平面玻璃分离色谱柱
CN102302867A (zh) * 2011-07-21 2012-01-04 利穗科技(苏州)有限公司 一种多通道固相萃取玻璃柱
CN103033608A (zh) * 2011-10-10 2013-04-10 中山大学 一种用于免疫分析研究的集成化微流控芯片及其应用
KR102054678B1 (ko) * 2012-07-12 2020-01-22 삼성전자주식회사 유체 분석 카트리지
CN103776940A (zh) * 2012-10-19 2014-05-07 中国科学院电子学研究所 一种超大接触面积的阵列化微型气相色谱柱芯片
CN104280278A (zh) * 2014-09-18 2015-01-14 大连理工大学 一种制备纳米通道断面形貌样品的置换表征方法
CN105223054B (zh) * 2015-10-13 2019-06-11 毛坤云 生物检材载体批量快速去除装置及去除方法
CN105548589B (zh) * 2015-12-23 2017-05-31 辽东学院 微流控液液萃取‑液液波导集成化检测系统及检测方法
CN107376750A (zh) * 2017-08-03 2017-11-24 青岛科技大学 一种可实现高效混合的微流体芯片
CN108373962B (zh) * 2018-02-02 2021-07-09 太原理工大学 一种双重捕获式核酸提取微流控芯片
CN109304050A (zh) * 2018-11-14 2019-02-05 昆明理工大学 一种高效辅助萃取集成装置及方法
WO2020204108A1 (ja) * 2019-04-04 2020-10-08 国立大学法人千葉大学 クロスフローろ過装置
CN111001451A (zh) * 2019-12-13 2020-04-14 深圳先进技术研究院 一种微流控芯片及基于微流控芯片的全血分离方法
CN111190022A (zh) * 2020-01-07 2020-05-22 中国科学院半导体研究所 基于谐振式传感器的生化检测系统及检测方法
CN111266140B (zh) * 2020-03-09 2021-07-16 厦门大学 无油分选-直接注入-icpms单细胞分析系统
CN112923762B (zh) * 2021-02-23 2022-04-08 南京航空航天大学 一种采用仿角蜥蜴-红瓶子草联合结构吸液芯的超薄平板热管及其加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712948A (zh) * 2005-05-27 2005-12-28 南通大学附属医院 脂蛋白微流控芯片电泳检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712948A (zh) * 2005-05-27 2005-12-28 南通大学附属医院 脂蛋白微流控芯片电泳检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈兴等.用于血样前处理的BioMEMS 微流控芯片.《传感技术学报》.2006,第19卷(第5期),1991-1995. *

Also Published As

Publication number Publication date
CN101498630A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
CN101498630B (zh) 一种样品预处理集成芯片
US11944971B2 (en) Sorting particles in a microfluidic device
Chen et al. Microfluidic chip for blood cell separation and collection based on crossflow filtration
Chen et al. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification
US11872560B2 (en) Microfluidic chips for particle purification and fractionation
US20050142565A1 (en) Nucleic acid purification chip
EP1280601A1 (en) Microfluidic devices
ZA200606197B (en) A diagnostic system for carrying out a nuclelc acid sequence amplification and detection process
WO2008024070A1 (en) Microfluidic filtration unit, device and methods thereof
US20060057581A1 (en) Microfabricated fluidic device for fragmentation
Chen et al. Microfluidic devices for sample pretreatment and applications
Chen et al. Isolation of plasma from whole blood using a microfludic chip in a continuous cross-flow
Malic et al. Current state of intellectual property in microfluidic nucleic acid analysis
CN109746058B (zh) 微液滴检测芯片
WO2007050040A1 (en) Immobilization unit and device for isolation of nucleic acid molecules
US20160258928A1 (en) Microfluidic device for separating liquid from the same liquid containing deformable particles without external sources of energy
Chen et al. Microdevice for continuous isolation of plasma from whole blood
Chen et al. Microfluidics chips for blood cell separation
Lee et al. Hydrodynamically focused particle filtration using an island structure
Chen et al. Integrated Microfluidic Chips for Whole Blood Pretreatment
Park et al. A 96-well SPRI reactor in a photo-activated polycarbonate (PPC) microfluidic chip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20140130