CN101488737B - Digital programmable time delay apparatus based on dynamic current mirror - Google Patents

Digital programmable time delay apparatus based on dynamic current mirror Download PDF

Info

Publication number
CN101488737B
CN101488737B CN 200910079583 CN200910079583A CN101488737B CN 101488737 B CN101488737 B CN 101488737B CN 200910079583 CN200910079583 CN 200910079583 CN 200910079583 A CN200910079583 A CN 200910079583A CN 101488737 B CN101488737 B CN 101488737B
Authority
CN
China
Prior art keywords
nmos transistor
transistor
pmos transistor
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910079583
Other languages
Chinese (zh)
Other versions
CN101488737A (en
Inventor
克兵格·赛客帝·玻梅
杨华中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhiyiju Microelectronics Technology (tianjin) Co Ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 200910079583 priority Critical patent/CN101488737B/en
Publication of CN101488737A publication Critical patent/CN101488737A/en
Application granted granted Critical
Publication of CN101488737B publication Critical patent/CN101488737B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pulse Circuits (AREA)

Abstract

基于动态电流镜的数字可编程时间延迟装置属于数字时间延迟电路技术领域,其特征在于;由数字控制电路和时间延迟电路依次串接构成,其中,时间延迟电路采用了动态电流镜分别控制输出反相器两个MOS管的栅电压,在保持传递函数的单调性的同时也降低了功耗。

Figure 200910079583

A digital programmable time delay device based on a dynamic current mirror belongs to the technical field of digital time delay circuits, and is characterized in that it is composed of a digital control circuit and a time delay circuit in series, wherein the time delay circuit adopts a dynamic current mirror to control the output feedback respectively. The gate voltage of the two MOS tubes of the phase device reduces power consumption while maintaining the monotonicity of the transfer function.

Figure 200910079583

Description

基于动态电流镜的数字可编程时间延迟装置Digital Programmable Time Delay Device Based on Dynamic Current Mirror

技术领域technical field

“基于动态电流镜的数字可编程时间延迟装置(DPDE)”直接应用的技术领域是低功耗超大规模集成电路设计。所提出电路是一类可以适用于DCO,DLL,ADPLL,微处理器和内存的重要模块。The technical field of direct application of "Digital Programmable Time Delay Device (DPDE) based on dynamic current mirror" is the design of low-power VLSI. The proposed circuit is a class of important modules that can be applied to DCO, DLL, ADPLL, microprocessor and memory.

背景技术Background technique

通信几年来一直是一个国家比较重视的领域。这是因为,现代通信系统在社会和自然环境中具有越来越广泛的应用。由于通信系统的广泛需求,尤其重点应用于军事,国家安全,医疗和环境观察等领域,降低成本成为人们所关心的重要问题。随着CMOS工艺的不断的发展数字电路的电压,成本和功耗也随着不断地降低,速度也上升了。Communication has always been an area that a country attaches great importance to for several years. This is because modern communication systems have more and more applications in social and natural environments. Due to the wide demand of communication systems, especially in the fields of military, national security, medical treatment and environmental observation, cost reduction has become an important issue that people are concerned about. With the continuous development of CMOS technology, the voltage, cost and power consumption of digital circuits are also continuously reduced, and the speed is also increased.

一般通信系统里面都需要用时钟产生电路来控制内部的模块。在这种时钟产生模块一般需要用压控振荡器(VCO),延迟锁相环(DLL)或微处理器。时间延迟单元是这些模块的重要部分。因为数字CMOS所带来的好处,即,低功耗,低成本和高速度,就希望能用数字CMOS来实现这些以前用模拟方法实现的电路。所以,把模拟DLL改变为数字DLL,把模拟的VCO改变为数控振荡器(DCO)。如果要实现这种中电路,就需要数字控制的时间延迟单元。为了达到低功耗的要求,适用的时间延迟单元应该是低功耗,单调和低复杂度的。基于电流镜的CSI(current starved inverter)数字控制的实际那延迟单元。(见参考文献”)。这是因为,CSIDPDE的延迟是单调的而且可以预测的。In general communication systems, clock generation circuits are required to control internal modules. A voltage-controlled oscillator (VCO), a delay-locked loop (DLL) or a microprocessor is generally required in this clock generation module. The time delay unit is an important part of these blocks. Because of the benefits brought by digital CMOS, ie, low power consumption, low cost, and high speed, it is desirable to implement these circuits previously implemented by analog methods in digital CMOS. So, change the analog DLL to a digital DLL, and change the analog VCO to a digitally controlled oscillator (DCO). If such a middle circuit is to be implemented, a digitally controlled time delay unit is required. In order to meet the requirement of low power consumption, the applicable time delay unit should be low power consumption, monotonic and low complexity. The actual delay unit based on the CSI (current starved inverter) digital control of the current mirror. (See "References"). This is because the latency of CSIDPDE is monotonic and predictable.

传统CSI DPDE是通过控制输入反相器里面NMOS的楼及电阻来改变延迟的。这种方法的好处是功耗低但是它也有不足之处。当数字控制信号变化是不能保证延迟的单调性。(见参考文献M.Maymandi-Nejad and M.Sachdev,“A digitally programmable delay element,Design andanalysis”IEEE Trans.On Very Large Scale Integration(VLSI)Systems,Vol.11,No.5,Oct.2003).为了解决以上问题,可以采用基于电流镜的CSI DPDE。这种DPDE是通过控制电流镜的电流来改变放电电流获得延迟的改变。她的好处是单调性且给出一个控制信号就可以估计所能获得的延迟。就是说延迟是可以与测得。代表性工作包括,Mohammad Maymandi-Nejadand Manoj Sachdev提出的一种基于电流镜的CSI DPDE.(见参考文献M.Maymandi-Nejad andM.Sachdev,“A digitally programmable delay element,Design and analysis”IEEE Trans.On VeryLarge Scale Integration(VLSI)Systems,Vol.11,No.5,Oct.2003).虽然MohammadMaymandi-Nejad所提出的DPDE可以得到单调性,但是具有一个很大的缺点:它消耗的静态和动态功耗太大了,没有办法跟传统的CSI DPDE比较。The traditional CSI DPDE changes the delay by controlling the building and resistance of the NMOS in the input inverter. The advantage of this method is low power consumption but it also has disadvantages. Monotonicity of the delay cannot be guaranteed when the digital control signal changes. (See references M.Maymandi-Nejad and M.Sachdev, "A digitally programmable delay element, Design and analysis" IEEE Trans. On Very Large Scale Integration (VLSI) Systems, Vol.11, No.5, Oct.2003). In order to solve the above problems, CSI DPDE based on current mirror can be adopted. This DPDE changes the discharge current by controlling the current of the current mirror to obtain the delay change. Her advantage is monotonicity and the delay that can be obtained can be estimated by giving a control signal. That is to say, the delay is measurable and measurable. Representative works include a current mirror-based CSI DPDE proposed by Mohammad Maymandi-Nejad and Manoj Sachdev. (See references M.Maymandi-Nejad and M.Sachdev, "A digitally programmable delay element, Design and analysis" IEEE Trans.On VeryLarge Scale Integration (VLSI) Systems, Vol.11, No.5, Oct.2003). Although the DPDE proposed by MohammadMaymandi-Nejad can obtain monotonicity, it has a big disadvantage: the static and dynamic power consumption it consumes Too big, there is no way to compare with traditional CSI DPDE.

发明内容Contents of the invention

本发明的目的是在现有的基于电流镜的CSI DPDE电路的基础上做一定的改进,提出一种基于动态电流镜的CSI DPDE结构。The purpose of the present invention is to make certain improvements on the basis of the existing CSI DPDE circuit based on the current mirror, and propose a CSI DPDE structure based on the dynamic current mirror.

本发明的特征在于:它含有:The present invention is characterized in that: it contains:

基于动态电流镜的数字可编程时间延迟装置,其特征在于;由数字控制电路和时间延迟电路组成,其中:The digital programmable time delay device based on the dynamic current mirror is characterized in that; it is composed of a digital control circuit and a time delay circuit, wherein:

数字控制电路,含有四个PMOS管:第五PMOS管(MP6),第六PMOS管(MP1),Digital control circuit, including four PMOS transistors: the fifth PMOS transistor (MP6), the sixth PMOS transistor (MP1),

第七PMOS管(MP2),第八PMOS管(MP3),其中:所述四个PMOS管(MP0),(MP1),(MP2)和(MP3)的四个栅极依次分别输入数字信号b0,b1,b2,和b3,四个源极共同接高电平VDD,而漏极彼此互联:The seventh PMOS transistor (MP2), the eighth PMOS transistor (MP3), wherein: the four gates of the four PMOS transistors (MP0), (MP1), (MP2) and (MP3) respectively input digital signals b in sequence 0 , b 1 , b 2 , and b 3 , the four sources are connected to high level V DD , and the drains are connected to each other:

时间延迟电路,含有:第一PMOS管(M2),第二PMOS管(M7),第三PMOS管(M4)和一个引入控制电流镜的第四PMOS管(Mcs),还含有第一NMOS管(M1),第二NMOS管(M5),第三NMOS管(M6),用于控制时间延迟的第四NMOS管(Mn1)和第五NMOS管(Mn2),以及第六NMOS管(M3),其中:所述第八PMOS管(MP3)和第四PMOS管(Mcs)的源极互连,漏极互联,所速第一NMOS管(M1)的栅极,第二NMOS管(M5)的栅极,第一PMOS管(M2)的栅极,第二PMOS管(M7)的栅极,以及第三NMOS管(M6)的栅极互联后接输入信号Din,第一NMOS管(M1)的源极,第二NMOS管(M5)的源极,第三NMOS管(M6)的源极,以及第六NMOS管(M3)的源极,第三NMOS管(M6)的源极,以及第六NMOS管(M3)的源极都接地,第一NMOS管(M1)的漏极和第四NMOS管(Mn1)的源极相连,第二NMOS管(M5)的漏极和第五NMOS管(Mn2)的源极相连,第四NMOS管(Mn1)的漏极,第一PMOS管(M2)的漏极,第三PMOS管(M4)的栅极以及第二PMOS管(M7)的源极相连,第二PMOS管(M7)的漏极,第三NMOS管(M6)的漏极和第六NMOS管(M3)的栅极相连,第四NMOS管(Mn1)的栅极,第五NMOS管(Mn2)的栅极和漏极,以及第四PMOS管(Mcs)的漏极互连,第六NMOS管(M3)的漏极,第三PMOS管(M4)的漏极与第四PMOS管(Mcs)的栅极互联后组成所述时间延迟电路的输出端Dour,第一PMOS管(M2)得源极和第三PMOS管(M4)的源极互连后接高电平VDD.The time delay circuit includes: a first PMOS transistor (M2), a second PMOS transistor (M7), a third PMOS transistor (M4) and a fourth PMOS transistor (Mcs) introduced into a control current mirror, and also includes a first NMOS transistor (M1), the second NMOS transistor (M5), the third NMOS transistor (M6), the fourth NMOS transistor (Mn1) and the fifth NMOS transistor (Mn2) for controlling the time delay, and the sixth NMOS transistor (M3) , wherein: the source interconnection of the eighth PMOS transistor (MP3) and the fourth PMOS transistor (Mcs), the drain interconnection, the gate of the first NMOS transistor (M1), the second NMOS transistor (M5) The gate of the first PMOS transistor (M2), the gate of the second PMOS transistor (M7), and the gate of the third NMOS transistor (M6) are interconnected and then connected to the input signal Din, and the first NMOS transistor (M1 ), the source of the second NMOS transistor (M5), the source of the third NMOS transistor (M6), and the source of the sixth NMOS transistor (M3), the source of the third NMOS transistor (M6), And the source of the sixth NMOS transistor (M3) is grounded, the drain of the first NMOS transistor (M1) is connected to the source of the fourth NMOS transistor (Mn1), and the drain of the second NMOS transistor (M5) is connected to the fifth NMOS transistor (M5). The source of the NMOS transistor (Mn2) is connected, the drain of the fourth NMOS transistor (Mn1), the drain of the first PMOS transistor (M2), the gate of the third PMOS transistor (M4) and the second PMOS transistor (M7) The source of the second PMOS transistor (M7) is connected, the drain of the third NMOS transistor (M6) is connected to the gate of the sixth NMOS transistor (M3), the gate of the fourth NMOS transistor (Mn1), The gate and drain of the fifth NMOS transistor (Mn2), and the drain interconnection of the fourth PMOS transistor (Mcs), the drain of the sixth NMOS transistor (M3), the drain of the third PMOS transistor (M4) and The gate of the fourth PMOS transistor (Mcs) is interconnected to form the output end Dour of the time delay circuit, and the source of the first PMOS transistor (M2) and the source of the third PMOS transistor (M4) are interconnected and then connected to a high voltage. flat V DD .

所述基于动态电流镜的数字可编程时间延迟装置的延迟时间td由下式决定:The delay time t of the digital programmable time delay device based on the dynamic current mirror is determined by the following formula:

td=Cg.VTP/It d =C g .V TP /I

其中VTP为第三PMOS管(M4)的栅极阈值电压,I为流过第五NMOS管(Mn2)的漏电流,Cg是第三PMOS管(M4)的栅电容。Wherein V TP is the gate threshold voltage of the third PMOS transistor (M4), I is the leakage current flowing through the fifth NMOS transistor (Mn2), and C g is the gate capacitance of the third PMOS transistor (M4).

本发明的有益效果是:与传统的电流镜CSI DPDE结构相比较,本发明提出的基于动态电流镜CSI DPDE,在相似的测试条件件下,可以节省高达90%的能量;同时其工延迟可预测性提高了,所提出的电路技术非常适合作为低功耗DCO电路的重要模块The beneficial effects of the present invention are: compared with the traditional current mirror CSI DPDE structure, the dynamic current mirror CSI DPDE proposed by the present invention can save up to 90% of energy under similar test conditions; The predictability is improved, and the proposed circuit technique is well suited as an important building block for low-power DCO circuits

附图说明Description of drawings

图1.数字控制时间延迟单元框图。其中b0~b3为数字控制输入码,Din是要延迟的信号,Dout为输出。Figure 1. Block diagram of a digitally controlled time delay unit. Among them, b 0 ~ b 3 are digital control input codes, Din is the signal to be delayed, and Dout is the output.

图2.Mohammad Maymandi-Nejad所提出的CSI DPDE。Din,Dout,和b0~b3的意义与图1类似。Figure 2. CSI DPDE proposed by Mohammad Maymandi-Nejad. The meanings of Din, Dout, and b 0 to b 3 are similar to those in Figure 1.

图3.本发明的电路结构图。Din,Dout,和b0~b3的意义与图1类似。Fig. 3. Circuit structure diagram of the present invention. The meanings of Din, Dout, and b 0 to b 3 are similar to those in Figure 1.

图4.输出反相器PMOS和NMOS删电压。Figure 4. Output inverter PMOS and NMOS voltages.

图5.本发明DPDE对不同控制输入码的电压输出。Fig. 5. The voltage output of the DPDE of the present invention to different control input codes.

图6.本发明延迟随控制输入的变化。Figure 6. Inventive delay variation with control input.

图7.本发明的一个应用Figure 7. An application of the present invention

具体实施方式Detailed ways

本发明解决其技术问题的技术方案是:本发明提出的基于动态电流镜时间延迟单元,如图3所示。本发明的DPDE具有采用开关电流镜把静态电流关掉,而且分开了两个输出管的控制电压,以避免延迟单元输出端PMOS和NMOS同时打开的情况下所消耗的短路电流功耗。The technical solution of the present invention to solve the technical problem is: the time delay unit based on the dynamic current mirror proposed by the present invention, as shown in FIG. 3 . The DPDE of the present invention uses a switching current mirror to turn off the quiescent current, and separates the control voltages of the two output transistors, so as to avoid short-circuit current consumption when the output terminals PMOS and NMOS of the delay unit are turned on at the same time.

DPDE的工作原理简单。当Din为低电平时,单元处于复位状态,M2,M3打开Dout为0电平。当Din变为高电平时,M1打开M3,M4的栅极电容开始放电。放电的速度通过Mn1(Mn2)的电流I控制。这个电流为通过Msc的控制电流和。控制电流由Mp0~Mp3提供。The working principle of DPDE is simple. When Din is low level, the unit is in the reset state, M2, M3 open Dout is 0 level. When Din goes high, M1 turns on M3, and the gate capacitance of M4 starts to discharge. The speed of discharge is controlled by the current I of Mn1 (Mn2). This current is the sum of the control currents through Msc. The control current is provided by Mp0 ~ Mp3.

本发明由控制部分,动态电流镜(也可以叫开关电流镜)和一个输出反相器组成。动态电流镜和输出反相器中NMOS(M3)和PMOS(M4)的栅极分开控制是本发明的两个核心。The invention consists of a control part, a dynamic current mirror (also called a switch current mirror) and an output inverter. The separate gate control of NMOS (M3) and PMOS (M4) in the dynamic current mirror and output inverter are the two cores of the present invention.

本发明的工作原理与传统图2的传统DPDE类似,也包括两个模式:在复位模式时,Din为低点平,M1,M5和M6关断。此时M2把M4的栅极电压拉到高电平是它关断然后M7打开把M3的栅极拉到高电平使M3打开。因为M4已经关掉了,不会有直通的电流通过。这时输出Dout为低电平所以Msc也会打开。因为M1和M5是关断的不会有静态电流。在比延迟较模式时,Din变为高电平,M2和M7被关断而M1,M5,和M6打开.M6的打开会把M3的栅极电压拉到低电平让他关断。这时工作原理跟图2是相似。当M4打开时把输出拉到高电平。这时原来打开的Msc就被关掉了因为延迟效果已经得到了,这样就达到减小动态电流的效果。The working principle of the present invention is similar to the conventional DPDE in FIG. 2 , and also includes two modes: in the reset mode, Din is at low level, and M1, M5 and M6 are turned off. At this time, M2 pulls the gate voltage of M4 to a high level, it is turned off, and then M7 is turned on, and the gate of M3 is pulled to a high level to turn on M3. Because M4 has been turned off, there will be no through current. At this time, the output Dout is low level so Msc will also be turned on. Because M1 and M5 are turned off, there will be no quiescent current. In the delay comparison mode, Din becomes high level, M2 and M7 are turned off and M1, M5, and M6 are turned on. The opening of M6 will pull the gate voltage of M3 to low level to turn him off. At this time, the working principle is similar to that in Figure 2. Pull the output high when M4 is on. At this time, the originally opened Msc is turned off because the delay effect has been obtained, so as to achieve the effect of reducing the dynamic current.

为了验证本发明的性能和所带来的改进的效果,我们用了spectreTM仿真工具对电路进行仿真。仿真结果比较参见表1。In order to verify the performance of the present invention and the improved effect brought by it, we used the spectre TM simulation tool to simulate the circuit. The simulation results are compared in Table 1.

Table 1:比较器性能Table 1: Comparator Performance

  MohammadMaymandi-NejadMohammad Maymandi-Nejad   本发明 this invention   工艺(um)Process (um)   0.180.18   0.180.18   电源电压(V)Power supply voltage (V)   1.81.8   1V1V   最高工作速度(MHz)Maximum working speed (MHz)   400400   450450   功耗(uW)Power consumption (uW)   211211   2020

图4本发明输出反相器中M3和M4的栅极控制电压。不同于传统CSI DPDE,M4的控制电压总落后于M3的栅极电压。所以任何时刻只有一个MOS打开,使得原来在Din转换时所产生的直通电流被取消。图5是本发明的随输入控制码的输出电压。图6表示本发明在不同的输入控制码的延迟。可以看出延迟时完全单调变化的。Fig. 4 The gate control voltages of M3 and M4 in the output inverter of the present invention. Unlike traditional CSI DPDE, the control voltage of M4 always lags behind the gate voltage of M3. Therefore, only one MOS is turned on at any time, so that the direct current generated during Din conversion is canceled. Fig. 5 is the output voltage with the input control code of the present invention. Fig. 6 shows the delay of the present invention at different input control codes. It can be seen that the delay varies completely monotonically.

总结:Summarize:

这个延迟单元电路包括:控制部分可以提供不同的电流。动态电流镜在需要电流的时候打开,不需要的时候关断而且几乎是自动的。一个输入反相器和一个输出反相器。This delay cell circuit includes: the control part can provide different currents. Dynamic current mirrors turn on when current is needed and turn off when not needed almost automatically. One input inverter and one output inverter.

本发明的低功耗特性使得它非常适合作为DCO电路的重要的模块,如图7所示。TDCO是DCO输出信号,Enable是使能信号用来启动DCO。The low power consumption characteristic of the present invention makes it very suitable as an important module of the DCO circuit, as shown in FIG. 7 . TDCO is the DCO output signal, and Enable is the enable signal used to start the DCO.

TDCOTDCO == ff (( ΣΣ kk == 00 NN -- 11 bb kk 22 kk )) -- -- -- (( 22 ))

试(2)中N为控制输入的比特数。图7中N分为4比特的“coarse code”(粗码)和4比特的”fine code”(微码),即N=8。In test (2), N is the number of bits that control the input. In Fig. 7, N is divided into "coarse code" (coarse code) of 4 bits and " fine code " (microcode) of 4 bits, namely N=8.

Claims (1)

1.基于动态电流镜的数字可编程时间延迟装置,其特征在于;由数字控制电路和时间延迟电路组成,其中:1. The digital programmable time delay device based on dynamic current mirror is characterized in that; it is made up of digital control circuit and time delay circuit, wherein: 数字控制电路,含有四个PMOS管:第五PMOS管(MP6),第六PMOS管(MP1),Digital control circuit, including four PMOS transistors: the fifth PMOS transistor (MP6), the sixth PMOS transistor (MP1), 第七PMOS管(MP2),第八PMOS管(MP3),其中:所述四个PMOS管(MP0),(MP1),(MP2)和(MP3)的四个栅极依次分别输入数字信号b0,b1,b2,和b3,四个源极共同接高电平VDD,而漏极彼此互联:The seventh PMOS transistor (MP2), the eighth PMOS transistor (MP3), wherein: the four gates of the four PMOS transistors (MP0), (MP1), (MP2) and (MP3) respectively input digital signals b in sequence 0 , b 1 , b 2 , and b 3 , the four sources are connected to high level V DD , and the drains are connected to each other: 时间延迟电路,含有:第一PMOS管(M2),第二PMOS管(M7),第三PMOS管(M4)和一个引入控制电流镜的第四PMOS管(Mcs),还含有第一NMOS管(M1),第二NMOS管(M5),第三NMOS管(M6),用于控制时间延迟的第四NMOS管(Mn1)和第五NMOS管(Mn2),以及第六NMOS管(M3),其中:所述第八PMOS管(MP3)和第四PMOS管(Mcs)的源极互连,漏极互联,所述第一NMOS管(M1)的栅极,第二NMOS管(M5)的栅极,第一PMOS管(M2)的栅极,第二PMOS管(M7)的栅极,以及第三NMOS管(M6)的栅极互联后接输入信号Din,第一NMOS管(M1)的源极,第二NMOS管(M5)的源极,第三NMOS管(M6)的源极,以及第六NMOS管(M3)的源极都接地,第一NMOS管(M1)的漏极和第四NMOS管(Mn1)的源极相连,第二NMOS管(M5)的漏极和第五NMOS管(Mn2)的源极相连,第四NMOS管(Mn1)的漏极,第一PMOS管(M2)的漏极,第三PMOS管(M4)的栅极以及第二PMOS管(M7)的源极相连,第二PMOS管(M7)的漏极,第三NMOS管(M6)的漏极和第六NMOS管(M3)的栅极相连,第四NMOS管(Mn1)的栅极,第五NMOS管(Mn2)的栅极和漏极,以及第四PMOS管(Mcs)的漏极互连,第六NMOS管(M3)的漏极,第三PMOS管(M4)的漏极与第四PMOS管(Mcs)的栅极互联后组成所述时间延迟电路的输出端Dout,第一PMOS管(M2)的源极和第三PMOS管(M4)的源极互连后接高电平VDDThe time delay circuit includes: a first PMOS transistor (M2), a second PMOS transistor (M7), a third PMOS transistor (M4) and a fourth PMOS transistor (Mcs) introduced into a control current mirror, and also includes a first NMOS transistor (M1), the second NMOS transistor (M5), the third NMOS transistor (M6), the fourth NMOS transistor (Mn1) and the fifth NMOS transistor (Mn2) for controlling the time delay, and the sixth NMOS transistor (M3) , wherein: the source interconnection of the eighth PMOS transistor (MP3) and the fourth PMOS transistor (Mcs), the drain interconnection, the gate of the first NMOS transistor (M1), the second NMOS transistor (M5) The gate of the first PMOS transistor (M2), the gate of the second PMOS transistor (M7), and the gate of the third NMOS transistor (M6) are interconnected and then connected to the input signal Din, and the first NMOS transistor (M1 ), the source of the second NMOS transistor (M5), the source of the third NMOS transistor (M6), and the source of the sixth NMOS transistor (M3) are all grounded, and the drain of the first NMOS transistor (M1) pole is connected to the source of the fourth NMOS transistor (Mn1), the drain of the second NMOS transistor (M5) is connected to the source of the fifth NMOS transistor (Mn2), the drain of the fourth NMOS transistor (Mn1), the first The drain of the PMOS transistor (M2), the gate of the third PMOS transistor (M4) and the source of the second PMOS transistor (M7) are connected, the drain of the second PMOS transistor (M7), and the third NMOS transistor (M6) The drain of the drain is connected to the gate of the sixth NMOS transistor (M3), the gate of the fourth NMOS transistor (Mn1), the gate and drain of the fifth NMOS transistor (Mn2), and the gate of the fourth PMOS transistor (Mcs) Drain interconnection, the drain of the sixth NMOS transistor (M3), the drain of the third PMOS transistor (M4) and the gate of the fourth PMOS transistor (Mcs) are interconnected to form the output terminal Dout of the time delay circuit, The source of the first PMOS transistor (M2) and the source of the third PMOS transistor (M4) are interconnected and then connected to a high level V DD ; 所述基于动态电流镜的数字可编程时间延迟装置的延迟时间td由下式决定:The delay time t of the digital programmable time delay device based on the dynamic current mirror is determined by the following formula: td=Cg.VTP/It d =C g .V TP /I 其中VTP为第三PMOS管(M4)的栅极阈值电压,I为流过第五NMOS管(Mn2)的漏电流,Cg是第三PMOS管(M4)的栅电容。Wherein V TP is the gate threshold voltage of the third PMOS transistor (M4), I is the leakage current flowing through the fifth NMOS transistor (Mn2), and C g is the gate capacitance of the third PMOS transistor (M4).
CN 200910079583 2009-03-10 2009-03-10 Digital programmable time delay apparatus based on dynamic current mirror Active CN101488737B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910079583 CN101488737B (en) 2009-03-10 2009-03-10 Digital programmable time delay apparatus based on dynamic current mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910079583 CN101488737B (en) 2009-03-10 2009-03-10 Digital programmable time delay apparatus based on dynamic current mirror

Publications (2)

Publication Number Publication Date
CN101488737A CN101488737A (en) 2009-07-22
CN101488737B true CN101488737B (en) 2011-08-17

Family

ID=40891447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910079583 Active CN101488737B (en) 2009-03-10 2009-03-10 Digital programmable time delay apparatus based on dynamic current mirror

Country Status (1)

Country Link
CN (1) CN101488737B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895280B (en) * 2010-07-30 2011-12-28 徐和根 Digital-analog mixed CMOS programmable clock delay controller with extra high accuracy
FI20115481A0 (en) 2011-05-18 2011-05-18 Aalto Korkeakoulusaeaetioe Digitally controlled delay
CN107632660B (en) * 2017-09-26 2024-02-06 南京美辰微电子有限公司 12-bit current mirror circuit with precision and area

Also Published As

Publication number Publication date
CN101488737A (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5706007B2 (en) Semiconductor device with on-chip voltage regulator
CN102025352B (en) Hysteresis voltage comparator
Andersson et al. A Vernier time-to-digital converter with delay latch chain architecture
CN102111132B (en) High Speed Fully Differential Clock Duty Cycle Calibration Circuit
CN105958971A (en) Clock duty ratio calibration circuit
CN105958994A (en) Subthreshold level shifter having wide input voltage range
CN102437836A (en) Low-power-consumption short pulse generation circuit and low-power-consumption pulse type D trigger
CN102769470A (en) A Current Steering Digital-to-Analog Converter with Time Domain Error Correction Function
US20170324402A1 (en) Power efficient high speed latch circuits and systems
CN101488737B (en) Digital programmable time delay apparatus based on dynamic current mirror
CN111404486A (en) Low-power consumption crystal oscillator based on self-charging
Huang et al. A 288-μW 6-GHz hybrid dynamic comparator with 54-ps delay in 40-nm CMOS
CN106444344B (en) A kind of high stable clock generation circuit based on automatic biasing frequency-locked loop
CN108489625A (en) A kind of fully integrated nearly zero-power temperature sensors of CMOS
ur Rahman et al. Quasi-resonant clocking: Continuous voltage-frequency scalable resonant clocking system for dynamic voltage-frequency scaling systems
CN106100615A (en) A kind of high linearity adjustable digital phase interpolator
Talegaonkar et al. An 8 Gb/s–64 Mb/s, 2.3–4.2 mW/Gb/s burst-mode transmitter in 90 nm CMOS
Gundala et al. Nanosecond delay level shifter with logic level correction
CN105119596B (en) Phaselocked loop voltage controlled oscillator delay unit based on anti-single particle Transient irradiation effects
CN107872204A (en) A New TDA Circuit with Low Power Consumption, Small Area and Large Gain
Gharabaghlo et al. High resolution CMOS voltage comparator for high speed SAR ADCs
CN201918969U (en) High Speed Fully Differential Clock Duty Cycle Calibration Circuit
Wei et al. Novel building blocks for PLL using complementary logic in 28nm UTBB-FDSOI technology
Chen et al. A dual-edged triggered explicit-pulsed level converting flip-flop with a wide operation range
Bui et al. High speed differential pulse-width control loop based on frequency-to-voltage converters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191113

Address after: 300467 room 102-3, 11 / F, Qifa building, Eco City Science Park, 1620 Zhongtian Avenue, Zhongxin eco city, Binhai New Area, Tianjin

Patentee after: Zhiyiju microelectronics technology (Tianjin) Co., Ltd

Address before: 100084 Beijing 100084-82 mailbox

Patentee before: Tsinghua University