CN101487703B - Fast full-view stereo photography measuring apparatus - Google Patents

Fast full-view stereo photography measuring apparatus Download PDF

Info

Publication number
CN101487703B
CN101487703B CN2009100958556A CN200910095855A CN101487703B CN 101487703 B CN101487703 B CN 101487703B CN 2009100958556 A CN2009100958556 A CN 2009100958556A CN 200910095855 A CN200910095855 A CN 200910095855A CN 101487703 B CN101487703 B CN 101487703B
Authority
CN
China
Prior art keywords
panoramic
wavelength
point
image
vision sensor
Prior art date
Application number
CN2009100958556A
Other languages
Chinese (zh)
Other versions
CN101487703A (en
Inventor
朱艺华
梁雁
汤一平
郭世东
陈强
陈龙艳
Original Assignee
汤一平
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汤一平, 浙江工业大学 filed Critical 汤一平
Priority to CN2009100958556A priority Critical patent/CN101487703B/en
Publication of CN101487703A publication Critical patent/CN101487703A/en
Application granted granted Critical
Publication of CN101487703B publication Critical patent/CN101487703B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/06Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe involving anamorphosis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2215/00Special procedures for taking photographs; Apparatus therefor
    • G03B2215/05Combinations of cameras with electronic flash units
    • G03B2215/0589Diffusors, filters or refraction means
    • G03B2215/0592Diffusors, filters or refraction means installed in front of light emitter

Abstract

A fast panoramic stereoscopic photography measurement device comprises an omnibearing vision sensor, a panoramic colour modulation optical generator and a microprocessor for the 3D stereoscopic photography measurement of omnibearing images, wherein the omnibearing vision sensor and the panoramic colour modulation optical generator are arranged on a same axis, the omnibearing vision sensor is connected with the microprocessor and comprises an image unit and a first hyperbolic catadioptric unit; the panoramic colour modulation optical generator comprises a round wavelength-variable filter, an optical source fixing frame, a white light luminescent unit and a second hyperbolic catadioptric unit having the same image parameters as the first hyperbolic catadioptric unit; and the microprocessor comprises a video image reading module, a space information calculating module and a 3D image reconstructing module. The device is capable of reducing the resource consumption of computers and finishing the measurement rapidly with good real-time property and strong practicability.

Description

快速全景立体摄像测量装置 Fast panoramic stereoscopic imaging measuring device

技术领域 FIELD

[0001] 本发明涉及光学技术、计算机视觉技术在立体视觉测量方面的应用,尤其是一种全景立体摄像测量装置。 [0001] The present invention relates to optical technology, computer vision technology in terms of stereo vision measurement, in particular a panoramic stereoscopic image measuring apparatus.

背景技术 Background technique

[0002] 基于计算机视觉的双目立体视觉三维测量与立体重构技术,是一门新兴的、极具发展潜力和实用价值的应用技术,可被广泛应用于工业检测、地理勘测、医学整容、骨科矫形、文物复制、刑侦取证、保安识别、机器人视觉、模具快速成型、礼品、虚拟现实、动画电影、 游戏等许多应用领域。 [0002] reconstruction based on binocular stereo vision computer vision and three-dimensional three-dimensional measurement, is a new, great development potential and practical application of technology can be widely used in industrial inspection, Geographical Survey, cosmetic medicine, Orthopedics, orthopedic, cultural reproduction, criminal investigation and evidence collection, security identification, robot vision, rapid prototyping mold, gifts, virtual reality, animation, movies, games and many other applications.

[0003] 立体视觉的基本原理是从两个视点观察同一景物,以获取在不同视角下的感知图像,通过三角测量原理计算图像像素间的位置偏差、即视差,来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。 [0003] The basic principle of the stereoscopic observation is the same scene from two viewpoints, to obtain the perceived image at different viewing angles, the pixel positional deviation between the images is calculated by the triangulation principle, that is parallax information to obtain three-dimensional scene, which three-dimensional perception of a process and the process is similar to human vision.

[0004] 目前要实现一个完整的立体视觉系统通常需要图像获取、摄象机标定、特征提取、 立体匹配、深度确定及内插等6个大部分内容支持。 [0004] To achieve a complete current stereoscopic systems typically require image acquisition, the camera calibration, feature extraction, stereo matching, depth determination and interpolation six most of support. 利用低层图像处理技术对双目图像进行分析,选择图像对中的目标特征井求解特征间的对应关系,通过图像匹配技术得到目标视差,从而转化为主体所需的深度信息。 Binocular image analysis, well characterized selection target image pair Solving the correspondence between the features, obtained by the target parallax image matching techniques to depth conversion information required to use low-level image processing techniques body. 图像获取-摄像机标定-图像分割-特征提取-立体图像匹配-距离确定已成为立体视觉系统处理的主线。 Image acquisition - Camera Calibration - image segmentation - Feature extraction - stereo image matching - distance determination has become a main stereo vision system processing.

[0005] 在图像获取手段方面,由于传统视觉环境感知系统视场有限,经常存在跟踪目标丢失的现象,另一方面传统视觉环境感知系统一次只能获取周围环境局部视场的信息,大部分视场信息被放弃了;在双目视觉中的成像系统模型的选择方面,目前主要双目横模型结构和双目轴模型结构这两种模型。 [0005] In terms of image acquisition means, due to the traditional visual environment perception system field of view is limited, there is often lost track targets phenomena, on the other hand the traditional visual environment perception system can only obtain information on the local field of view of the environment, most of the visual field information is abandoned; choice imaging system model of binocular vision, binocular horizontal main shaft binocular model structure and model structure of these two models.

[0006] 为了从二维图像中获得被测物体特征点的三维坐标,双目视觉测量系统至少从不同位置获取包含物体特征点的两幅图像。 [0006] In order to obtain three-dimensional coordinates of the object feature points from the two-dimensional image, the binocular vision measurement system acquires two images of the object comprising at least a characteristic point from different locations. 目前这类系统的一般结构为交叉摆放的两个摄像机从不同角度观测同一被测物体,原理上是从不同位置或者不同角度获取同一物体特征点的图像坐标来求取该物点的三维坐标。 The general structure of such systems is cross two cameras placed in observation of the same measured object from different angles, the principle is to obtain the coordinates of the image feature points of the same object from different positions or different angles obtains three-dimensional coordinates of the object point . 从不同位置或者不同角度获取两幅图像可以采用两个摄像机,也可以由一个摄像机通过运动,在不同位置观测同一静止的物体,也可以由一个摄像机,加上光学成像方式来实现。 Acquiring two images using two cameras can also be made by movement of a camera, observing the same object stationary in the different positions, it may be made of a video camera, optical imaging plus ways to achieve different positions or different angles.

[0007] 立体视觉测量中的关键是要实现同一被测物体在不同角度观测的立体匹配,所谓的立体匹配是指根据对所选特征的计算,建立特征之间的对应关系,将同一个空间物理点在不同图像中的映像点对应起来。 [0007] The measurement key stereoscopic stereo matching is to achieve the same object to be measured at different observation angles, a so-called stereo matching means according to a selected feature calculation, correspondence between the features, the same space will physical different points in an image point in the image correspondence. 立体匹配是立体视觉中最重要也是最困难的问题。 Stereo matching stereo vision is the most important and most difficult problems. 当空间三维场景被投影为二维图像时,同一景物在不同视点下的图像会有很大不同,而且场景中的诸多因素,如光照条件,景物几何形状和物理特性、噪声干扰和畸变以及摄像机特性等,都被综合成单一的图像中的灰度值。 When the spatial three-dimensional scene is projected two-dimensional image, the image will be very different from the same scene at different viewpoints, and the scene number of factors, such as lighting conditions, the geometry and physical characteristics of the scene, and camera noise and distortion characteristics and the like, are integrated into a single gray value image. 因此,要准确地对包含了如此之多不利因素的图像进行无歧义的匹配,显然是十分困难的,至今这个问题还没有得到很好的解决。 Therefore, to accurately image contains so many negative factors were unambiguous match is obviously very difficult, so far this problem has not been solved. 立体匹配的有效性有赖于三个问题的解决,即:选择正确的匹配特征,寻找特征间的本质属性及建立能正确匹配所选择特征的稳定算法。 Stereo matching effectiveness depends on solving three problems, namely: selecting the correct matching feature to find the essential attributes between features and stable algorithm to establish exactly matches the selected feature. [0008] 距离确定是通过特征选取、图像匹配,利用视点几何来求取目标点的距离。 [0008] The distance is determined by the characteristic selection, image matching, is obtained by the viewpoint to the geometric distance of the target point.

[0009] 立体视觉测量是模仿人类利用双目线索感知距离的方法,实现对三维信息的感知,在实现上采用三角测量的方法,运用两个摄像机对同一物点从不同位置成像,并进而从视差中计算出距离。 [0009] The method of the stereoscopic measurement imitate human binocular cues perceived distance to achieve the perception of three-dimensional information, the method implemented on triangulation, using two cameras for imaging the same object point from different locations, thus from parallax calculated distance. 但是目前立体视觉的技术还无法达到全方位的实时感知,在摄像机标定、特征提取和立体图像匹配方面还没有得到很好的解决。 But now stereo vision technology can not achieve a full range of real-time perception, camera calibration, feature extraction and stereo image matching has not yet been solved.

[0010] 目前双目立体视觉测量系统的一个局限性是焦距固定,由于一个固定的焦距只能在一定景深范围内清晰拍摄图像,因而限制了测试区域;标定技术还没有很好解决,立体视觉测量系统在各种运动中变化参数是不可避免的,比如运输过程中的震动、工作冲击等的影响,而实际中又不可能总是放几张棋盘在“眼前”进行标定,因而限制了许多应用;双目立体视觉测量系统还没有实现小型化、微型化,使得在机器人、航模等领域的应用受到限制; 计算量大,难以进行实时处理,因而限制了实时目标辨识等应用;双目视觉的对应点匹配歧异性大,造成了匹配的误差,影响了匹配精度。 [0010] There is currently a limitation of binocular vision measurement system is a fixed focal length, because a fixed focal length in the captured image only clear within a certain depth range, thereby limiting the test area; calibration technology has not been solved, the stereoscopic changes in parameters affect the measurement system is inevitable in a variety of sports, such as during transport vibration, shock and other work, but in practice they can not always put a few checkerboard calibration in the "front", thus limiting many application; binocular vision measurement system has not been miniaturized, miniaturization, so that the application robot, restricted areas such as model aircraft; computationally intensive, difficult to perform real-time processing, thus limiting the real-time applications such as target identification; binocular a corresponding point matching discrepancy large, resulting in error matching, the matching accuracy influence.

[0011] 近年发展起来的全方位视觉传感器ODVS (OmniDirectionalVisior^ensors)为实时获取场景的全景图像提供了一种新的解决方案。 [0011] In recent years, developed a full range of vision sensors ODVS (OmniDirectionalVisior ^ ensors) provides a new solution for real-time access panoramic image of the scene. ODVS的特点是视野广(360度),能把一个半球视野中的信息压缩成一幅图像,一幅图像的信息量更大;获取一个场景图像时,ODVS 在场景中的安放位置更加自由;监视环境时ODVS不用瞄准目标;检测和跟踪监视范围内的运动物体时算法更加简单;可以获得场景的实时图像。 ODVS is characterized by wide-field (360), a message can be compressed into a hemispherical field of view of an image, a larger amount of information of an image; acquiring a scene image, placement ODVS more freedom in the scene; Monitoring ODVS not aim when environmental objectives; algorithm easier when tracking moving objects in the detection and monitoring range; you can get real-time image of the scene. 同时也为构建双目全方位视觉传感器的立体视觉测量系统提供了一个基本要素。 It also provides the basic elements for the construction of a stereoscopic binocular vision measurement system omnidirectional vision sensor.

[0012] 中国发明专利申请号为200510045648. 1公开了一种全向立体视觉成像方法及装置,该专利中将一透视相机镜头的光轴和两反射镜面的共同对称轴重合放置,空间中的一点分别经两反射镜面反射后分别在所述透视相机的像平面成像于不同的两点,相当于两个相机成像;装置包括两个反射镜面、相机,所述相机镜头的光轴和两反射镜面的共同对称轴重合。 [0012] Chinese Patent Application No. 200510045648.1 invention discloses an omnidirectional stereoscopic imaging method and apparatus, the optical axis of the camera lens in the patent and a perspective view of the two common mirror symmetry axis coinciding placement, space after one o'clock, respectively, are reflected in two mirror image surface of the two points to a different perspective of the camera, corresponding to two camera imaging; optical axis of the apparatus comprises two mirror, a camera, a camera lens and two reflection common axis of symmetry coincides with the mirror surface. 这种方案的存在的问题是:1)由于一幅图像包括了的特征点“两幅”全向图像,允许的图像视差减小了一半,因此视觉系统的测量范围至少也减少了一半;2)上下两个反射镜面会出现遮挡,影响立体视觉范围;3)由于同一物体的特征点在上下两个反射镜面上经折反射后的成像点在一幅图像上离中心点的位置不同,上反射镜面的成像分辨率要比下反射镜面的成像分辨率高两倍以上;4)由于透视相机镜头存在的对焦问题,只能满足两个反射镜面中的某一个反射镜面为最佳焦距,因而必然会影响成像质量力)两个反射镜面的焦点距离就是该系统的基线距,因而造成基线距过短,影响测量精度。 Problems of this program are: 1) since a feature point image includes "two" omnidirectional image, allowing the parallax image is reduced by half, so the measuring range of the visual system is also at least cut in half; 2 ) two vertical mirror will be blocked, affect the stereoscopic range; 3) Since the imaging point after the feature points of the same object on the two upper and lower mirror position from the center point through the catadioptric different in an image, the mirror imaging resolution imaging resolution than the mirror surface more than twice as high; 4) problems due to the focus lens camera perspective, one can meet two mirror to mirror the best focus, thus is bound to affect the image quality of the force) of the focal distance of two mirror system is from the baseline, resulting in too short baseline distance, affect the measurement accuracy.

[0013] 中国发明专利申请号为200810062128. 5公开了一种基于双目全方位视觉传感器的立体视觉测量装置,该专利中组成立体视觉测量装置的两个ODVS采用了平均角分辨率设计,采集图像的两个摄像机的参数完全一致,具有极好的对称性,能实现快速的点与点的匹配,从而达到立体视觉测量的目的。 [0013] Chinese invention patent application No. 200810062128.5 discloses a two ODVS based binocular stereo vision measurement means of omnidirectional vision sensor, the composition of this patent stereoscopic measuring device using the average angular resolution design, acquisition two camera parameters exactly the same image, having excellent symmetry can be achieved quickly and points matching point, so as to achieve a stereoscopic measurement. 但是从完成点对点匹配到立体测量仍需要较大的计算资源,要实现实时在线的立体测量以及三维立体重构仍然存在着一些“病态”计算问题。 But from the point to complete the match to three-dimensional measurement still require large computing resources, to achieve the three-dimensional real-time online measurement of three-dimensional reconstruction and there are still a number of "sick" computational problems.

发明内容 SUMMARY

[0014] 为了克服已有的立体视觉测量装置的计算机资源消耗大、实时性能差、实用性不强的不足,本发明提供一种能够减少计算机资源消耗、快速完成测量、实时性好、实用性强的快速全景立体摄像测量装置。 [0014] In order to overcome the existing measuring device stereoscopic computer resource consumption, poor real-time performance, lack of practicality is not strong, the present invention provides a method capable of reducing computer resource consumption, rapid completion of the measurement, real time, practicality strong fast panoramic stereoscopic imaging measuring device. [0015] 本发明解决其技术问题所采用的技术方案是: [0015] aspect of the present invention to solve the technical problem are:

[0016] 一种快速全景立体摄像测量装置,包括全方位视觉传感器、全景彩色调制光发生器以及用于对全方位图像进行三维立体摄像测量的微处理器,所述全方位视觉传感器与所述全景彩色调制光发生器配置在同一根轴心线上,所述全方位视觉传感器与所述微处理器连接;所述全方位视觉传感器包括摄像单元和第一双曲面折反射单元;所述的第一双曲面折反射单元包括第一双曲面镜面、第一上盖、第一支撑杆、透明玻璃面和附加镜头框,所述第一双曲面镜面的上部与第一上盖连接,所述第一双曲面镜的底部中央与第一支撑杆上端连接,所述第一支撑杆下端与透明玻璃面连接,所述透明玻璃面安装在附加镜头框的上部, 所述摄像单元安装在所述附加镜头框的下部;所述全景彩色调制光发生器包括圆形波长可变滤光片、光源固定框、白色光发光单元和第 [0016] A fast panoramic stereoscopic imaging measuring device comprising omnidirectional vision sensor, a panoramic color modulation light generator and a microprocessor for full three-dimensional image measurement camera, the omnidirectional vision sensor and the panoramic color modulation light generator disposed on a same axis line, the omnidirectional vision sensor connected to said microprocessor; the omnidirectional vision sensor comprising a first image pickup unit and a hyperbolic catadioptric unit; the the first unit includes a first catadioptric hyperbolic hyperboloid mirror, a first cover, a first support rod, and an additional transparent glass surface of the lens frame, an upper portion of the first hyperboloid mirror and a first cover connected to a the first hyperbolic mirror is connected to the bottom center of the upper end of the first lever, the first lever connected to the lower end surface of the transparent glass, the transparent glass surface mounted on an upper frame of an additional lens, said image pickup unit is mounted in the additional lower portion of the lens frame; the panoramic color modulation light generator comprises a wavelength-variable circular filter frame fixed light source, a white light emitting unit and the 双曲面折反射单元,所述白色光发光单元连接供电单元,所述的第二双曲面折反射单元包括第二双曲面镜面、第二上盖和第二支撑杆, 所述第二双曲面镜面的上部与第二上盖连接,所述第二双曲面镜的底部中央与第二支撑杆上端连接,所述第二支撑杆下端与所述圆形波长可变滤光片连接,所述圆形波长可变滤光片安装在所述光源固定框的上部,所述白色光发光单元安装在所述光源固定框的下部;所述第一双曲面镜面和第二双曲面镜面具有相同成像参数;所述微处理器包括: The second hyperboloidal catadioptric unit hyperboloidal catadioptric means, the white light emitting unit connected to the power supply unit, the second comprises a hyperboloid mirror, a second cover and a second rod, said second mirror hyperboloid an upper cover and a second connection, the second hyperbolic mirror is connected to the center of the bottom end of the second rod, the second lever and a lower end connected to the circular wavelength variable filter, the circle shaped wavelength-variable filter is mounted at an upper portion of the light source fixed frame, the white light emitting light source unit is mounted on a lower portion of the fixed frame; a first and a second mirror hyperboloid hyperboloidal mirror having the same imaging parameters ; the microprocessor comprising:

[0017] 视频图像读取模块,用于读取全方位视觉传感器的视频图像,并保存在指定的存储设备中,其输出与空间信息计算模块连接; [0017] Video image reading means for reading a video image omnidirectional vision sensor, and saved in the storage device, the output of spatial information calculating module is connected;

[0018] 空间信息计算模块,用于计算空间上的物点到立体视觉测量装置中心点的距离及入射角,分别计算空间物点与全方位视觉传感器的实焦点Om的距离R1、空间物点与全景彩色光编码调制单元的实焦点Op的距离R2、空间物点与中央眼的距离R以及空间物点的入射角Φ ;其输出与三维图像重构模块连接; [0018] The spatial information calculating module center point of the stereoscopic means for calculating spatial points on the object to measure the distance and angle of incidence, respectively the object point computation space omnidirectional vision sensor Om real focal distance R1, a space object point Op real focus of the panoramic colored light from the coding and modulation unit R2, with the central space of the object point distance R eye and the incident point of the object space Φ; and an output module connected to the three-dimensional image reconstruction;

[0019] 三维图像重构模块,用于将在全方位视觉传感器中所获取的全景图像进行柱状展开运算,展开图中横坐标表示方位角,纵坐标表示入射角;在展开全方位图像时需要将该中心部分的图像单独分离出来,然后对全方位图像进行展开,展开算法中水平方向的计算步长为,Δ β =2π/1,式中1为水平展开幅度;垂直方向的计算步长为Am = (a。_max-a。_min)/m ;式中,α。 [0019] three-dimensional image reconstruction means for the visual sensor in the full-panoramic images acquired cylindrical expand operation, FIG expand the abscissa represents azimuth angle and the ordinate represents the incident angle; needed when deployed omnidirectional image the central portion of the image separating out separately, and then the omnidirectional image are expanded, expand calculating step algorithm in the horizontal direction is, Δ β = 2π / 1, where 1 is the amplitude of the horizontal expand; calculating vertical step as Am = (a._max-a._min) / m; wherein, α. _max为全景原图最大有效半径Rmax对应的场景光线入射角, α。 _max a panoramic picture corresponding to the maximum effective radius Rmax scene incident angle, α. _min为全景原图最小有效半径Rmin对应的场景光线入射角; _min panorama picture Rmin the minimum effective radius corresponding to the scene light incident angle;

[0020] 与用极坐标表示的全景原图中的原像点Α(Φ,β)对应的球面展开方式中的A点坐标分别为: [0020] The panoramic picture with the original image point in polar coordinates Α (Φ, β) corresponding to the spherical coordinates of the point A deployment mode are:

[0021] χ = β/Δ β ,y = (ao-ao_min)/Am (15) [0021] χ = β / Δ β, y = (ao-ao_min) / Am (15)

[0022] 式中:Δ β为水平方向的计算步长,β为方位角,Am为垂直方向的计算步长,a。 [0022] where: Δ β is the step size calculated in the horizontal direction, β azimuth, Am to calculate a step size in the vertical direction, a. 全景原图有效半径R对应的场景光线入射角,α。 Panoramic picture corresponding to the effective radius R of the scene incident angle, α. -min为全景原图最小有效半径Rmin对应的场景光线入射角。 -min a panoramic picture corresponding to the minimum radius Rmin effective incident angle scenes.

[0023] 作为优选的一种方案:所述白色光发光单元位于双曲面镜的虚焦点处,白色光通过圆形波长可变滤光片光的波长λ与圆形波长可变滤光片的半径r成线性关系,用公式(6)来表示, [0023] As a preferred embodiment: the white light-emitting unit is located at the virtual focal point of the hyperbolic mirror, white light through a circular variable filter light wavelength λ and the wavelength of the circular variable filter a linear relationship between the radius r, using equation (6) is represented,

[0024] = (6) [0024] = (6)

R R

[0025] 式中:λψ、λ。 [0025] wherein: λψ, λ. 、R均为圆形波长可变滤光片的参数,λ。 , R wavelength are circular variable filter parameters, λ. 为圆形波长可变滤光片的中心的波长,λ ¥为圆形波长可变滤光片外圆边缘处的波长,R为圆形波长可变滤光片的最大半径,r为从圆形波长可变滤光片的圆心到某一点的测量半径值;通过测量半径值用公式(6)计算得到通过该点的波长λ。 The variable filter is circular center wavelength, λ ¥ variable wavelength edge of the circular cylindrical filter wavelength, R is the maximum radius of the circular variable filter wavelength, r is the circle shaped center wavelength variable filter to a point measured radius value; calculated using equation (6) the wavelength λ by the points obtained by measuring the radius value.

[0026] 进一步,全景彩色光编码调制器的某一光波长的发射角Yp通过公式(7)计算得到, [0026] Further, a light emission angle Yp panoramic color wavelength optical encoder modulator by Equation (7) is calculated,

[0027] tan(rp) = ^ (?) [0027] tan (rp) = ^ (?)

[0028] 式中:r为从圆形波长可变滤光片的圆心到某一点的测量半径值,d为圆形波长可变滤光片到白色光发光单元的距离,即圆形波长可变滤光片到虚焦点的距离; [0028] where: r is a wavelength-variable filter from the circular center to a point measured radius value, d is a variable circular filter to the wavelength of the light from the white light emitting unit, i.e., circular wavelength virtual focus to the distance variations of the filter;

[0029] 根据发射角Yp,利用公式(8)计算得到该波长光的折射角αρ, The calculated wavelength of light [0029] The emission angle Yp, using equation (8) refraction angle αρ,

[0030] α ρ = tarT1 [ (b2+c2) sin y p_2bc] / (b2+c2) cos yp (8) [0030] α ρ = tarT1 [(b2 + c2) sin y p_2bc] / (b2 + c2) cos yp (8)

[0031] 式中:c表示双曲面镜的焦点,a、b分别是双曲面镜的实轴和虚轴的长度。 [0031] where: c denotes a focus of the hyperbolic mirror, a, b are the lengths of the hyperbolic mirror to the real axis and the imaginary axis.

[0032] 再进一步,所述的双曲面镜面,双曲面镜构成的光学系统由下面5个等式表示; [0032] Still further, the optical system of the hyperboloid mirror, a hyperbolic mirror composed of 5 represented by the following equation;

[0033] ((X2+Y2) /a2) - ((Zc) 2/b2) = _1 当Z > 0 时(1) [0033] ((X2 + Y2) / a2) - ((Zc) 2 / b2) = _1 when Z> 0 (1)

[0034] c = 4a1 +b2 (2) [0034] c = 4a1 + b2 (2)

[0035] β = tarT1 (Υ/Χ) (3) [0035] β = tarT1 (Υ / Χ) (3)

[0036] α = tarT1 [ (b2+c2) sin y _2bc] / (b2+c2) cos y (4) [0036] α = tarT1 [(b2 + c2) sin y _2bc] / (b2 + c2) cos y (4)

[0037] r = tan-1[//V(x2+/)] (5) [0037] r = tan-1 [// V (x2 + /)] (5)

[0038] 式中X、Y、Z表示空间坐标,c表示双曲面镜的焦点,2c表示两个焦点之间的距离, a,b分别是双曲面镜的实轴和虚轴的长度,β表示入射光线在XY投影平面上与X轴的夹角,即方位角,α表示入射光线在)(Ζ投影平面上与X轴的夹角,这里将α称为入射角,α 大于或等于0时称为俯角,将α小于0时称为仰角,f表示成像平面到双曲面镜的虚焦点的距离,Y表示折反射光线与Z轴的夹角;x,y表示在成像平面上的一个点。 [0038] wherein X, Y, Z represent spatial coordinates, c denotes the focal point of the hyperbolic mirror, 2c denotes a distance between two focal points, a, b are the lengths of the hyperbolic mirror to the real axis and the imaginary axis, β X axis represents the incident light angle in the XY projection plane, i.e., azimuth angle, [alpha] represents the incident ray) of ([zeta] angle between the projection plane and the X-axis, herein referred to as the angle of incidence [alpha], [alpha] is greater than or equal to 0 when referred to the depression angle, referred to as the elevation angle is less than the 0 α, f denotes a distance to the image plane of the virtual focus of the hyperbolic mirror, Y denotes the angle of light reflected off the Z-axis; x, y represents a on the imaging plane point.

[0039] 更进一步,所述全方位视觉传感器与所述全景彩色调制光发生器之间采用背靠背型连接,所述全方位视觉传感器的第一上盖与所述全景彩色调制光发生器的第二上盖连接,连接杆穿过所述第一上盖与第一支撑杆连接,并同时穿过第二上盖与第二支撑杆连接。 [0039] Still further, back to back type connection between the panoramic sensor and the full-color visual modulation light generator, the first omnidirectional vision sensor of the first cover and the panoramic color modulation light generator two cover, connecting rod through the first support rod is connected to the first cover and the second cover while passing through the second support rod is connected.

[0040] 或者是:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用面对面连接,将全方位视觉传感器的摄像单元与所述全景彩色调制光发生器的光源固定框连接。 [0040] or: face to face connection between the panoramic sensor and the full-color visual modulation light generator, the light source image pickup unit fixed frame omnidirectional vision sensor and the panoramic color modulation light generator is connected.

[0041] 再或者是:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用面对背连接方式,将全景彩色调制光发生器的光源固定框与所述全方位视觉传感器的第一上盖连接。 [0041] Or: said omnidirectional vision sensor between the panoramic color modulation light generator employing face-back connection, the light source fixing frame panoramic color modulation light generator and the omnidirectional vision sensor The first superstructure connection.

[0042] 又或者是:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用背对面连接方式,将全方位视觉传感器的摄像单元与所述全景彩色调制光发生器的第二上盖连接。 [0042] or is: the use of back-to-round connection between the panoramic sensor and the visual color modulation light generator, the second imaging unit omnidirectional vision sensor and the panoramic color modulation light generator the cover is connected.

[0043] 作为优选的再一种方案:所述的空间信息计算单元包括折射角α ρ计算单元、入射角α ο计算单元和距离计算单元; [0043] As still another preferred embodiment: the spatial information calculating unit comprises a refraction angle α ρ calculation unit, calculation unit and the angle of incidence α ο distance calculation unit;

[0044] 折射角α ρ计算单元,用于利用全景彩色光编码调制单元的折射角α ρ与发射角YP成公式(8)所示的函数关系, [0044] α ρ refractive angle calculation means for utilizing the refraction angle α ρ panoramic colored light and the coding and modulation unit shown in equation (8) is a function of the emission angle YP,

[0045] α p = tarT1 [ (b2+c2) sin y p_2bc] / (b2+c2) cos yp (8)[0046] 发射角%与圆形波长可变滤光片的半径r成公式(7)所示的函数关系, [0045] α p = tarT1 [(b2 + c2) sin y p_2bc] / (b2 + c2) cos yp (8) [0046]% of the circular emission angle of the variable wavelength filter radius r into equation (7 ) function shown in,

[0047] tan(^) = ·^ (7) [0047] tan (^) = · ^ (7)

[0048] 圆形波长可变滤光片的半径r与圆形波长可变滤光片光的波长λ成公式(6)所示的线性关系, [0048] The light having the wavelength variable filter wavelength variable circular filter radius r of the circular wavelength λ into formula (6) shown in a linear relationship,

U -λ ) (6) U -λ) (6)

[0049] λ{Γ) = Ac+ ^c- r [0049] λ {Γ) = Ac + ^ c- r

R R

[0050] 因此可以得到圆形波长可变滤光片光的波长λ与全景彩色光编码调制单元的折射角α5之间的函数关系; [0050] can be obtained as a function of wavelength of a circular variable filter between the wavelength of light λ light refraction angle α5 panoramic color coding and modulation unit;

[0051] 入射角α。 [0051] The angle of incidence α. 计算模块,用于利用全方位视觉传感器的入射角α。 Calculating means for using omnidirectional vision sensor incident angle α. 与折反射角Υ。 And the angle of reflection off Υ. 之间存在着公式(9)所示的函数关系, There is equation (9) shown in the relationship between the function,

[0052] α。 [0052] α. = tarT1 [ (b2+c2) sin y 0_2bc] / (b2+c2) cos y 0 (9) = TarT1 [(b2 + c2) sin y 0_2bc] / (b2 + c2) cos y 0 (9)

[0053] 折反射角Y。 [0053] The angle of reflection off Y. 与成像平面上的一个点(X,y)存在着公式(5)所示的函数关系, There is equation (5) as a function shown in a point (X, y) on the imaging plane,

[0054] γ = tan"1 [/ / V(x2 +/)] (5) [0054] γ = tan "1 [/ / V (x2 + /)] (5)

[0055] 得到成像平面上的一个点(X,y)与入射角α。 [0055] to obtain a point (X, y) and the angle of incidence α on the imaging plane. 之间的函数关系; Functional relationship between;

[0056] 距离计算单元,用于利用公式(10)〜(14)分别计算空间物点与全方位视觉传感器的实焦点Om的距离R1、空间物点与全景彩色光编码调制单元的实焦点Op的距离R2、空间物点与中央眼的距离R以及空间物点的入射角Φ, [0056] The distance calculation unit for using equation (10) to (14) calculate the real focal Op real object space focal point Om of omnidirectional vision sensor, the distance R1, and the space object point favorites coded colored light modulation unit the angle of incidence Φ distance R2, with the central space of the object point distance R eye space and an object point,

- cosfa、 (10) - cosfa, (10)

[0057] Rl = OmA= , C°S(aJ B [0057] Rl = OmA =, C ° S (aJ B

sm(a0 +a J sm (a0 + a J

[0058] [0058]

_ cos(a„) (11) _ Cos (a ") (11)

Rl = OA =- p B Rl = OA = - p B

P sin(a0+ap) P sin (a0 + ap)

[0059] R = OA = R22 +(B/2)2 -2R2(B/2)cos(ap +90) (13) [0059] R = OA = R22 + (B / 2) 2 -2R2 (B / 2) cos (ap +90) (13)

'I' 'I'

[0060] 二Βλ [ wp J2 +0.25+ •广p, sm(ap) SinCae + a ) sm(«0 +a ) [0060] two Βλ [wp J2 +0.25+ • wide p, sm (ap) SinCae + a) sm ( «0 + a)

[0061] [0062] [0061] [0062]

β β

φ = arcsin[—cos(aJ] (M) φ = arcsin [-cos (aJ] (M)

式中:B为基线距,α。 Where: B is the baseline distance, α. 为入射角,α ρ为折射角,Rl为物点A与全方位视觉传感器的实焦点Om的距离,R2为物点A与全景彩色调制光发生器的实焦点Op的距离,R为物点A 与中央眼的距离,Φ为空间物点相对于中央眼的入射角。 Angle of incidence, α ρ is the angle of refraction, Rl is a real focal point Om of the object from the point A and the omnidirectional vision sensor, R2 of the real focal distance of the object point A and the Op panoramic color modulation light generator, R is the object point a distance from the central eye, Φ is the angle of incidence with respect to the spatial object point in the center of the eye.

[0063] 再进一步,在所述的空间信息计算模块中,设置一张光编码表来实现某一光波长λ与某一折射角Cip之间存在的映射关系,一张入射角计算表来实现某一个点的坐标数据与该点所对应的入射角α。 [0063] Still further, in the spatial information calculating module is provided an optical encoder mapping table to achieve a certain relationship between the presence of light having a wavelength λ and a refraction angle Cip, to achieve an incidence angle calculation table a certain point coordinate data points corresponding to the angle of incidence α. 之间存在的映射关系,折射角Cip、入射角α。 The mapping relation between the refraction angle Cip, the angle of incidence α. 计算采用查表方式实现;首先按全方位视觉传感器的成像平面的点坐标顺序读取某一个点的波长λ值,以点坐标值检索入射角计算表得到该点所对应的入射角α。 Calculated using the look-up table manner; first reading wavelength λ according to the value of a certain point of the imaging plane coordinates order omnidirectional vision sensor, in order to retrieve the value of the angle of incidence point coordinates calculation table obtained incident angle α corresponding to that point. ,接着以该点的光波长λ值检索光编码表得到该光波长λ所对应的折射角Cip ;最后利用公式(10)或者公式(11)或者公式(13)计算得到空间上某一点的距离信息。 , Followed by light having a wavelength λ of light which retrieves the point code table to obtain the light having a wavelength λ corresponding to refraction angle Cip; Finally, equation (10) or equation (11) or equation (13) calculated from a point on the space information.

[0064] 全方位视觉传感器的工作原理是:进入双曲面镜的中心的光,根据双曲面的镜面特性向着其虚焦点折射。 Working Principle [0064] omnidirectional vision sensor are: light enters the center of the hyperbolic mirror, according to the characteristics of the hyperboloid mirror towards its virtual focal refraction. 实物图像经双曲面镜反射到聚光透镜中成像,在该成像平面上的一个点P(x,y)对应着实物在空间上的一个点的坐标A(X,Y,Ζ); Physical image reflected by the hyperbolic mirror image of the condenser lens on the imaging plane of a point P (x, y) corresponding to the physical coordinates A (X, Y, Ζ) at a point in space;

[0065] 图13中的2-双曲线面镜,12-入射光线,13-双曲面镜的实焦点Om(0,0,c),14-双曲面镜的虚焦点,即摄像单元6的中心Oc (0,0, -c),15-反射光线,16-成像平面,17-实物图像的空间坐标A (X,Y,Z),18-入射到双曲面镜面上的图像的空间坐标,19-反射在成像平面上的点P (X,y)o [0065] FIG 132- hyperbolic mirror, 12 incident light, 13 the real focus of the hyperbolic mirror Om (0,0, c), 14- hyperbolic mirror virtual focal point, i.e., the imaging unit 6 center Oc (0,0, -c), 15- reflected light, an imaging plane 16-, 17- physical space image coordinates a (X, Y, Z), 18- incident on the spatial image coordinates of the hyperbolic mirror surface , 19- reflection point on the imaging plane P (X, y) o

[0066] 图13中所示的双曲面镜构成的光学系统可以由下面5个等式表示; Hyperbolic mirror optical system shown in [0066] FIG. 13 may be constituted by the following five equations represent;

[0067] ((X2+Y2) /a2) - ((Zc) 2/b2) = _1 当Z > 0 时(1) [0067] ((X2 + Y2) / a2) - ((Zc) 2 / b2) = _1 when Z> 0 (1)

[0068] c = 4a1 +b2 ⑵ [0068] c = 4a1 + b2 ⑵

[0069] β = tarT1 (Υ/Χ) (3) [0069] β = tarT1 (Υ / Χ) (3)

[0070] α = tarT1 [ (b2+c2) sin y _2bc] / (b2+c2) cos y (4) [0070] α = tarT1 [(b2 + c2) sin y _2bc] / (b2 + c2) cos y (4)

[0071] [0071]

Figure CN101487703BD00091

[0072] 式中X、Y、Z表示空间坐标,c表示双曲面镜的焦点,2c表示两个焦点之间的距离, a,b分别是双曲面镜的实轴和虚轴的长度,β表示入射光线在XY投影平面上与X轴的夹角,即方位角,α表示入射光线在)(Ζ投影平面上与X轴的夹角,这里将α称为入射角,α 大于或等于0时称为俯角,将α小于0时称为仰角,f表示成像平面到双曲面镜的虚焦点的距离,Y表示折反射光线与Z轴的夹角;x,y表示在成像平面上的一个点; [0072] wherein X, Y, Z represent spatial coordinates, c denotes the focal point of the hyperbolic mirror, 2c denotes a distance between two focal points, a, b are the lengths of the hyperbolic mirror to the real axis and the imaginary axis, β X axis represents the incident light angle in the XY projection plane, i.e., azimuth angle, [alpha] represents the incident ray) of ([zeta] angle between the projection plane and the X-axis, herein referred to as the angle of incidence [alpha], [alpha] is greater than or equal to 0 when referred to the depression angle, referred to as the elevation angle is less than the 0 α, f denotes a distance to the image plane of the virtual focus of the hyperbolic mirror, Y denotes the angle of light reflected off the Z-axis; x, y represents a on the imaging plane point;

[0073] 为了获得比较大的立体视觉范围,在所述的双曲面镜面2设计时需要尽可能加大双曲面镜面的仰角,采用减小双曲面镜的实轴a和虚轴b的比来加大双曲面镜面的仰角,设计时需根据立体视觉的范围、双曲面镜的直径大小来选择一个适当的实轴a和虚轴b的比, 最大仰角极限是双曲线的渐进线与X轴的夹角; [0073] In order to obtain a relatively large range of stereoscopic vision, the need to increase the elevation hyperboloid mirror hyperboloid mirror 2 as designed, the hyperbolic mirror is reduced using a real axis and the imaginary axis b ratio increase the hyperboloid mirror elevation, the need to select an appropriate real axis and the imaginary axis b a ratio of maximum elevation angle range limit in accordance with stereoscopic vision, the hyperbolic mirror diameter of progressive design hyperbolic line X-axis angle;

[0074] 全景彩色调制光发生器的工作原理是:从安置在双曲面镜的虚焦点处的白色光发光单元9,通过圆形波长可变滤光片7后入射到双曲面镜面2上,通过双曲面镜面2向外折射;由于圆形波长可变滤光片7的峰值波长沿圆形基底的不同角度位置呈线性变化,形成一个全景彩色光编码调制单元;在双曲面镜面2上形成一圈圈呈线性变化的峰值波长的光,经双曲面镜面2折反射后在水平方向360°形成了一圈圈呈双曲线函数关系变化的峰值波长的全景彩色调制光,这个过程正好是全方位视觉传感器成像的逆过程,因此公式(1)〜(5)也适用于对全景彩色调制光发生器的建模;如图14所示; [0074] The working principle of the color modulation light generator favorites are: from white hyperbolic mirror disposed at the focal point of the light emitting imaginary unit 9 through a circular variable wavelength filter 7 is incident on the rear hyperboloid mirror 2, 2 by the double refraction outwardly curved mirror; since the peak wavelength of the circular variable wavelength filter 7 along a circular base of different angular positions varies linearly, forming a panoramic color coded light modulation unit; hyperboloid mirror surface is formed on the 2 light having a peak wavelength varies linearly in a circle, the hyperboloid mirror 2 after a catadioptric panoramic color modulated light is formed in a circle as a hyperbolic function of the change in peak wavelength in horizontal direction 360 °, the whole process is just inverse process visual sensor orientation for imaging, and therefore equation (1) to (5) also apply to modeling the color modulation light generator favorites; 14;

[0075] 图14中的2-双曲线面镜,18-投射光线,13-双曲面镜的实焦点Op (0,0,c),14-双曲面镜的虚焦点Op (0,0,-c),9-白色光源,19-反射光线,17-实物图像的空间坐标A(X,Y, Ζ)。 In [0075] FIG 142- hyperbolic mirror, projecting light 18, 13 of the hyperbolic mirror real focal point Op (0,0, c), 14- hyperbolic mirror virtual focal point Op (0,0, -c), 9- white light source, reflected light 19-, 17- physical space image coordinates a (X, Y, Ζ).

[0076] 所述的圆形波长可变滤光片,采用超高密度圆形渐变滤光片,光密度范围0D0—ODlO (O-IOOdB),适用波段400nm—2000nm ; Round wavelength [0076] The variable filter, ultra-high density of a circular gradient filter, the optical density range of 0D0-ODlO (O-IOOdB), applies band 400nm-2000nm;

[0077] 所述的发光单元,可以选择金属卤素灯泡、UHE灯泡、UHP灯泡以及LED光源,选用的原则是能产生大光量,并要有效地抑制闪烁情况的发生,而且外形小巧、亮度衰减小、寿命长的发光器件; Light emitting cells [0077] The may be selected metal halogen bulb, UHE lamp, UHP lamps and an LED light source, the principle of choice is able to produce a large amount of light, and to effectively suppress the occurrence of flickering, and the compact, the luminance attenuation , long-life light-emitting device;

[0078] 快速全景立体摄像测量装置的工作原理是:从安置在全景彩色调制光发生器的双曲面镜的虚焦点处的白色光发光单元9通过发光电源10供电发出白色光,通过圆形波长可变滤光片7投射到全景彩色调制光发生器的双曲面镜面2上,通过全景彩色调制光发生器的双曲面镜面2向外四周折射,在水平方向360°形成了呈双曲线函数关系变化的一圈圈的峰值波长的折反射光,空间上的一个点A (X,Y,Z)接受到一定波长的光,该光点继续向全方位视觉传感器的双曲面镜2反射,光线朝向全方位视觉传感器的双曲面镜2的实焦点,根据双曲面的镜面特性向着全方位视觉传感器的虚焦点14折反射,反映实物图像的各具有一定波长的光点经全方位视觉传感器的双曲面镜2反射到聚光透镜中成像,在该成像平面上的一个点P(x,y)对应着实物在空间上的一个点的坐标A(X,Y,Ζ), [0078] The working principle of stereo panoramic imaging fast measuring device is: a light emitting unit 9 emits white light by the light emitting power supply 10 disposed from the virtual focal point of the hyperbolic mirror panoramic color modulation light generator white, round wavelength by the variable filter 7 hyperboloid mirror projected onto a panoramic color modulation light generator 2, through the hyperboloid mirror panoramic color modulation light generator 2 is outwardly refracted four weeks, formation of a hyperbolic function in the horizontal direction 360 ° peak wavelength of light reflected off a circle change, a point a (X, Y, Z) received on the spatial light of a certain wavelength, the hyperbolic mirror 2 reflects the light spot continues to omnidirectional vision sensor, the light real focus toward the hyperbolic mirror omnidirectional vision sensor 2, according to the characteristics of the hyperboloidal mirror 14 toward a virtual focus catadioptric omnidirectional vision sensor, reflect the physical image of each light spot having a certain wavelength by the omnidirectional vision sensor bis curved mirror reflecting the condenser lens 2 in the image on the imaging plane of a point P (x, y) corresponding to the physical coordinates a (X, Y, Ζ) in space of a point, 路图如图3中的粗实线所示;实际上通过两个同一的双曲面镜面以及圆形波长可变滤光片的共同作用使得在原有立体摄像测量中的特征选取、图像匹配步骤进行简化,通过两个同一参数的双曲面镜面以及圆形波长可变滤光片的共同作用确定了空间上的一个点Α(Χ,Y,Ζ)在成像平面上点P(x,y)的入射角和方位角,即称为确定空间上的点A(X,Y,Z)的约束条件;这是因为由于全景彩色调制光发生器与全方位视觉传感器具有两个相同参数的双曲面镜,且两个相同参数的双曲面镜在同一个轴心线上,因此确定点A(X,Y,Ζ)的方位角是非常容易的,关于发射角可以通过圆形波长可变滤光片所确定的光线波长来确定,关于入射角可以通过成像平面上点P(x,y)来确定,这样就确定了点A(X,Y,Ζ)与观察点的空间位置关系; Road thick solid line in FIG. 3 as shown in FIG; actually two identical circular hyperboloid mirror and a wavelength-variable filter so that the feature interaction in the original stereo image measurement selection, the image matching step simplification, the variable filter by the same two parameters hyperboloid mirror and a circular interaction wavelength define a point Α (Χ, Y, Ζ) the point on the imaging plane P (x, y) on the space and azimuthal angle of incidence, called the constraint i.e. point a (X, Y, Z) on the space is determined; this is because the color modulated light generator with a panoramic vision sensor with two full same parameters hyperbolic mirror , two hyperbolic mirror and the same parameters in the same axial line, thus determining a point a (X, Y, Ζ) azimuth is very easy, on the emission angle can be variable wavelength filter through a round the determined wavelength of the light is determined, to determine the angle of incidence on the imaging plane by the point P (x, y), is determined so that the point a (X, Y, Ζ) the spatial relationship of the observation point;

[0079] 本发明中采用“中央眼”视觉方式来描述空间上某一物点A的信息(R,Φ,β,t), 所谓的中央眼是立体视觉基线距的中点,是通过全方位视觉传感器和全景彩色光编码调制单元的视点之间的连线中心点来算得到,这里将中央眼的坐标作为高斯球面坐标的原点0, 如图3所示。 [0079] In the present invention, a "central eye" was a visual way to describe the spatial information of the point A (R, Φ, β, t), called the central eye stereoscopic baseline from the midpoint of the full through connecting a center point between the visual sensor and a panoramic view orientation color coded light modulation unit to count obtained, the coordinates of the center of the eye where the origin 0 Gauss spherical coordinates, as shown in FIG.

[0080] 本发明的有益效果主要表现在: [0080] Advantageous effects of the present invention are mainly:

[0081] 1)、获取实时的全景立体视频图像,跟踪的监控物体不会出现丢失,采用大仰角的双曲面镜的全景立体视频设计,解决了大空间内的快速移动目标对象的实时跟踪提供了完整的理论体系和模型; [0081] 1), obtain real-time panoramic stereoscopic video image, the monitor will not be lost object tracking, using the hyperbolic mirror large elevation angle panoramic three-dimensional video designed to solve the real-time tracking fast-moving target object in the large space provided a complete theoretical system and model;

[0082] 2)、提供了一种全新的立体视觉获取方法,通过主动的全景彩色光编码调制、基于双曲面镜的彩色光发射的技术和基于双曲面镜折反射的全方位成像技术,实现了快速的全景立体摄像测量; [0082] 2), there is provided a new method for obtaining a stereoscopic vision, by active light color panoramic code modulation technique is based on the hyperbolic mirror colored light emission based on the full range of the hyperbolic mirror catadioptric imaging technology, stereo panoramic imaging rapid measurement;

[0083] 3)、不再需要繁琐的摄像机标定工作、特征提取、立体图像匹配等步骤,为快速全景立体摄像测量提供了一种新的手段; [0083] 3), no longer requires extensive camera calibration work, feature extraction, stereo image matching step, a new method for the rapid measurement of the panoramic stereo image;

[0084] 4)、通过全景彩色光编码调制方式所生成的全景立体图像本身具有立体感和距离感; [0084] 4), panoramic stereoscopic panoramic image generated by the light color coding and modulation scheme itself and a stereoscopic sense of distance;

[0085] 5)、通过更换不同的圆形波长可变滤光片可满足不同场合的立体摄像测量; [0085] 5), switch to a different wavelength of circular variable filter to meet different occasions of measurement of the stereo camera;

[0086] 6)、采用同一极球面坐标处理手段,可利用数字几何的计算方法能容易实现三维图像重构和三维物体测量。 [0086] 6), using the same polar spherical coordinate processing means, a digital calculation method may be utilized geometry can be easily realized three-dimensional image reconstruction and three-dimensional object measurement. 可广泛的应用于各种工业检测、地理勘测、医学整容、骨科矫形、 文物复制、刑侦取证、保安识别、机器人视觉、模具快速成型、礼品、虚拟现实、人体测量、动画电影、游戏等许多应用领域。 It can be widely used in various industrial inspection, Geographical Survey, medical plastic surgery, orthopedics orthopedic, cultural reproduction, criminal investigation and evidence collection, security identification, robot vision, rapid prototyping mold, gifts, virtual reality, anthropometric, animated movies, games and many other applications field.

附图说明 BRIEF DESCRIPTION

[0087] 图1为一种全方位视觉传感器的结构图; [0087] FIG. 1 is a block diagram of an omnidirectional vision sensor;

[0088] 图2为一种全景彩色光编码调制单元的结构图;[0089] 图3为一种背靠背型的快速全景立体摄像测量装置的原理图; [0088] FIG. 2 is a configuration diagram of one kind of color light panorama coding and modulation unit; [0089] FIG. 3 as a back to back type flash panoramic stereoscopic imaging measuring device schematics;

[0090] 图4为背靠背型的快速全景立体摄像测量装置中的连接杆; [0090] FIG. 4 is a perspective back to back type of quick connection rod panoramic imaging measuring device;

[0091] 图5为背靠背型的快速全景立体摄像测量装置中的连接方式示意图; [0091] FIG. 5 is a back to back type fast connection stereo panoramic imaging apparatus of measuring a schematic view;

[0092] 图6为背靠背型的快速全景立体摄像测量装置的处理结构框图; [0092] FIG. 6 is a block diagram showing the processing back to back type flash panoramic stereoscopic imaging device is measured;

[0093] 图7为面对面型的快速全景立体摄像测量装置的结构图; [0093] FIG. 7 is a block diagram of a stereoscopic imaging face type flash panoramic measuring device;

[0094] 图8为面对背型的快速全景立体摄像测量装置的结构图; [0094] FIG. 8 is a structural view face perspective panoramic imaging flash back type measuring device;

[0095] 图9为背对面型的快速全景立体摄像测量装置的结构图; [0095] FIG. 9 is a rear perspective opposite type panoramic camera flash configuration diagram of a measuring apparatus;

[0096] 图10为圆形波长可变滤光片以及波长λ与圆形波长可变滤光片的半径r成线性关系的说明示意图; [0096] FIG variable filter 10 and the radius of the circular wavelength λ the wavelength variable wavelength filter is a circular diagram illustrating the linear relationship to r;

[0097] 图11为高斯球面坐标与三维直角坐标之间的关系示意图; [0097] FIG. 11 is a diagram showing the relationship between the spherical coordinates of the three-dimensional Gaussian Cartesian coordinates;

[0098] 图12为双目视觉中的中央眼的概念图; [0098] FIG. 12 is a conceptual view of a central binocular vision in the eye;

[0099] 图13为全方位视觉传感器的成像原理图; [0099] FIG. 13 is a schematic diagram of an imaging omnidirectional vision sensor;

[0100] 图14为全景彩色光编码调制单元产生全景彩色调制光的原理图。 Schematic [0100] FIG. 14 to generate a panoramic colored light is modulated colored light panorama coding and modulation unit.

具体实施方式 Detailed ways

[0101] 下面结合附图对本发明作进一步描述。 [0101] The following drawings in conjunction with the present invention will be further described.

[0102] 实施例1 [0102] Example 1

[0103] 参照图1〜图6、图10-图14,一种快速全景立体摄像测量装置,包括全方位视觉传感器、全景彩色调制光发生器以及用于对全方位图像进行三维立体摄像测量的微处理器,所述全方位视觉传感器与所述全景彩色调制光发生器配置在同一根轴心线上,所述全方位视觉传感器与所述微处理器连接;所述全方位视觉传感器包括摄像单元6和第一双曲面折反射单元;所述的第一双曲面折反射单元包括第一双曲面镜面2、第一上盖1、第一支撑杆3、透明玻璃面4和附加镜头框5,所述第一双曲面镜面2的上部与第一上盖1连接,所述第一双曲面镜2的底部中央与第一支撑杆3上端连接,所述第一支撑杆3下端与透明玻璃面4连接,所述透明玻璃面4安装在附加镜头框5的上部,所述摄像单元6安装在所述附加镜头框5的下部;所述全景彩色调制光发生器包括圆形波长可变滤光片7 [0103] Referring to FIG. 1 ~ FIG. 6, FIGS. 10-14, a fast panoramic stereoscopic imaging measuring device comprising omnidirectional vision sensor, and a panoramic color modulation light generator for full images of three-dimensional imaging measurement the microprocessor, the full panoramic vision sensor and the color modulation light generator disposed on a same axis line, the omnidirectional vision sensor and the microprocessor are connected; said omnidirectional imaging vision sensor comprising unit 6 and the first hyperbolic catadioptric unit; said first means includes a first catadioptric hyperbolic hyperboloid mirror 2, the first cover 1, the first lever 3, a transparent glass surface of the lens frame 4 and an additional 5 the first hyperboloid mirror 2 is connected to the first upper portion of the upper cover 1, the first hyperbolic mirror 2 is connected to the center of the bottom end of the first support rod 3, the lower end of the first lever 3 and the transparent glass connecting surface 4, the surface of the transparent glass 4 is mounted at an upper portion of the additional lens frame 5, the imaging unit 6 is mounted at a lower portion of said additional lens frame 5; the panoramic color modulation light generator comprises a circular variable wavelength filter rays 7 、光源固定框8、 白色光发光单元9和第二双曲面折反射单元,所述白色光发光单元9连接供电单元10,所述的第二双曲面折反射单元包括第二双曲面镜面22、第二上盖21和第二支撑杆23,所述第二双曲面镜面22的上部与第二上盖21连接,所述第二双曲面镜22的底部中央与第二支撑杆23上端连接,所述第二支撑杆23下端与所述圆形波长可变滤光片7连接,所述圆形波长可变滤光片7安装在所述光源固定框8的上部,所述白色光发光单元9安装在所述光源固定框8的下部;所述第一双曲面镜面和第二双曲面镜面具有相同成像参数; The light source fixed frame 8, a white light-emitting element 9 and a second hyperboloidal catadioptric unit, a white light emitting unit 9 is connected to the power supply unit 10, the second unit includes a second catadioptric hyperbolic hyperboloid mirror (22), the second cover 21 and the second support bar 23, an upper portion of the second mirror 22 is a hyperboloid and the second cover 21 is connected, the second hyperbolic mirror 22 is connected to the center of the bottom end of the second support bar 23, the lower end of the second lever 23 and the variable wavelength filter 7 is connected to the circular, the circular variable filter wavelength of the light source 7 is mounted on an upper portion of the fixed frame 8, the white light emitting unit 9 is mounted at a lower portion of the fixed frame 8 of the light source; the first and second hyperboloid mirror hyperboloid mirror surface having the same imaging parameters;

[0104] 本实施例的全方位视觉传感器由一个摄像单元6和一个双曲面折反射单元构成, 如附图1所示;所述的第一双曲面折反射单元包括第一双曲面镜面2、第一上盖1、第一支撑杆3、透明玻璃面4、附加镜头框5 ;所述的全景彩色调制光发生器由一个彩色调制光编码发射单元和第二双曲面折反射单元构成,如附图2所示;所述的彩色调制光编码发射单元包括圆形波长可变滤光片7、光源固定框8、白色光发光单元9,发光单元的供电单元10 ;所述的第二双曲面折反射单元包括第二双曲面镜面22、第二上盖21、第二支撑杆23 ; [0104] omnidirectional vision sensor of the present embodiment is constituted by an image pickup unit 6 and a hyperbolic catadioptric unit, as shown in Figure 1; said first means includes a first catadioptric hyperbolic hyperboloid mirror 2, the first cover 1, the first lever 3, a transparent glass surface 4, an additional lens frame 5; the panoramic color modulated light generator is constituted by a color coded modulated light emitting unit and a second hyperboloidal catadioptric means, such as shown in Figure 2; the color coded modulated light emitting unit including a circular variable wavelength filter 7, the light source fixing block 8, the power supply unit 9 of white light emitting unit, the light emitting unit 10; the second double a second reflecting means comprises a surface fold hyperboloid mirror (22), a second cover 21, a second support bar 23;

[0105] 对于进入双曲面镜的中心的光,根据双曲面的镜面特性向着其虚焦点折射。 [0105] For the light to enter the center of the hyperbolic mirror, mirror surface properties according to a hyperboloid refracted towards its virtual focal point. 实物图像经双曲面镜反射到聚光透镜中成像,在该成像平面上的一个点P(x,y)对应着实物在空间上的一个点的坐标A(X,Y,Z); Physical image reflected by the hyperbolic mirror image of the condenser lens on the imaging plane of a point P (x, y) corresponding to the physical coordinates A (X, Y, Z) on a point in space;

[0106] 从安置在双曲面镜的虚焦点处的白色光发光单元9,通过圆形波长可变滤光片7 后入射到双曲面镜面2上,通过双曲面镜面2向外折射;由于圆形波长可变滤光片7的峰值波长沿圆形基底的不同角度位置呈线性变化,形成一个全景彩色光编码调制单元;在双曲面镜面2上形成一圈圈呈线性变化的峰值波长的光,经双曲面镜面2折反射后在水平方向360°形成了一圈圈呈双曲线函数关系变化的峰值波长的全景彩色调制光,这个过程正好是全方位视觉传感器成像的逆过程; [0106] positioned from the virtual focal point of the hyperbolic mirror unit 9 emitting white light, a wavelength variable filter through a circular rear hyperboloid mirror 7 is incident on a 2 by 2 hyperboloid mirror outwardly refracted; as circle shaped peak wavelength of the variable wavelength filter 7 along a circular base of different angular positions varies linearly, forming a panoramic color coded light modulation unit; a circle of light of a peak wavelength varies linearly formed on the hyperboloid mirror 2 , after reflection off the hyperboloid mirror 2 in the horizontal direction are formed 360 ° panoramic circle form a color modulated light peak wavelength variation on a hyperbolic function, the process is exactly the inverse process of omnidirectional vision sensor imaging;

[0107] 从安置在全景彩色调制光发生器的双曲面镜的虚焦点处的白色光发光单元9通过发光电源10供电发出白色光,通过圆形波长可变滤光片7投射到全景彩色调制光发生器的双曲面镜面2上,通过全景彩色调制光发生器的双曲面镜面2向外四周折射,在水平方向360°形成了呈双曲线函数关系变化的一圈圈的峰值波长的折反射光,空间上的一个点Α(Χ,Y,Ζ)接受到一定波长的光,该光点继续向全方位视觉传感器的双曲面镜2反射,光线朝向全方位视觉传感器的双曲面镜2的实焦点,根据双曲面的镜面特性向着全方位视觉传感器的虚焦点14折反射,反映实物图像的各具有一定波长的光点经全方位视觉传感器的双曲面镜2反射到聚光透镜中成像,在该成像平面上的一个点P(x,y)对应着实物在空间上的一个点的坐标A(X,Y,Ζ),光路图如图3中的粗实线所示;实际上通过 [0107] positioned at the focal point of the hyperbolic mirror imaginary panoramic color modulation light generator white light emitting unit 9 emits white light by the light emitting power supply 10, the wavelength variable filter 7 through the circular projected onto the color modulation panoramic hyperboloid mirror light generator 2 by 2 four weeks outwardly hyperboloid mirror panoramic color modulation light generator refractive, catadioptric formed as a hyperbolic function of the change in the peak wavelength of a circle of 360 ° in the horizontal direction light, light of a certain wavelength hyperbolic mirror a point Α (Χ, Y, Ζ) received in the space, the light spot continues to omnidirectional vision sensor of the second reflected light toward the omnidirectional vision sensor hyperbolic mirror 2 real focus, according to the characteristics of the hyperboloid mirror 14 toward a virtual focus catadioptric omnidirectional vision sensor, the reflected light having a wavelength of points of the physical image by the hyperbolic mirror reflection omnidirectional vision sensor, the condenser lens 2 in the image, in the imaging plane of a point P (x, y) corresponding to the coordinates of a point a on the physical space (X, Y, Ζ), an optical path diagram of FIG. 3 shown in thick solid line; in fact by 个同一的双曲面镜面以及圆形波长可变滤光片的共同作用使得在原有立体摄像测量中的特征选取、图像匹配步骤得到简化,通过两个同一参数的双曲面镜面以及圆形波长可变滤光片的共同作用确定了空间上的一个点Α(Χ,Υ,Ζ)在成像平面上点P(x,y)的发射角和入射角,即称为确定空间上的点A(X,Y,Ζ)的约束条件;这是因为由于全景彩色调制光发生器与全方位视觉传感器具有两个相同参数的双曲面镜,且两个相同参数的双曲面镜在同一个轴心线上,因此确定点Α(Χ,Y,Ζ)的方位角是非常容易的,关于发射角可以通过圆形波长可变滤光片所确定的光线波长来确定,关于入射角可以通过成像平面上点P(x,y)来确定,这样就确定了点A(X,Y,Ζ)与观察点的空间位置关系; Interaction circular hyperboloid mirror and a wavelength variable filter so that the same features in the original stereo image measurement selection, the image matching step is simplified, a hyperboloid mirror by two variable parameters of the same wavelength and circular interaction filter defining a point Α (Χ, Υ, Ζ) the point P (x, y) of the emission angle and the incidence angle on the imaging plane in space, is called on to determine the spatial point a (X , Y, Ζ) constraints; favorites this is because the color modulation light generator omnidirectional vision sensor with a hyperbolic mirror having two of the same parameters and the same parameters of two hyperbolic mirror in the same axial center line , thus determining a point Α (Χ, Y, Ζ) azimuth is very easy, on the light emission angle of the variable wavelength filter can be determined by determining circular wavelength, incidence angle on the imaging plane through point P (x, y) is determined, which determines the point a (X, Y, Ζ) the spatial relationship of the observation point;

[0108] 所述的全方位视觉传感器的透明玻璃面4中间开有一个小孔,孔的直径与第一支撑杆3的内螺纹孔径相同,连接时将第一支撑杆3细的一端垂直于透明玻璃面4用螺钉穿过透明玻璃面4上的小孔将第一支撑杆3与透明玻璃面4连接起来;所述的附加镜头框5 的下面有一个与摄像单元6镜头前口径相同的外螺纹,通过旋紧螺纹的方式将附加镜头框5稳固的固定在摄像单元6上,所述的透明玻璃面4嵌入在所述的附加镜头框5内; [0108] a transparent glass surface of the intermediate 4 omnidirectional vision sensor, a hole is opened, a first support rod and the hole diameter of the inner thread 3 of the same aperture, the connection end of the first support rod 3 to the thin vertical 4 a transparent glass surface of the first support rod 3 by a screw to connect with the transparent surface of the glass 4 through the hole 4 of the transparent glass surface; below said additional lens frame 5 has a front lens diameter of the imaging unit 6 the same an external thread, by means of an additional lens for screw thread frame 5 is fixed to the solid image pickup unit 6, the surface of the transparent glass 4 is embedded within said additional lens frame 5;

[0109] 所述的彩色调制光编码发射单元主要由白色光发光单元9和圆形波长可变滤光片7构成,所述的圆形波长可变滤光片7中间开有一个小孔,孔的直径与第二支撑杆23的内螺纹孔径相同,连接时将第二支撑杆23细的一端垂直于圆形波长可变滤光片7用螺钉穿过圆形波长可变滤光片7的小孔将第二支撑杆23与圆形波长可变滤光片7 ;所述的光源固定框8的下面有一个与白色光发光单元9 口径相同的外螺纹,通过旋紧螺纹的方式将光源固定框8稳固的固定在白色光发光单元9上,所述的圆形波长可变滤光片7嵌入在所述的光源固定框8内; [0109] The color coded modulated light emitting unit 7 is mainly composed of a variable filter unit 9 and the white light emitting wavelength of circular, said circular opening wavelength variable filter 7 has a center hole, diameter support rod and the second internally threaded hole 23 of the same aperture, the variable filter is connected a second end of the vertical support bar 23 to the circular thin screws 7 through the circular wavelength of the variable wavelength filter 7 the second aperture 23 of the circular support bar 7 wavelength-variable filter; below said light source has a fixed frame 8 of the white-light emitting cells on the same diameter of the external thread 9, by screwing a threaded manner the light source 8 fixed frame is fixed firmly on a white light-emitting element 9, the wavelength-variable filter 7 fitted round the light source 8 fixed in said frame;

[0110] 所述的第一支撑杆3的外形为上粗下细的圆台,如附图3所示,第一支撑杆3粗的一端为外螺纹,第一支撑杆3细的一端为内螺纹;所述的第一双曲面镜面2中间开有一个小孔,孔的直径与第一支撑杆3的外螺纹直径相同,连接时将第一支撑杆3的外螺纹穿入第一双曲面镜面2的孔中用螺帽将第一双曲面镜面2与第一支撑杆3连接起来; [0110] The outer shape of the first lever 3 is lower coarse thin circular table, as shown in the drawings, the thick end of the first lever 3 is an external thread 3, a first end of the support rod 3 is thin thread; said first intermediate opening hyperboloid mirror 2 has a small hole, the external thread diameter of the first lever 3 of the same diameter of the hole, when the first support rod connected to the external thread 3 penetrates the first hyperboloid the aperture mirror 2 with the nut 2 and the first support rod 3 are connected a first hyperboloid mirror;

[0111] 所述的全方位视觉传感器和所述的全景彩色调制光发生器配置在同一的轴心线上,图3所示的是一种是背靠背的连接;所述的背靠背的连接,首先采用一根两端带有内螺纹的连接杆10将两台具有相同成像参数的双曲面镜面2连接起来,如图5所示;内螺纹的尺寸与支撑杆3的外螺纹的尺寸相匹配,通过这样的连接能保证全方位视觉传感器与全景彩色调制光发生器在同一轴心线上; [0111] The full range of the panoramic vision sensor and the color modulation light generator disposed on the same axial center line, FIG. 3 is a back to back connection is shown; back to back connected to the first using the ends of a connecting rod 10 with an internal thread the two hyperboloidal mirror 2 having the same imaging parameters are connected, as shown in FIG. 5; the size of the internal thread and the external thread of the support rod 3 dimensions to match, with such a connection can ensure the same center line and the full panoramic vision sensor in the color modulation light generator;

[0112] 来说明全方位视觉传感器的工作原理,图13中的2-双曲线面镜,12-入射光线, 13-双曲面镜的实焦点Om(0,0,c),14-双曲面镜的虚焦点,即摄像单元6的中心Oc (0, Ο,-c),15-反射光线,16-成像平面,17-实物图像的空间坐标A (X,Y,Z),18-入射到双曲面镜面上的图像的空间坐标,19-反射在成像平面上的点P(X,y)。 [0112] will be described the working principle of omnidirectional vision sensor, in FIG 132- hyperbolic mirror, 12 incident light, 13 the real focus of the hyperbolic mirror Om (0,0, c), 14- hyperboloid center Oc (0, Ο, -c) mirror virtual focus, i.e., the imaging unit 6, the reflected light 15, 16 an imaging plane, the image of the physical space coordinates 17- a (X, Y, Z), 18- incident hyperbolic mirror surface of the space coordinates of the image point 19- reflected on the imaging plane P (X, y).

[0113] 图13中所示的双曲面镜构成的光学系统可以由下面5个等式表示; Hyperbolic mirror optical system shown in [0113] FIG. 13 may be constituted by the following five equations represent;

[0114] [0114]

Figure CN101487703BD00131

[0119] 式中X、Y、Z表示空间坐标,c表示双曲面镜的焦点,2c表示两个焦点之间的距离, a,b分别是双曲面镜的实轴和虚轴的长度,β表示入射光线在XY投影平面上与X轴的夹角,即方位角,α表示入射光线在)(Ζ投影平面上与X轴的夹角,这里将α称为入射角,α 大于或等于0时称为俯角,将α小于0时称为仰角,f表示成像平面到双曲面镜的虚焦点的距离,Y表示折反射光线与Z轴的夹角;x,y表示在成像平面上的一个点; [0119] wherein X, Y, Z represent spatial coordinates, c denotes the focal point of the hyperbolic mirror, 2c denotes a distance between two focal points, a, b are the lengths of the hyperbolic mirror to the real axis and the imaginary axis, β X axis represents the incident light angle in the XY projection plane, i.e., azimuth angle, [alpha] represents the incident ray) of ([zeta] angle between the projection plane and the X-axis, herein referred to as the angle of incidence [alpha], [alpha] is greater than or equal to 0 when referred to the depression angle, referred to as the elevation angle is less than the 0 α, f denotes a distance to the image plane of the virtual focus of the hyperbolic mirror, Y denotes the angle of light reflected off the Z-axis; x, y represents a on the imaging plane point;

[0120] 为了获得比较大的立体视觉范围,在所述的双曲面镜面2设计时需要尽可能加大双曲面镜面的仰角,采用减小双曲面镜的实轴a和虚轴b的比来加大双曲面镜面的仰角,设计时需根据立体视觉的范围、双曲面镜的直径大小来选择一个适当的实轴a和虚轴b的比, 最大仰角极限是双曲线的渐进线与X轴的夹角; [0120] In order to obtain a relatively large range of stereoscopic vision, the need to increase the elevation hyperboloid mirror hyperboloid mirror 2 as designed, the hyperbolic mirror is reduced using a real axis and the imaginary axis b ratio increase the hyperboloid mirror elevation, the need to select an appropriate real axis and the imaginary axis b a ratio of maximum elevation angle range limit in accordance with stereoscopic vision, the hyperbolic mirror diameter of progressive design hyperbolic line X-axis angle;

[0121] 来说明全景彩色调制光发生器的工作原理,如图14所示,从安置在双曲面镜的虚焦点处的白色光发光单元9,通过圆形波长可变滤光片7后入射到第二双曲面镜面22上,通过第二双曲面镜面22向外折射;由于圆形波长可变滤光片7的峰值波长沿圆形基底的不同角度位置呈线性变化,形成一个全景彩色光编码调制单元;在第二双曲面镜面22上形成一圈圈呈线性变化的峰值波长的光,经第二双曲面镜面22折反射后在水平方向360°形成了一圈圈呈双曲线函数关系变化的峰值波长的全景彩色调制光,这个过程正好是全方位视觉传感器成像的逆过程,因此公式(1)〜(5)也适用于对全景彩色调制光发生器的建模; [0121] will be described the working principle of the color modulation light generator favorites, 14, white light from the light emitting unit disposed at the virtual focal point of the hyperbolic mirror 9, through a circular variable wavelength filter 7 is incident after 22 to the second mirror hyperboloid, outwardly refracted by the second mirror 22 hyperboloid; as a circular variable wavelength peak wavelength filter 7 along the circular base of different angular positions varies linearly, is formed a colored light panoramic coding and modulation unit; forming a light linearly varying peak wavelength in a circle on a second hyperboloid mirror (22), after the second reflecting hyperboloid mirror (22) is formed of a folded hyperbolic function of the circle in the horizontal direction 360 ° panoramic change color modulated light peak wavelength is the reverse of the process just imaged omnidirectional vision sensor, and therefore equation (1) to (5) also apply to modeling the color modulation light generator of favorites;

[0122] 图14中的2-双曲线面镜,18-投射光线,13-双曲面镜的实焦点Op (0,0,c),14-双曲面镜的虚焦点Op (0,0,-c),9-白色光源,19-反射光线,17-实物图像的空间坐标A(X,Y, Ζ); In [0122] FIG 142- hyperbolic mirror, projecting light 18, 13 of the hyperbolic mirror real focal point Op (0,0, c), 14- hyperbolic mirror virtual focal point Op (0,0, -c), 9- white light source, reflected light 19-, 17- physical space image coordinates a (X, Y, Ζ);

[0123] 所述的圆形波长可变滤光片,采用超高密度圆形可变滤光片,光密度范围0D0—ODlO (O-IOOdB),适用波段400nm—2000nm ;[0124] 所述的发光单元,可以选择金属卤素灯泡、UHE灯泡、UHP灯泡以及LED光源,选用的原则是能产生大光量,并要有效地抑制闪烁情况的发生,而且外形小巧、亮度衰减小、寿命长的发光器件; Round wavelength [0123] The variable filter, a variable circular filter using ultra-high density, the optical density range of 0D0-ODlO (O-IOOdB), applies band 400nm-2000nm; [0124] The light emitting cells may be selected metal halogen bulb, UHE lamp, UHP lamps and an LED light source, the principle of choice is able to produce a large amount of light, and to effectively suppress the occurrence of flickering, and the compact, light attenuation is small, long-lived luminescence devices;

[0125] 白色光通过圆形波长可变滤光片光的波长λ与圆形波长可变滤光片的半径r成线性关系,用公式(6)来表示, [0125] white light through a circular variable filter light wavelength λ of the circular radius r of the variable wavelength filter is linear, using the formula (6) is represented,

Figure CN101487703BD00141

[0127] 式中:λψ、λ。 [0127] wherein: λψ, λ. 、R均为圆形波长可变滤光片的参数,λ。 , R wavelength are circular variable filter parameters, λ. 为圆形波长可变滤光片的中心的波长,可以设计为最低可见光波长,比如设计成400nm,λ w为圆形波长可变滤光片外圆边缘处的波长,可以设计为最高可见光波长,比如设计成700nm,R为圆形波长可变滤光片的最大半径,r为从圆形波长可变滤光片的圆心到某一点的测量半径值;通过该测量半径值用公式(6)计算可以得到通过该点的波长λ ;反过来,从得到的某一光的波长通过公式(6)推断出r值; Circular variable filter center wavelength, the minimum wavelength of visible light may be designed, for example designed to 400nm, λ w is the wavelength of a variable wavelength circular edge of the cylindrical filter, the maximum wavelength of visible light can be designed to such is designed to 700nm, R is the maximum radius of the circular variable filter wavelength, r is the wavelength variable filter from the circular center to a point of the radius measured values; measuring the radius value by using the formula (6 ) can be calculated by the wavelength λ of the point; conversely, a wavelength of light obtained by the equation (6) inferred value r;

[0128] 为了得到全景彩色光编码调制单元某一光波长的发射角大小,如图14中的%所示,我们可以通过公式(7)计算来得到, [0128] In order to obtain the size of the angle of emission of a light having a wavelength panoramic color coded light modulation unit, as shown in FIG. 14%, we can be obtained by calculating equation (7),

Figure CN101487703BD00142

[0130] 式中:r为从圆形波长可变滤光片的圆心到某一点的测量半径值,d为圆形波长可变滤光片到白色光发光单元9的距离,即圆形波长可变滤光片到虚焦点的距离;如图14所示; [0130] where: r is a wavelength-variable filter from the circular center to a point measured radius value, d is a variable circular filter to the wavelength of the light from the white light emitting unit 9, i.e., circular wavelength the variable filter to the virtual focal distance; shown in Figure 14;

[0131] 有了发射角Yp,我们可以利用公式⑶计算得到该波长光的折射角αρ,如图14 所示, [0131] With the angle Yp of emission, we can use the formula ⑶ calculated wavelength of the light refraction angle αρ, 14,

[0132] α p = tan-1 [ (b2+c2) sin y p-2bc] / (b2+c2) cos yp (8) [0132] α p = tan-1 [(b2 + c2) sin y p-2bc] / (b2 + c2) cos yp (8)

[0133] 式中:c表示双曲面镜的焦点,a, b分别是双曲面镜的实轴和虚轴的长度; [0133] where: c denotes a focus of the hyperbolic mirror, a, b are the lengths of the hyperbolic mirror the real axis and the imaginary axis;

[0134] 该具有某一特定波长的点将在全方位视觉传感器的成像平面上有一个对应点,即P(x,y),通过公式(5)可以计算出该点的折反射光线与Z轴的夹角Y。 [0134] The point of having a particular wavelength has a corresponding point on the imaging plane of omnidirectional vision sensor, i.e., P (x, y), can be calculated and reflected ray off of the point Z by Equation (5) the angle between the axis Y. ;有了折反射角Y。 ; With the angle of reflection off Y. , 我们可以通过公式(9)该具有某一特定波长的点的入射角α。 , We can (9) having an angle of incidence α of the point at a particular wavelength by the formula. ,如图13所示, , 13,

[0135] a。 [0135] a. = tadO^+cSsinYolbcVO^+cScosY。 = TadO ^ + cSsinYolbcVO ^ + cScosY. (9) (9)

[0136] 式中:C表示双曲面镜的焦点,a, b分别是双曲面镜的实轴和虚轴的长度; [0136] where: C denotes a focus of the hyperbolic mirror, a, b are the lengths of the hyperbolic mirror the real axis and the imaginary axis;

[0137] 进一步,通过折射角%和入射角α。 [0137] Further, the angle of refraction by% and the incidence angle α. 来计算空间物点A的距离,如图3所示,0_„和Op之间的距离表示基线距B,物点A与全方位视觉传感器的实焦点Om的距离Rl可以由公式(10)来计算, Calculating the spatial distance object point A, as shown, the distance between the 0_ '3 and Op represents a baseline from B, a real focal point Om of the object A and the omnidirectional vision sensor may Rl distance (10) from the formula computing,

Figure CN101487703BD00143

[0139] 式中:B为基线距,α ρ为折射角,α。 [0139] wherein: B is from baseline, α ρ is the refraction angle, α. 为入射角,Rl为物点A与全方位视觉传感器的实焦点Om的距离; Angle of incidence, Rl is a real focal point Om of the object from the point A and the omnidirectional vision sensor;

[0140] 物点A与全景彩色调制光发生器的实焦点Op的距离R2可以由公式(11)来计算, [0140] Op real focal point of the object A and the color modulation light generator panoramic distance R2 can be calculated from equation (11),

Figure CN101487703BD00144

[0142] 式中:B为基线距,α ρ为折射角,α。 [0142] wherein: B is from baseline, α ρ is the refraction angle, α. 为入射角,R2为物点A与全景彩色调制光发生器的实焦点Op的距离; Angle of incidence, R2 is a distance from the real focus of the object point A and Op favorites of the color modulation light generator;

[0143] 本发明中采用“中央眼”视觉方式来描述空间上某一物点A的信息(R,Φ,β,t), 所谓的中央眼是立体视觉基线距的中点,是通过全方位视觉传感器和全景彩色光编码调制单元的视点之间的连线中心点来算得到,这里将中央眼的坐标作为高斯球面坐标的原点0, 如图3所示。 [0143] In the present invention, a "central eye" was a visual way to describe the spatial information of the point A (R, Φ, β, t), called the central eye stereoscopic baseline from the midpoint of the full through connecting a center point between the visual sensor and a panoramic view orientation color coded light modulation unit to count obtained, the coordinates of the center of the eye where the origin 0 Gauss spherical coordinates, as shown in FIG. 各个物理参数的含义如图12所示;高斯球面坐标与三维坐标之间的关系如图11所示; Meaning of the various physical parameters shown in Figure 12; the relationship between the three-dimensional coordinates of a spherical coordinate Gaussian shown in Figure 11;

[0144] 我们采用4个参数来表达空间上某一物点的信息,R为球面坐标原点0与物点A之间的距离;Φ为球面坐标原点0与物点A之间的连线与Z轴正向所夹的角;β就对应着方位角;t表示时间信息;空间上的任意一个物点均可以采用公式(12)来表达, [0144] We use the four parameters to express information about a point in object space, R is the distance between the spherical coordinate origin 0 and point A thereof; [Phi] is a connection between the spherical coordinate origin 0 and point A and the object Z positive angle sandwiched; corresponds to the azimuth angle beta]; T represents time information; any point on the object space can be using the equation (12) is expressed,

[0145] (12) [0145] (12)

[0146] α = A(R,Φ,β,t) [0146] α = A (R, Φ, β, t)

[0147] 采用“中央眼”视觉方式来描述空间上物点A,我们将On^POp之间的中点作为中央眼,即图3中的0点,那么物点A与中央眼的距离R可以由公式(13)来计算, [0147] The "central eye" visual way to describe the spatial object point A, we will On ^ POp as the midpoint between the center of the eye, i.e., in FIG. 30 point, the central object point A and the distance R eye can be calculated from equation (13),

[0148] [0148]

Figure CN101487703BD00151

[0150] 式中:B为基线距,α p为折射角,α。 [0150] wherein: B is from baseline, α p is the refraction angle, α. 为入射角,R为物点A与中央眼的距离;用Φ Angle of incidence, R is the distance from the central object point A and the eye; with Φ

角度来描述“中央眼”观察物点A的入射角,可以用公式(14)来计算, β The angle of incidence angles described "central eye" under observation point A can be used in equation (14) is calculated, beta]

[0151] [0151]

Figure CN101487703BD00152

[0152] 式中:B为基线距,α。 [0152] wherein: B is from the baseline, α. 为入射角,Φ为空间物点相对于中央眼的入射角; Is an incident angle, Φ is the angle of incidence with respect to the spatial object central point of the eye;

[0153] 所述的微处理器包括:视频图像读取模块,用于读取全方位视觉传感器的视频图像,并保存在指定的存储设备中;空间信息计算单元,用于计算空间上的物点到立体视觉测量装置中心点的距离及入射角,计算公式如(10)〜(14)所示;三维图像重构单元,用于将空间的各物点按不同的色彩来描述其物点的距离感信息; [0153] The microprocessor comprising: a video image reading means for reading a video image omnidirectional vision sensor, and saved in the storage device; spatial information calculating unit configured to calculate the spatial composition on the distance between the point of the center point of the stereoscopic measurement apparatus and the angle of incidence, calculated as (10) to (14); three-dimensional image reconstruction means, for each object point of the different color space to describe the object points the sense of distance information;

[0154] 所述的空间信息计算模块,包括折射角α ρ、入射角α。 [0154] The spatial information calculation module, including the angle of refraction α ρ, the angle of incidence α. 和距离计算单元;所述的折射角α 5计算单元,利用全景彩色光编码调制单元的折射角01)与发射角Yp成公式(8)所示的函数关系, And a distance calculation unit; and the angle of refraction α 5 calculation unit, by using function 01) and the emission angle Yp as shown in equation (8) is a light refraction angle panoramic color coded modulation unit,

[0155] α p = tan-1 [ (b2+c2) sin y p-2bc] / (b2+c2) cos yp (8) [0155] α p = tan-1 [(b2 + c2) sin y p-2bc] / (b2 + c2) cos yp (8)

[0156] 发射角%与圆形波长可变滤光片的半径r成公式(7)所示的函数关系, [0156]% emission angle variable wavelength filter is a circular radius r as shown in equation (7) is a function,

[0157] [0158] 圆形波长可变滤光片的半径r与圆形波长可变滤光片光的波长λ成公式(6)所示的线性关系, [0157] [0158] circular variable filter wavelength-variable optical wavelength filter radius r of the circular wavelength λ into formula (6) shown in a linear relationship,

[0159] [0159]

Figure CN101487703BD00153

[0160] 因此可以得到圆形波长可变滤光片光的波长λ与全景彩色光编码调制单元的折射角α。 [0160] Thus obtained circular variable filter wavelength of the light wavelength λ and modulation unit panoramic color coded light refraction angle α. 之间的函数关系;[0161] 所述的入射角α。 The functional relationship between the; [0161] The incident angle α. 计算单元,利用全方位视觉传感器的入射角α。 Calculation unit, by using the angle of incidence α omnidirectional vision sensor. 与折反射角Υ 之间存在着公式(9)所示的函数关系, Function of the equation exists between Υ (9) off the reflection angle,

[0162] [0162]

=tarT1 [ (b2+c2) sin γ。 = TarT1 [(b2 + c2) sin γ. -2bc] / (b2+c2) cos y。 -2bc] / (b2 + c2) cos y. (9) (9)

[0163] 折反射角Y。 [0163] reflection off Y. 与成像平面上的一个点(X,y)存在着公式(5)所示的函数关系, There is equation (5) as a function shown in a point (X, y) on the imaging plane,

[0164] γ = taiT1 [/ / ^(x2+y2)] (5) [0164] γ = taiT1 [/ / ^ (x2 + y2)] (5)

[0165] 得到成像平面上的一个点(X,y)与入射角α。 [0165] to obtain a point (X, y) and the angle of incidence α on the imaging plane. 之间的函数关系; Functional relationship between;

[0166] 所述的距离计算单元,利用公式(10)〜(14)分别计算空间物点与全方位视觉传感器的实焦点Om的距离R1、空间物点与全景彩色光编码调制单元的实焦点Op的距离R2、空间物点与中央眼的距离R以及空间物点的入射角Φ, From [0166] the calculation unit, using equation (10) to (14) calculate the real focus of the real object space focal point Om of omnidirectional vision sensor, the distance R1, and the space object point favorites coded colored light modulation unit Op distance R2, with the central space of the object point distance R eye and the spatial angle of incidence of the object point Φ,

[0167] [0167]

Figure CN101487703BD00161

式中:B为基线距,α。 Where: B is the baseline distance, α. 为入射角,α ρ为折射角,Rl为物点A与全方位视觉传感器的实焦点Om的距离,R2为物点A与全景彩色调制光发生器的实焦点Op的距离,R为物点A 与中央眼的距离,Φ为空间物点相对于中央眼的入射角。 Angle of incidence, α ρ is the angle of refraction, Rl is a real focal point Om of the object from the point A and the omnidirectional vision sensor, R2 of the real focal distance of the object point A and the Op panoramic color modulation light generator, R is the object point a distance from the central eye, Φ is the angle of incidence with respect to the spatial object point in the center of the eye.

[0173] 由于全景彩色光编码调制单元的折射角Cip与发射角Yp成公式(8)所示的函数关系,发射角%与圆形波长可变滤光片的半径r成公式(7)所示的函数关系,圆形波长可变滤光片的半径r与圆形波长可变滤光片光的波长λ成公式(6)所示的线性关系,因此可以得到圆形波长可变滤光片光的波长λ与全景彩色光编码调制单元的折射角Cip之间的函数关系,换句话说,某一光波长λ与某一折射角α 5之间存在着函数关系,这里设计一张光编码表,只要得到某一光波长λ的数据通过光编码表查到该光波长λ所对应的折射角 [0173] Since the function of the colored light refraction angle panoramic Cip coding and modulation unit and the emission angle Yp into equation (8), the emission angle of the circular% of the wavelength variable filter radius r into equation (7) shown as a function of light wavelength variable filters circular wavelength variable filter radius r of the circular wavelength λ into formula (6) is a linear relationship shown, it is possible to obtain a circular tunable filter function relationship between the wavelength λ of the light sheet and the light refraction angle panoramic color coding and modulation unit Cip, in other words, there is a light wavelength λ a functional relationship between the angle of refraction α 5, where the design of a light coding table to obtain the data as long as a wavelength λ of light found in the light wavelength λ corresponding to the angle of refraction of light by the code table

aP ; aP;

[0174] 由于全方位视觉传感器的入射角a。 [0174] Since the omnidirectional vision sensor incident angle a. 与折反射角Y。 And the angle of reflection off Y. 之间存在着公式(9)所示的函数关系,折反射角Y。 Between the equation (9) is a function, the angle of reflection off Y. 与成像平面上的一个点(x,y)存在着公式(5)所示的函数关系,因此可以得到成像平面上的一个点(x,y)与入射角α。 And a point (x, y) on the imaging plane there formula (5) shown in function, it is possible to obtain a point (x, y) and the angle of incidence α on the imaging plane. 之间的函数关系,换句话说,在全方位视觉传感器的成像平面的一个点必定对应着某一个入射角α。 The functional relationship between, in other words, a point in the image plane must be omnidirectional vision sensor corresponds to a certain angle of incidence α. ,这里设计一张入射角计算表,从某一个点的坐标数据通过入射角计算表查到该点所对应的入射角a。 , Where the design of an incident angle calculation table, from a certain point of the coordinate point data corresponding to the found angle of incidence of the incident angle by a calculation table. ;

[0175] 实际进行空间信息计算时,首先按全方位视觉传感器的成像平面的点坐标顺序读取某一个点的波长λ值,以点坐标值检索入射角计算表得到该点所对应的入射角α。 [0175] When the calculated actual spatial information, first read wavelength λ according to the value of a certain point of the imaging plane coordinates order omnidirectional vision sensor, in order to retrieve the value of the angle of incidence point coordinates calculation table obtained corresponding to the incident angle of the point α. ,接着以该点的光波长λ值检索光编码表得到该光波长λ所对应的折射角a ρ;最后利用公式(10)或者公式(11)或者公式(13)计算得到空间上某一点的距离信息;[0176] 所述的三维图像重构模块,由于在全景彩色光编码调制单元中采用了全景彩色光编码调制方式,全景360°空间上的任何点都将带有不同的色彩来表示其与观察点之间的距离,因此只要对在全方位视觉传感器上的成像图像通过全景柱状展开算法进行展开,就能方便地得到全景立体图像; , Followed by light having a wavelength λ of light which retrieves the point code table to obtain the wavelength λ of the light refraction angle corresponding to a ρ; Finally, equation (10) or equation (11) or equation (13) is calculated on a point of the space obtained distance information; [0176] the three-dimensional image reconstruction module, the use of light colored panorama in panorama coding and modulation scheme coding and modulation unit in a light color, any point on the 360 ​​° panoramic space will be represented with different colors with the distance between the observation point, so long as the algorithm to expand the imaged image on the omnidirectional vision sensor by a columnar panoramic are expanded, you can easily obtain a panoramic stereoscopic image;

[0177] 所述的全景柱状展开算法,是将在全方位视觉传感器中所获取的全景图像进行柱状展开运算,展开图中横坐标表示方位角,纵坐标表示入射角;在展开全方位图像时需要将该中心部分的图像单独分离出来,然后对全方位图像进行展开,展开算法中水平方向的计算步长为,Δ β =2π/1,式中1为水平展开幅度;垂直方向的计算步长为Am = (α。-max_a。_min)/m ;式中,α。 When the omnidirectional image expanded; [0177] The columnar panoramic unwrapping algorithm, is a full-panoramic image acquired by the visual sensor performs a columnar expand operation, FIG expand the abscissa represents azimuth angle and the ordinate represents the incident angle the central portion of the image need to be individually isolated out of the full image is then expanded in the horizontal direction unwrapping algorithm calculated step size, Δ β = 2π / 1, where 1 is the amplitude level of deployment; vertical calculation step length Am = (α.-max_a._min) / m; wherein, α. _max为全景原图最大有效半径Rmax对应的场景光线入射角, α。 _max a panoramic picture corresponding to the maximum effective radius Rmax scene incident angle, α. _min为全景原图最小有效半径Rmin对应的场景光线入射角; _min panorama picture Rmin the minimum effective radius corresponding to the scene light incident angle;

[0178] 与用极坐标表示的全景原图中的原像点Α(Φ,β)对应的球面展开方式中的A点坐标分别为: [0178] original panoramic picture image point in polar coordinates Α (Φ, β) corresponding to the spherical coordinates of the point A deployment mode are:

[0179] χ = β/Δ β ,y = ( α ο-α o_min) / Δ m (15) [0179] χ = β / Δ β, y = (α ο-α o_min) / Δ m (15)

[0180] 式中:Δ β为水平方向的计算步长,β为方位角,Am为垂直方向的计算步长,αο 全景原图有效半径R对应的场景光线入射角,α。 [0180] where: Δ β is the step size calculated in the horizontal direction, β azimuth, Am to calculate a step size in the vertical direction, αο panoramic picture corresponding to the effective radius R of the scene incident angle, α. -min为全景原图最小有效半径Rmin对应的场景光线入射角。 -min a panoramic picture corresponding to the minimum radius Rmin effective incident angle scenes.

[0181] 实施例2 [0181] Example 2

[0182] 参照图1、图2、图7、图10-图14,本实施例在全景彩色调制光发生器与全方位视觉传感器的连接方式上,这里采用的是面对面的连接;所述的面对面的连接,是将所述的全方位视觉传感器上的摄像单元6与所述的全景彩色调制光发生器上的光源固定框8通过连接件进行连接,这种连接方式将两个具有同一参数的双曲面镜面的凸面对着凸面,且要保证两个双曲面镜面2、22的轴心线重合,如图7所示;从图7中可知,面对面型快速全景立体摄像测量装置的基线距B最长,立体视觉测量范围最大。 [0182] Referring to FIG 1, FIG 2, FIG. 7, FIGS. 10-14, the present embodiment in connection with panoramic color modulation light generator omnidirectional vision sensor, here is the connection face; the connecting face, is the imaging unit according to the omnidirectional vision sensor 6 and the light source is fixed on the frame of the panoramic color modulated light generator 8 is connected by the connecting member, this connection will have the same two parameters hyperboloid convex face of the convex mirror and hyperboloid mirror to ensure that the two axial lines coincide 2,22, as shown in FIG. 7; FIG. 7 seen from baseline stereo panoramic imaging fast-face type measuring device the longest distance B, the stereoscopic measurement range maximum.

[0183] 本实施例的其他结构与工作过程与实施例1相同。 [0183] Other structures and operations of the present embodiment same as in Example 1.

[0184] 实施例3 [0184] Example 3

[0185] 参照图1、图2、图8、图10-图14,本实施例在全景彩色调制光发生器与全方位视觉传感器的连接方式上,这里采用的是面对背的连接,即上面为全景彩色调制光发生器下面为全方位视觉传感器的连接方式;所述的面对背的连接方式,是将所述的全景彩色调制光发生器上的光源固定框8与所述的全方位视觉传感器上的上盖1通过连接件进行连接, 这种连接方式将全景彩色调制光发生器上的第二双曲面镜面22的凸面对着全方位视觉传感器的第一双曲面镜面2的凹面,且要保证两个双曲面镜面2、22的轴心线重合,如图8所示;这种面对背型快速全景立体摄像测量装置的基线距B和立体测量范围处于图3、图6所示的快速全景立体摄像测量装置的中间状态。 [0185] Referring to FIG 1, FIG 2, FIG. 8, FIGS. 10-14, the present embodiment in connection with panoramic color modulation light generator omnidirectional vision sensor, here is connected to the back face, i.e., the above panorama the color modulation light generator for the following connections omnidirectional vision sensor; said connection back face, the light source is fixed on the frame of the panoramic color modulation light generator 8 and the whole cover the visual sensor position 1 are connected by connecting members, this connection of the first hyperboloid hyperboloid second panorama on the color modulated light generator convex mirror facing omnidirectional vision sensor 22 of the mirror 2 concave surface, and to ensure that the two axis of hyperboloid mirror coincides 2,22, 8; fast back face of this baseline stereo panoramic imaging distance measuring device measuring range B and in perspective in FIG. 3, FIG. fast entire perspective intermediate state imaging measuring device shown in FIG. 6.

[0186] 本实施例的其他结构与工作过程与实施例1相同。 [0186] Other structures and operations of the present embodiment is the same as in Example 1.

[0187] 实施例4 [0187] Example 4

[0188] 参照图1、图2、图9-图14,本实施例在全景彩色调制光发生器与全方位视觉传感器的连接方式上,这里采用的是背对面的连接,即上面为全方位视觉传感器下面为全景彩色调制光发生器的连接方式;所述的背对面的连接方式,是将所述的全方位视觉传感器上的摄像单元6与所述的全景彩色调制光发生器上的上盖1通过连接件进行连接,这种连接方式将全方位视觉传感器的第一双曲面镜面2的凸面对着全景彩色调制光发生器上的第二双曲面镜面22的凹面,且要保证两个双曲面镜面2、22的轴心线重合,如图9所示;这种背对面型快速全景立体摄像测量装置的基线距B和立体测量范围处于图3、图6所示的快速全景立体摄像测量装置的中间状态。 [0188] Referring to FIG 1, FIG 2, FIG. 9 to 14, in this embodiment, the connection with the panoramic color modulation light generator omnidirectional vision sensor, here is connected back to front, i.e., the full range of the above the following is a visual sensor connected to a panoramic mode of the color modulation light generator; connections across the back, is on the imaging unit on the omnidirectional vision sensor 6 and the color modulated light generator panoramic cover member 1 is connected by a connection, this connection the second concave hyperboloid mirror on a first omnidirectional vision sensor hyperboloidal convex face 2 of the color modulation light generator panoramic view of mirror 22, and to ensure that the two a hyperboloid mirror coincides with the axis 2 and 22, as shown in FIG. 9; this baseline back to front perspective fast panoramic imaging distance measuring device measuring range B and in perspective in FIG. 3, FIG. 6 fast panoramic perspective in FIG. intermediate state imaging measuring device.

[0189] 本实施例的其他结构与工作过程与实施例1相同。 [0189] Other structures and operations of the present embodiment same as in Example 1.

[0190] 实施例5 [0190] Example 5

[0191] 参照图1〜图6、图10-图14,本实施例的圆形波长可变滤光片的光波长范围的选择方面,在一些特殊场合,如需要全景彩色调制光发生器发出的是红外光谱,因此将可变滤光片的光波长的范围选择在700nm〜2000nm。 [0191] Referring to FIG. 1 ~ 6, 10-14, circular selection according to the present embodiment of a variable wavelength filter wavelength range, in some special occasions, if necessary, the color modulation light generator emits panoramic an infrared spectrum, so the range of the variable filter is selected wavelength of light in 700nm~2000nm.

[0192] 本实施例的其他结构和工作过程与实施例1相同。 [0192] Other structure and operation of the present embodiment is the same as in Example 1.

Claims (6)

1. 一种快速全景立体摄像测量装置,其特征在于:所述快速全景立体摄像测量装置包括全方位视觉传感器、全景彩色调制光发生器以及用于对全景图像进行三维立体摄像测量的微处理器,所述全方位视觉传感器与所述全景彩色调制光发生器配置在同一根轴心线上,所述全方位视觉传感器与所述微处理器连接;所述全方位视觉传感器包括摄像单元和第一双曲面折反射单元;所述的第一双曲面折反射单元包括第一双曲面镜、第一上盖、第一支撑杆、透明玻璃面和附加镜头框,所述第一双曲面镜的上部与第一上盖连接,所述第一双曲面镜的底部中央与第一支撑杆上端连接, 所述第一支撑杆下端与透明玻璃面连接,所述透明玻璃面安装在附加镜头框的上部,所述摄像单元安装在所述附加镜头框的下部;所述全景彩色调制光发生器包括圆形波长可变滤光片、 1. A quick panoramic stereoscopic imaging measuring device, characterized in that: said flash panoramic imaging measuring device comprises a full stereo vision sensor, a panoramic color modulation light generator and a microprocessor for imaging three-dimensional panorama image measurement the panoramic omnidirectional vision sensor and the color modulation light generator disposed on a same axis line, the omnidirectional vision sensor and the microprocessor are connected; said omnidirectional visual sensor includes an imaging unit and folding one pair of curved reflecting unit; said first means comprises a first hyperboloidal catadioptric the hyperbolic mirror, a first cover, a first support rod, and an additional transparent glass surface of the lens frame, the first hyperbolic mirror a first cover connected to an upper portion, a central bottom of the first hyperbolic mirror connected to the upper end of the first lever, the first lever connected to the lower end surface of the transparent glass, a transparent glass surface of the lens frame mounted in the additional an upper portion, a lower portion of the imaging unit is mounted on the additional lens frame; the panoramic color modulation light generator comprises a circular variable wavelength filter, 光源固定框、白色光发光单元和第二双曲面折反射单元,所述白色光发光单元连接供电单元,所述的第二双曲面折反射单元包括第二双曲面镜、第二上盖和第二支撑杆,所述第二双曲面镜的上部与第二上盖连接,所述第二双曲面镜的底部中央与第二支撑杆上端连接,所述第二支撑杆下端与所述圆形波长可变滤光片连接,所述圆形波长可变滤光片安装在所述光源固定框的上部,所述白色光发光单元安装在所述光源固定框的下部;所述第一双曲面镜和第二双曲面镜具有相同成像参数; 所述微处理器包括:视频图像读取模块,用于读取全方位视觉传感器的视频图像,并保存在指定的存储设备中,其输出与空间信息计算模块连接;空间信息计算模块,用于计算空间物点到快速全景立体摄像测量装置中心点的距离及入射角,分别计算空间物点与全方位视觉传 A light source fixed frame, a white light emitting unit and a second hyperboloidal catadioptric means, the white light emitting unit connected to the power supply unit, said second unit comprises a second hyperboloidal catadioptric the hyperbolic mirror, and a second cover two support rods, said second upper portion of the hyperbolic mirror is connected to the second cover, the center of the bottom of the second hyperbolic mirror and a second upper support bar connected to a lower end of the second lever and the circular connecting a variable wavelength optical filter, the wavelength variable filter is mounted on the circular upper portion of the fixed frame of the light source, the white light emitting light source unit is mounted on a lower portion of the fixed frame; the first hyperboloid hyperbolic mirror and a second mirror having the same imaging parameters; said microprocessor comprising: a video image reading means for reading a video image omnidirectional vision sensor, and saved in the storage device, the output space information calculating module is connected; spatial information calculating module for calculating the spatial distance between the point was quickly panoramic stereo camera device center point and angle of incidence measurements, calculate the spatial object point and pass omnidirectional vision 感器的实焦点Om的距离R1、空间物点与全景彩色调制光发生器的实焦点Op的距离R2、空间物点与中央眼的距离R以及空间物点的入射角Φ ;其输出与三维图像重构模块连接;三维图像重构模块,用于将在全方位视觉传感器中所获取的全景图像进行柱状展开运算,展开图中横坐标表示方位角,纵坐标表示入射角;在展开全景图像时需要将中心部分的图像单独分离出来,然后对全景图像进行展开,展开算法中水平方向的计算步长为,Δ β = 2π/1,式中1为水平展开幅度;垂直方向的计算步长为Am= (a。_max-a。_min)/m;式中, α。 Om of the real focal distance sensors R1, Op real focal point of the object space and the color modulation light generator panoramic distance R2, with the central space of the object point distance R eye and the spatial incidence angle [Phi] of the object point; three-dimensional output image reconstruction module is connected; three-dimensional image reconstruction module for the panoramic image acquired omnidirectional vision sensor is performed in a columnar expand operation, FIG expand the abscissa represents azimuth angle and the ordinate represents the incident angle; panoramic image in expanded when necessary image central portion separated out alone, then the panoramic image is expanded, expand calculating step algorithm in the horizontal direction is, Δ β = 2π / 1, where 1 expand amplitude level; calculating a vertical step as Am = (a._max-a._min) / m; wherein, α. __为全景图像最大有效半径Rmax对应的场景光线入射角,α。 __ scene light to the maximum effective radius Rmax panoramic image corresponding to the incident angle, α. _min为全景图像最小有效半径Rmin对应的场景光线入射角;与用极坐标表示的全景图像中的原像点Α(Φ,β)对应的球面展开方式中的A点坐标分别为:χ = β/Δ β,y = (Hn)Mm (15)式中:Δ β为水平方向的计算步长,β为方位角,Am为垂直方向的计算步长,α。 _min minimum effective radius of the panoramic image scene corresponding to the incident angle Rmin; A of the original image point coordinates Α (Φ, β) represented by the panoramic image in polar coordinates corresponding to the spherical expanded manner were: χ = β / Δ β, y = (Hn) Mm (15) where: Δ β is the step size calculated in the horizontal direction, β azimuth, Am to calculate the vertical direction step size, α. 全景图像有效半径RO对应的场景光线入射角,α。 Effective radius RO panoramic image corresponding to the scene incident angle, α. _min为全景图像最小有效半径Rmin对应的场景光线入射角。 _min minimum effective radius of the panoramic image scene incident angle corresponding to Rmin.
2.如权利要求1所述的快速全景立体摄像测量装置,其特征在于:所述白色光发光单元位于第一双曲面镜或第二双曲面镜的虚焦点处,白色光通过圆形波长可变滤光片光的波长λ与圆形波长可变滤光片的半径r成线性关系,用公式(6)来表示,= (6) Rf式中:λψ、λ。 2. Rapid panoramic stereoscopic imaging measuring device according to claim 1, wherein: the white light-emitting unit is located at the virtual focal point of the first hyperbolic mirror or the second hyperbolic mirror, white light through the circular wavelength [lambda] is the wavelength of the circular variable filter variable wavelength light filter radius r linear relationship, equation (6) is represented, = (6) Rf where: λψ, λ. 、&均为圆形波长可变滤光片的参数,λ。 , & Wavelengths are circular variable filter parameters, λ. 为圆形波长可变滤光片的中心的波长,λ w为圆形波长可变滤光片外圆边缘处的波长,Rf为圆形波长可变滤光片的最大半径,r为从圆形波长可变滤光片的圆心到某一点的测量半径值;通过测量半径值用公式(6) 计算得到通过该点的波长入。 The variable filter is circular center wavelength, λ w is the wavelength of a variable wavelength circular edge of the cylindrical filter, Rf is the maximum radius of the circular variable filter wavelength, r is the circle shaped center wavelength variable filter to a point measured radius value; by measuring the radius value calculated using equation (6) obtained by the wavelength of the point.
3.如权利要求1或2所述的快速全景立体摄像测量装置,其特征在于:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用背靠背型连接,所述全方位视觉传感器的第一上盖与所述全景彩色调制光发生器的第二上盖连接,连接杆穿过所述第一上盖与第一支撑杆连接,并同时穿过第二上盖与第二支撑杆连接。 3. Fast panoramic stereo camera measuring device according to claim 1, wherein: the connection between the back to back type full panoramic vision sensor and the color modulation light generator, said omnidirectional vision sensor a first cover and a second cover of the panoramic color modulation light generator, connecting rod through the first support rod is connected to the first cover, and simultaneously through the second cover and the second support rod.
4.如权利要求1或2所述的快速全景立体摄像测量装置,其特征在于:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用面对面连接,将全方位视觉传感器的摄像单元与所述全景彩色调制光发生器的光源固定框连接。 4. Fast panoramic stereo camera measuring device according to claim 1, wherein: the face to face connection between the omnidirectional vision sensor and the color modulation light generator favorites, the imaging omnidirectional vision sensor a light source unit connected to the fixed frame of the panoramic color modulation light generator.
5.如权利要求1或2所述的快速全景立体摄像测量装置,其特征在于:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用面对背连接方式,将全景彩色调制光发生器的光源固定框与所述全方位视觉传感器的第一上盖连接。 5. Fast imaging stereo panoramic measuring device according to claim 1, wherein: the face-back connection using the modulation between the full-color panoramic vision sensor and the color modulation light generator panoramic a light source fixed frame connected to the first light generator cover the full range of the visual sensor.
6.如权利要求1或2所述的快速全景立体摄像测量装置,其特征在于:所述全方位视觉传感器与所述全景彩色调制光发生器之间采用背对面连接方式,将全方位视觉传感器的摄像单元与所述全景彩色调制光发生器的第二上盖连接。 6. Fast panoramic stereo camera measuring device according to claim 1, characterized in that: the use of back-to-visual connection between the sensor and the full-color modulated light generator favorites, the omnidirectional vision sensor imaging a second cover unit connected to the panoramic color modulation light generator.
CN2009100958556A 2009-02-13 2009-02-13 Fast full-view stereo photography measuring apparatus CN101487703B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100958556A CN101487703B (en) 2009-02-13 2009-02-13 Fast full-view stereo photography measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100958556A CN101487703B (en) 2009-02-13 2009-02-13 Fast full-view stereo photography measuring apparatus

Publications (2)

Publication Number Publication Date
CN101487703A CN101487703A (en) 2009-07-22
CN101487703B true CN101487703B (en) 2011-11-23

Family

ID=40890689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100958556A CN101487703B (en) 2009-02-13 2009-02-13 Fast full-view stereo photography measuring apparatus

Country Status (1)

Country Link
CN (1) CN101487703B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655347B (en) 2009-08-20 2011-05-25 浙江工业大学 Driving three-dimensional omni-directional vision sensor based on laser diode light source
CN102323713A (en) * 2010-11-09 2012-01-18 浙江工业大学 Portable 360-DEG circular-screen 3D theatre system
JP2012190299A (en) * 2011-03-11 2012-10-04 Sony Corp Image processing system and method, and program
CN102243328A (en) * 2011-07-14 2011-11-16 西安工业大学 Solar simulator optical filter of photovoltaic cell component and manufacturing method thereof
CN102519435B (en) * 2011-12-21 2013-12-25 上海杰图软件技术有限公司 Panoramic image acquisition and measurement system and panoramic image spatial measurement method
CN102760303A (en) * 2012-07-24 2012-10-31 南京仕坤文化传媒有限公司 Shooting technology and embedding method for virtual reality dynamic scene video
CN107655461A (en) * 2014-05-05 2018-02-02 赫克斯冈技术中心 Measure subsystem and measuring system
CN107000653A (en) * 2014-12-05 2017-08-01 奥迪股份公司 Observe device, the method with the vehicle and operational observations device for observing device
CN105865327A (en) * 2015-01-22 2016-08-17 成都飞机工业(集团)有限责任公司 Zoom photograph-based relative position measurement method
CN104864855A (en) * 2015-06-08 2015-08-26 北京航空航天大学 Single-camera omnidirectional stereoscopic vision sensor and design method thereof
CN108680254A (en) * 2018-05-22 2018-10-19 中国科学院长春光学精密机械与物理研究所 A kind of 360 degree of panorama hyperspectral imagers
CN108917928A (en) * 2018-05-22 2018-11-30 中国科学院长春光学精密机械与物理研究所 A kind of 360 degree of panorama multi-spectral imagers

Also Published As

Publication number Publication date
CN101487703A (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5816778B2 (en) Laser scanner with additional detector
Geyer et al. Catadioptric projective geometry
ES2402229T3 (en) Image fusion method and device
JP4620131B2 (en) Panoramic 3D adapter for optical equipment and combination of panoramic 3D adapter and optical equipment
JPWO2008099589A1 (en) Image processing system, method and apparatus
KR20100017235A (en) An aperture system with spatially-biased aperture for defocusing-based imaging
JP2004252935A (en) Method for modeling three-dimensional object
US7952606B2 (en) Apparatus for providing omnidirectional stereo image with single camera
CN106550228B (en) The equipment for obtaining the depth map of three-dimensional scenic
Sato et al. Illumination distribution from shadows
CN101825431B (en) Reference image techniques for three-dimensional sensing
WO2009157129A1 (en) Image processing apparatus, image division program and image synthesising method
JP2010122679A (en) Method for calibrating digital projector to digital camera
JP4804256B2 (en) Information processing method
KR20070011254A (en) Solid catadioptric lens with a single viewpoint
US7672505B2 (en) Apparatus, method and program for three-dimensional-shape detection
JP2010113720A (en) Method and apparatus for combining range information with optical image
JP2007271395A (en) Three-dimensional color/shape measuring apparatus
KR20090042249A (en) Modeling and texturing digital surface models in a mapping application
CN101422035A (en) Image high-resolution upgrading device, image high-resolution upgrading method, image high-resolution upgrading program and image high-resolution upgrading system
EP1333306B1 (en) Method and system for stereoscopic microscopy
Grossberg et al. The raxel imaging model and ray-based calibration
US7826067B2 (en) Method and apparatus for quantitative 3-D imaging
US6545702B1 (en) Method and apparatus for panoramic imaging
KR20000071453A (en) Rangefinder

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01