CN101482864B - 用于检验gis数据的正确性的方法和装置 - Google Patents
用于检验gis数据的正确性的方法和装置 Download PDFInfo
- Publication number
- CN101482864B CN101482864B CN2008100017702A CN200810001770A CN101482864B CN 101482864 B CN101482864 B CN 101482864B CN 2008100017702 A CN2008100017702 A CN 2008100017702A CN 200810001770 A CN200810001770 A CN 200810001770A CN 101482864 B CN101482864 B CN 101482864B
- Authority
- CN
- China
- Prior art keywords
- geographic area
- site
- gis data
- business datum
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0204—Market segmentation
- G06Q30/0205—Location or geographical consideration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2365—Ensuring data consistency and integrity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Remote Sensing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
提供了一种用于检验GIS数据的正确性的方法和装置,该方法包括以下步骤:接收GIS数据;接收各网点的业务数据;确定所述各网点所属的地理区域,其中所述地理区域内的GIS数据将被检验;根据所述各网点的业务数据检验所述各网点所属的地理区域的GIS数据是否正确。该方法和装置可自动地对给定城市或区域的地理和经济人口数据进行检验,节约了时间和劳动成本,提高了效率,并提高了检验的粒度。
Description
技术领域
本发明涉及GIS领域,具体涉及一种用于检验GIS数据的正确性的方法和装置。
背景技术
GIS(地理信息系统Geographic Information Systems)数据,包括地理数据和经济人口(demographic)数据,已变得越来越重要,并得到越来越广泛的应用,例如在市场分析应用、设施位置定位中、城市规划等领域中。在大多数这类情况中,海量的GIS数据(例如,对于北京市可超过150,000条记录)是确保这些应用成功的基础。然而,至今还不存在一种很好的技术方法和工具,能够快速和自动地检查海量的地理和经济人口数据。
对地理和经济人口数据的检查是非常重要的。对于最终用户(例如,银行、零售商等)而言,数据的正确性对于其GIS系统的定量分析质量是决定性的。因此,在进行定量分析之前,应当仔细检查给定的地理和经济人口数据,以确定这些数据集是否足够完整和正确,从而避免基于它们作出不正确的决策。对于GIS数据的厂商而言,GIS数据的正确性检查是提高其竞争力和减少劳动成本的最重要方面之一。
由于地理和经济人口数据通常是从各种渠道收集和购买的,例如从公共或政府部门,或者从GIS和经济人口数据厂商等,并且往往是属于不同时期的,因此,其中很可能存在一些不正确的、过时的或不准确的数据。然而,对每一个数据来源渠道进行检查是成本很高的工作,并且很难实现自动地对GIS数据进行检查。
现有的对GIS数据进行检查的方法是选择某些样本点,然后在现场手工地对这些样本点的数据进行验证。这种方法不但费时、费力和低效率,而且由于少量的样本点的数据的正确性并不能很好地反映出全部GIS数据的正确性,因此,其有效性和准确性也是不足的。此外,这种现有技术的手工检查方法只能检查城市级别或较大的地域级别上的GIS数据,而不能用于进行更细粒度的检查。例如,如果某些样本点上的数据被判断为不正确的,则整个城市或地域的GIS数据将被判断为不正确的。
显然,本领域中需要一种能够更快速和有效地检验GIS数据的正确性的技术方案。
发明内容
根据本发明的一个方面,提供了一种用于检验GIS数据的正确性的方法,该方法包括以下步骤:接收GIS数据;接收各网点的业务数据;确定所述各网点所属的地理区域,其中所述地理区域内的GIS数据将被检验;根据所述各网点的业务数据检验所述各网点所属的地理区域的GIS数据是否正确。
根据本发明的另一个方面,提供了一种检验GIS数据的正确性的装置,该装置包括:数据接收模块,其被配置为接收GIS数据,以及接收各网点的业务数据;地理区域确定器,其被配置确定所述各网点所属的地理区域,其中所述地理区域内的GIS数据将被检验;以及检验模块,其被配置为根据各网点的业务数据检验所述各网点所属的地理区域的GIS数据是否正确。
本发明可自动地对给定城市或区域的地理和经济人口数据进行检查,极大地节约了时间和劳动成本,提高了数据检查的效率。
本发明可以检查一定地区例如一个城市中很小的地理区域(例如,大约方圆1公里)中的地理和经济人口数据的正确性,指示出哪些地理区域中的地理和经济人口数据是不正确的,提高了对地理和经济人口数据的正确性检验的粒度。
附图说明
所附权利要求中阐述了被认为是本发明的特点的创造性特征。但是,通过参照附图阅读下面对说明性实施例的详细说明可更好地理解发明本身以及其优选使用模式、另外的目标、特征以及优点,在附图中:
图1示出了根据本发明的实施例的用于检验GIS数据的正确性的装置;
图2示出了一示例GIS系统的显示界面;
图3示出了一种地理和经济人口数据的内容的示例;
图4示出了某银行各网点2006年的绩效数据;
图5示出了由根据本发明的实施例的数据格式化器格式化后的GIS数据的格式的示例;
图6示出了由根据本发明的实施例的数据格式化器格式化后的企业业务数据的示例;
图7示出了由根据本发明的实施例的地理区域确定器确定的半径为1000米的圆形地理区域的示例;
图8示出了根据本发明的实施例的检验结果过滤器的一示例性用户界面;以及
图9示出了根据本发明的实施例的用于检验GIS数据的正确性的方法。
具体实施方式
企业的各网点的业务数据,例如各银行网点的帐户和存款数据,内在地与各网点所属地理区域内的地理和经济人口数据相关联,因此,可以建立一个地理和经济人口数据与企业业务数据之间的关联模型,这样如果某一个地理区域内的给定地理和经济人口数据集与相应网点的业务数据不符合该关联模型,则可判断该数据集不正确。
下面参照附图来说明本发明的实施例。然而,应当理解的是,本发明并不限于所介绍的特定实施例。相反,可以考虑用下面的特征和元素的任意组合来实施和实践本发明,而无论它们是否涉及不同的实施例。因此,下面的方面、特征、实施例和优点仅作说明之用而不应被看作是所附权利要求的要素或限定,除非权利要求中明确提出。
图1示出了根据本发明的实施例的用于检验GIS数据的正确性的装置。
如图所示,根据本发明的实施例的用于检验GIS数据的正确性的装置100包括数据接收模块101和检验模块102。其中,所述数据接收模块101用于接收待检验的GIS数据、以及接收企业的各网点的业务数据。所述检验模块102用于根据企业的各网点的业务数据来检验企业的各网点所属的地理区域的GIS数据是否正确。
所述GIS数据可以有多种来源,例如GIS系统原来带有的,由GIS数据或经济人口数据厂商提供的,从公共或政府部门获得的,以及由多个来源获得的数据的组合等。
所述GIS数据包括地理数据和经济人口数据两部分,且通常是按照兴趣点(Point of Interest,POI)组织的。也就是说,GIS数据包括各兴趣点的位置数据以及各兴趣点的经济人口属性数据。其中的兴趣点包括若干类型,例如其他同类企业网点、居民区、写字楼、大专院校、综合商场、宾馆酒店、医院、餐厅饮食、娱乐设施、商店等。
所述兴趣点位置数据可以用兴趣点的经纬度来表示。图2示出了一示例GIS系统的显示界面。在该图的左边窗格中显示了各种兴趣点的分类,在该图的右边窗格中显示了在该图左边窗格中所选择的类型的兴趣点在地图上的地理位置,其中每个兴趣点的地理位置在系统内部是以经纬度来表示的。在如图2所示的GIS系统中,每种类型的兴趣点的GIS数据在系统内部构成一个GIS图层。这样,当某种兴趣点类型被选择时,系统将显示对应于该兴趣点类型的图层。而当多个兴趣点类型被选择时,系统将叠加地显示对应于该多个兴趣点类型的多个图层。
不同类型兴趣点的经济人口数据有所不同。一般来说,经济人口数据包括人数、规模、面积等属性。图3示出了一种地理和经济人口数据的内容的示例。在图3所示的示例中,对于银行类型、大专院校、居民区、写字楼、宾馆酒店、大型综合商场、超市、商店、医院、餐厅饮食、休闲娱乐、公司企业工厂、火车站、汽车站、公交车站等不同类型的兴趣点,分别有网点类型、营业年限、营业面积、学校年限、教职工数量、学生数量、房屋年限、楼盘均价、居民数量属性。销售面积、租金、星级、房间数、职工人数、企业注册额、车次数量等属性。当然,本发明的检验装置100并不要求待检验的经济人口数据与这些相同。相反,优选地可对本发明的检验装置100进行配置,以用于检验不同的经济人口属性数据。
所述企业优选为在一城市或其他地域中具有分布的网点、从而可获得其各网点的业务数据例如绩效数据的企业,或者可以其他方式获得该企业在一城市或其他地域中对应于各细分的地理区域的业务数据的企业。例如,该企业为一家银行,该银行在一城市中具有分布的营业网点,且从每一营业网点可获得与该营业网点所在地理区域的经济人口状况相关的绩效数据。
所述企业各网点的业务数据可具有多种不同类型。例如,对于银行来说,其各网点的业务数据可包括反映其绩效的存款帐户数、存款总额、中间业务收入和日均交易量等。所述业务数据可来自多种不同的期间。例如,对于银行来说,优选地,所述业务数据的时间跨度是半年或者一年,以消除某些偶然因素对银行网点绩效带来的不正常影响。图4示出了某银行各网点2006年的绩效数据(由于保密考虑,网点的名称和某些具体数据作了处理)。当然,该图仅为示例,而不是对本发明的限制。对于其他不同类型或相同类型的企业,其各网点的业务数据的种类可以与图示的相比更多、更少或不同,且均可以用于检验GIS数据的正确性。
在本发明的一实施例中,所述检验装置100还包括一数据格式化器108。该数据格式化器108既可以如图1中所示的那样在所述数据接收模块101之中,也可以在所述数据接收模块101之外。
所述数据格式化器108用于将由所述数据接收模块101所接收的、所述GIS数据和企业业务数据进行格式化,以便于后续的检验,即将所述GIS数据以及所述企业业务数据整合成所需的数据格式,以便于后续的分析计算。
在本发明的一实施例中,所述数据格式化器108将所述GIS数据按照POI的类型进行组织,并对于每种POI类型,选择所述GIS数据中可能对企业的业务数据发生影响的相关经济人口属性数据,以便用企业的业务数据来检验所述相关的经济人口属性数据。在本发明的一实施例中,所述数据格式化器108将企业各网点的业务数据格式化为GIS图层数据,即根据每个企业网点的地址,将每个企业网点的经纬度添加到每个企业网点的业务数据中,并从所述业务数据中选择可用来检验GIS数据的准确性的相关业务数据。优选地,可由用户设置并存储将由所述数据格式化器108选择GIS数据中的各POI类型的哪些经济人口属性数据以及所述企业业务数据中的哪些业务数据。图5示出了由所述数据格式化器108格式化后的GIS数据的格式的示例。如该图所示,格式化后的GIS数据具有名称、经纬度并且根据POI类型的不同而具有网点类型、营业年限、营业面积、学校年限、教职工数量、学生数量、房屋年限、楼盘均价、居民数量、销售面积、租金、星级、房间数、商户数量、级别、星级、职工人数、企业注册额等等经济人口属性。图6示出了由所述数据格式化器108格式化后的企业业务数据的示例。如该图所示,格式化后的企业业务数据具有网点的名称、所在经纬度、存款帐户数、存款总额、中间业务收入、网点日均交易量数据。
当然,本发明的检验装置100中也可以不包括所述数据格式化器108,而是由所述检验模块102在进行检验之前对来自所述数据接收模块101的GIS数据和企业业务数据进行格式化,例如由所述检验模块102中的所述GIS数据特征提取器104和所述业务数据特征提取器105在分别提取GIS数据特征和业务数据特征之前分别对所述GIS数据和所述业务数据进行格式化。或者,所述数据接收模块101接收符合相应格式的GIS数据和企业业务数据,这样,就可以直接由所述检验模块102根据所接收的企业业务数据对所述GIS数据进行检验。
所述数据接收模块101(或数据格式化器108)可以将所接收(或格式化)的GIS数据和企业业务数据存储在数据库中,以便由所述检验模块102从所述数据库中获取所述GIS数据和企业业务数据,也可以直接将所述GIS数据和企业业务数据提供给所述检验模块102。
在本发明的实施例中,所述检验模块102包括地理区域确定器103、GIS数据特征提取器104、业务数据特征提取器105、以及检验引擎106。所述检验模块102、地理区域确定器103、GIS数据特征提取器104、业务数据特征提取器105、检验引擎106之间的包含和连接关系也可以是与图1中所示不同的多种关系中的任何一种。例如,所述地理区域确定器103也可以位于所述检验模块102之外,或者也可以将所述地理区域确定器103、GIS数据特征提取器104、业务数据特征提取器105包含在一个称为检验初始化模块的单独模块中,所述GIS数据特征提取器104和业务数据特征提取器105的部分或全部功能可以包含在所述检验引擎106中,等等。所有这些及类似变化都处于本发明的范围之内。
所述地理区域确定器103用于确定各网点所属的、其内的GIS数据将被检验的地理区域。就是说,地理区域确定器103根据各网点的位置创建各地理区域,每个地理区域内的地理和经济人口数据将会被后续检验。每个地理区域以各自的网点为中心,并可以有多种形状,如圆和正方形,优选为圆形。地理区域可以具有各种大小。地理区域越小,则检验就越细致。对于银行网点来说,地理区域的半径一般在500米到1000米之间,如可取1000米。图7示出了由所述地理区域确定器103确定的半径为1000米的圆形地理区域的示例。所述地理区域的形状和大小可以是在本发明的检验装置100中预置的和固定的,也可以是可由用户设置并存储的。
所述GIS数据特征提取器104用于从企业的各网点所属的地理区域内的GIS数据提取GIS数据特征,优选的,所述GIS数据特征可反映该地理区域对该网点的业务量的贡献能力。
为了检验GIS数据,需要对所述数据作出数值化的描述,即从中抽取特征。可使用多种不同的方法来提取所述GIS数据特征,只要所提取的GIS数据特征能反映出所属地理区域内的各POI对相应企业网点的业务量的贡献即可。
在本发明的一实施例中,所述GIS数据特征提取器104根据企业的各网点所在的每个地理区域中各个类型的兴趣点的相关经济人口属性计算每个兴趣点的基本分数,该基本分数反映了该兴趣点对该企业网点的业务量的贡献能力;将每个地理区域中的每个兴趣点的所述基本分数在同类型的全部兴趣点的基本分数中进行归一化,而得到每个兴趣点的最终分数;以及将每个地理区域中的所有兴趣点的最终分数按照其所属类型进行加权相加,从而获得每个地理区域中的所有兴趣点的总分数,作为每个地理区域的所述GIS数据特征。
具体地,仅作为示例,抽取GIS数据特征的方法可以如下:
对每个POI都给出一个分数(分值在0-1之间),其物理意义是用来描述该POI的对该检验窗内银行网点绩效的贡献程度。这个分数可以从该POI的经济人口数据计算得到。不同类型POI的分数的计算方法不同,但基本思路是根据人口、面积等属性先计算出基本得分,然后在同类型的POI中进行归一化而得到最终分数。下面给出了一种POI分数计算方法的示例。
对于XX银行网点(竞争网点),其基本分数为:若营业年限大于3年,即为营业面积的数值;若营业年限小于3年,则为(营业面积)*(营业年限)/3。对所有XX银行网点计算得到其基本分数之后,把这些基本分数线性归一化到0-1之间得到其最终分数。若所有XX银行网点的基本分数中最小的是min,最大的是max,则对于某一个网点的基本分数a,其归一化之后的最终分数为:(a-min)/(max-min)。
对于大专院校,其基本分数为:若学校年限大于3年,即为0.6*教职工数量+0.4*学生数量;若年限小于3年,则为(0.6*教职工数量+0.4*学生数量)*学校年限/3。之后再同样归一化得到最终分数。
对于居民区,其基本分数为:若房屋年限大于1年,即为0.4*归一化的楼盘均价+0.6*归一化的居民数;若房屋年限小于1年,即为0.5*(0.4*归一化的楼盘均价+0.6*归一化的居民数)。之后再同样归一化得到最终分数。
以此类推,得到每个POI的最终分数。
应指出的是,上述POI分数计算方法仅为示例,而不是对本发明的限制。根据本发明的其他实施例的GIS特征提取器104可对每种类型的POI采用不同的经济人口属性和不同的计算方法来计算每种类型的POI的基本分数和最终分数。可根据用户经验、理论分析或样本训练方法等来确定用来计算POI分数的经济人口属性、具体计算方法及其中的参数。此外,尽管在上述计算方法中,使用了线性归一化的方法来计算每个POI的最终分数,但在根据本发明的其他实施例的计算方法中,可以使用其他归一化方法来计算每个POI的最终分数,如非线性归一化、分段归一化,等等。
当计算出各企业网点所属的每个地理区域内的每个POI的最终分数之后,所述GIS数据特征提取器104可进一步计算每个地理区域内的所有POI的总分数,作为所述反映每个地理区域对相关网点的业务量的贡献能力的GIS数据特征。仅作为示例,可使用如下方法计算该地理区域内的所有POI的总分数:首先为每类POI分配一个权重,然后把每个POI的分数乘以该POI所在类的权重得到该POI的加权分数,然后把该地理区域内所有的POI的加权分数相加,即为该地理区域内的所有POI的总分数。每类POI权重的物理意义是该类POI对银行网点绩效的贡献程度。需要注意的是,由于其他银行的POI对客户银行是竞争关系,所以银行类的POI权重应该取负值。以客户银行是中国工商银行为例,可以按表1给各类POI分配权重。
例如,假设某地理区域内的POI有3个居民区,1个中国银行,1个超市,3个商店,并假设各POI归一化后的最终分数分别为:居民区的最终分数分别是0.8,0.7,0.6;中国银行的最终分数是0.6;超市的最终分数是0.5;商店的最终分数分别是:0.9,0.3,0.2。则根据表1所列权重,该地理区域内所有POI的总分数是:(0.8+0.7+0.6)*0.5+0.6*(-0.2)+0.5*0.1+(0.9+0.3+0.2)*0.02=1.008。
中国建设银行 | 中国银行 | 中国农业银行 | 其他商业银行 | 大专院校 | 居民区 | 写字楼 | 宾馆酒店 | 大型综合商场 |
-0.2 | -0.2 | -0.2 | -0.1 | 0.5 | 0.5 | 0.3 | 0.05 | 0.3 |
超市 | 商店 | 医院 | 餐厅饮食 | 休闲娱乐 | 公司企业工厂 | 火车站 | 汽车站 | 公交车站 |
0.1 | 0.02 | 0.05 | 0.01 | 0.01 | 0.02 | 0.1 | 0.05 | 0.005 |
表1各类POI的权重示例
当然,上表所列权重的具体数值仅为示例,而不是对本发明的限制。本发明的检验装置100可根据用来检验GIS数据正确性的企业业务数据所属的企业类型的不同以及其他因素为各类型的POI分配不同的权重。所述权重可根据用户经验、理论分析或样本训练方法来确定,并优选地可由用户设置。
在本发明的另一实施例中,所述GIS数据特征提取器104用于从企业的各网点所在的地理区域内的所述GIS数据中获得每个地理区域中各个类型的兴趣点的相关经济人口属性;以及将每个地理区域中同类型的兴趣点的相关经济人口属性相加,从而获得每个地理区域中由各个类型的兴趣点的相关经济人口属性的总和组成的向量,作为每个地理区域的所述GIS数据特征。例如,对于n个地理区域中的第i个地理区域(i=1,2...n),获得一个向量xi,该向量由该地理区域内的各类型POI的相关经济人口属性的总和组成,如:xi=(居民区户数总和,居民区均价总和,大专院校教职工数目总和,大专院校学生数目总和,其他类型POI的属性总和...)。在本发明的不同实施例中,每个向量中所包含的经济人口属性的种类和数量可以不同,且优选地可由用户设置。
所述业务数据特征提取器105用于从企业的各网点的业务数据提取可反映各网点的业务量的业务数据特征。就是说,为了利用网点业务数据例如其绩效数据,也需要对业务数据作出数值化的描述,即抽取特征。这里也给出一种利用归一化加权求和的特征抽取方法。例如对于一银行,可用如下方法计算其各网点的基本绩效分数,作为该网点的所述业务数据特征:0.3*归一化的存款帐户数+0.3*归一化的存款总额+0.2*归一化的中间业务收入+0.2*归一化的网点日均交易量,其中“0.3”、“0.3”、“0.2”和“0.2”是不同业务数据项的示例性权重(所述归一化可以采用本领域技术人员所知的任何归一化方法,如线性归一化、非线性归一化、分段归一化等)。可选地,也可在对每个网点计算出其基本绩效分数之后,进一步归一化到0-1之间,而得到其最终绩效分数,作为该网点的所述业务数据特征。当然,以上计算各网点的基本绩效分数、最终绩效分数、以及所述业务数据特征的方法仅为示例,而不是对本发明的限制。在本发明其他实施例中,所述业务数据特征提取器105可使用企业网点的其他业务数据以及其他计算方法和参数来计算所述业务数据特征。例如,在本发明另一实施例中,所述业务数据特征提取器105可从企业的各网点的业务数据中直接提取相关的业务数据,作为反映该网点的业务量的业务数据特征,而不对相关的业务数据进行归一化的处理。
由所述GIS数据特征提取器104生成的各地理区域的GIS数据特征(以及各地理区域内的各POI的基本分数和最终分数等中间结果)以及由所述业务数据特征提取器105生成的各企业网点的业务数据特征可以被存储在数据库中,以便于后续的检验过程;或者可以将所生成的GIS数据特征和业务数据特征直接提供给所述检验引擎106。
所述检验引擎106用于根据所述企业数据特征和所述GIS数据特征之间的关联模型,判断所述企业各网点所属的地理区域内的GIS数据是否正确。
在本发明的一实施例中,所述关联模型为各地理区域的所述GIS数据特征与相应企业网点的所述业务数据特征之间的顺序一致性模型,且优选地该顺序一致性模型内置于所述检验引擎106之中,也就是说,该模型体现在检验引擎106的操作之中,因此在该实施例中不包括下述模型构建器107。在该实施例中,所述检验引擎106被配置为执行以下操作:将所述企业的各网点按照所提取的所述业务数据特征进行排序,从而获得第一顺序;将所述企业的各网点所属的地理区域按照所提取的所述GIS数据特征进行排序,从而获得第二顺序;并且根据所述第一顺序和所述第二顺序之间的一致性程度来判断相关地理区域内的GIS数据是否正确。
具体地,所述检验引擎106按照上述过程生成的每个企业网点的绩效最终分数将各个企业网点进行排序,并按照上述过程生成的每个地理区域内的所有POI的总分数将各个地理区域进行排序,然后比较这两个排序结果。对于任意一个地理区域,如果POI总分数的排名与相应的企业网点的绩效最终分数排名的差别越大,则说明该地理区域内的地理经济人口数据越有可能出问题,即其地理经济人口数据出现错误的概率越大。例如,某一个地理区域内的企业网点的绩效总分数排名为10,该地理区域内的POI总分数排名为16;另一个地理区域内的企业网点的绩效总分数排名为30,但该地理区域内的POI总分数排名为8;则说明第二地理区域内的地理经济人口数据更有可能出问题。由此得到每个地理区域内地理经济人口数据出现错误的概率。将各地理区域按照出现错误的概率从大到小排序。出现错误概率越大的地理区域内的地理经济人口数据越有可能出现问题,由此判断每个地理区域内的GIS数据的正确性。
在本发明的另一个可选实施例中,所述检验装置100还包括用于构建所述关联模型的模型构建器107。该模型构建器既可以如图1中所示的那样位于所述检验模块102之外,也可以是所述检验模块102的一部分,还可以是所述检验引擎106的一部分。所述模型构建器107可以将所构建的关联模型直接提供给所述检验引擎106,以便由检验引擎106根据所述关联模型进行GIS数据正确性的检验,也可以将所构建的关联模型存储起来,以便由所述检验引擎在需要时使用。
优选地,该模型构建器107通过执行以下操作来构建所述关联模型:获得已知为正确的、企业网点所属的地理区域内的GIS数据的GIS数据特征;获得所述企业网点的业务数据的业务数据特征;以及使用所述已知为正确的GIS数据特征以及所述企业网点的业务数据特征作为训练数据来获得关联模型的参数,从而建立所述关联模型。可以通过多种方法获得所述述已知为正确的、企业网点所属的地理区域内的GIS数据的GIS数据特征。例如,可通过实地调查的方式,来获得某些地理区域内的正确的GIS数据,并通过以上描述的方式从中获得所述GIS数据特征。也可直接获得已通过其他方式得到验证的某些地理区域内的GIS数据,并从中获得所述GIS数据特征。
具体地,该模型构建器107可使用本领域中已知的多种方法,例如线性最小二乘、神经网络逼近等,来构建所述关联模型。下面,仅作为示例,描述使用线性最小二乘法来构建关联模型的过程。假设对于n个地理区域中的每个地理区域i内的GIS数据可以用一个向量Xi=(xi1,xi2,...,xim)来描述(i=1,2..n),其中xij是第i个地理区域内的第j个相关经济人口属性(例如,某一类型的POI的某一经济人口属性)的总和;第i个地理区域内的企业网点绩效可以用一个业务数据总和或总分数yi来表述。则对于线性最小二乘有模型:
yi=AXi+b.
其中A是一个常数向量:A=(a1,a2,am),其中m是Xi中的分量的个数(即图层个数)。如果有一定数量的准确的训练数据,则可以通过最小二乘估计的方法,把A的数值和b的数值计算出来,即得到模型:yi=AXi+b。这样,在检验时,例如如果发现Ax2+b的数值和y2的数值差别太大,则可认为第二个地理区域内的GIS数据有问题。
作为另一个示例,还可使用神经网络逼近的方法。同上,假设对于n个地理区域中的每个地理区域i内的GIS数据可以用一个向量Xi=(xi1,xi2,...,xim)来描述(i=1,2..n),其中xij是第i个地理区域内的第j个相关经济人口属性(例如,某一类型的POI的某一经济人口属性)的总和;第i个地理区域内的企业网点绩效可以用一个业务数据总和或总分数yi来表述。则神经网络可以看成是一个带参数的非线性函数F。F的输入值是x1,x2,或者xn,输出值是y1,y2,或yn。若有一定数量的准确的训练数据,则可以通过成熟的神经网络训练算法,把函数F中的参数计算出来,即可得到F的形式。在检验时,例如如果发现F(x2)的数据和y2的数值差别太大,则可认为第二个检验窗内的GIS数据有问题。
在本发明的一优选实施例中,所述检验装置还包括一检验结果过滤器109,该模块用于由用户对由检验引擎106所产生的检验结果进行进一步的手工判断和确认。具体地,检验结果过滤器109可将各地理区域按照排名差距从大到小排列,并且提供定位以供用户查看该地理区域内的地理信息数据。同时供用户选择判断每个地理区域是否是地理信息数据错误,或存在异常竞争或突发事件,或待进一步确认,或数据无错误。图8示出了该检验结果过滤器109的一示例性用户界面。
以上描述了根据本发明的实施例的用于检验GIS数据的正确性的装置100。该装置100优选地和现有的GIS系统集成在一起,但也可以是独立的装置。应指出的是,所描述和图示的该装置100仅为示例,而不是对本发明的限制。在本发明的其他实施例中,所述用于检验GIS数据的正确性的装置100可具有更多、更少或不同的模块,且各模块之间的包含和连接关系可以不同。例如,在本发明的一些实施例中,可以没有所述模型构建器107和/或所述数据格式化器108和/或所述检验结果过滤器109,所述数据接收模块101也可以被替换为一单独的GIS数据接收模块和一单独的业务数据接收模块,等等。
下面参照附图9描述根据本发明的实施例的一种用于检验GIS数据的正确性的方法。该方法优选地由上述本发明的装置100执行,但也可以由其他装置或系统来执行。为简明起见,在以下描述中省略了与以上描述重复的内容,因此可参照以上对本发明的装置100的描述获得对以下本发明的方法的更详细的理解。
如图所示,在步骤901,接收GIS数据。
在步骤902,接收企业各网点的业务数据。
在步骤903,将所接收的企业的各网点的业务数据以及所接收的GIS数据进行格式化,以用于后续的检验。在本发明的一些实施例中,也可以没有该步骤。
在步骤904,确定所述企业各网点所属的、其内的GIS数据将被检验的地理区域。
在步骤905,从所述企业各网点的业务数据提取可反映所述企业各网点业务量的业务数据特征。
在步骤906,从所述企业各网点所属的地理区域内的GIS数据提取可反映该地理区域对该企业网点的业务量的贡献能力的GIS数据特征。
在本发明的一个实施例中,该步骤906包括以下子步骤:
根据企业的各网点所在的每个地理区域中各个类型的兴趣点的相关经济人口属性计算每个兴趣点的基本分数,该基本分数反映了该兴趣点对该企业网点的业务量的贡献能力;
将每个地理区域中的每个兴趣点的所述基本分数在同类型的全部兴趣点的基本分数中进行归一化,而得到每个兴趣点的最终分数;以及
将每个地理区域中的所有兴趣点的最终分数按照其所属类型进行加权相加,从而获得每个地理区域中的所有兴趣点的总分数,作为每个地理区域的所述GIS数据特征。
在本发明的另一个实施例中,该步骤906包括以下子步骤:
从企业的各网点所在的地理区域内的所述GIS数据中获得每个地理区域中各个类型的兴趣点的相关经济人口属性;以及
将每个地理区域中同类型的兴趣点的相关经济人口属性相加,从而获得每个地理区域中由各个类型的兴趣点的相关经济人口属性的总和组成的向量,作为每个地理区域的所述GIS数据特征。
在步骤907,根据所述企业数据特征和所述GIS数据特征之间的关联模型,判断所述企业各网点所属的地理区域内的GIS数据是否正确。
在本发明的一个实施例中,所述关联模型为各地理区域的所述GIS数据特征与相应企业网点的所述业务数据特征之间的顺序一致性模型;并且该步骤907包括以下子步骤:
将所述企业的各网点按照所提取的所述业务数据特征进行排序,从而获得第一顺序;
将所述企业的各网点所属的地理区域按照所提取的所述GIS数据特征进行排序,从而获得第二顺序;并且
根据所述第一顺序和所述第二顺序之间的一致性程度来判断相关地理区域内的GIS数据是否正确。
在本发明的另一个实施例中,在步骤907之间,还包括建立所述关联模型的步骤,并且该建立关联模型的步骤包括以下子步骤:
获得已知为正确的、企业网点所属的地理区域内的GIS数据的GIS数据特征;
获得所述企业网点的业务数据的业务数据特征;以及
使用所述已知为正确的GIS数据特征以及所述企业网点的业务数据特征作为训练数据来获得关联模型的参数,从而建立所述关联模型。
在步骤908,由用户对由以上检验过程生成的检验结果进行人工确认和过滤。在本发明的一些实施例中,可以没有该步骤908。
优选地,所述GIS数据包括地理数据和经济人口数据。
在本发明的一实施例中,所述企业为银行,且所述各网点所属的地理区域为以该网点为中心、且半径500-1000米的圆形地理区域。
以上描述了根据本发明的实施例的用于检验GIS数据的正确性的方法,应指出的,所图示和描述的方法仅为示例,而不是对本发明的限制。本发明的方法可具有更多、更少和不同的步骤,且各步骤之间的顺序可以不同,或可以并行执行。例如,所述步骤901和902之间以及所述905和906之间可以具有不同的顺序且可并行执行,等等。
本发明可以硬件、软件、或硬件与软件的结合的方式实现。本发明可以集中的方式在一个计算机系统中实现,或以分布方式实现,在这种分布方式中,不同的部件分布在若干互连的计算机系统中。适于执行本文中描述的方法的任何计算机系统或其它装置都是合适的。优选地,本发明以计算机软件和通用计算机硬件的组合的方式实现,在这种实现方式中,当该计算机程序被加载和执行时,控制该计算机系统而使其执行本发明的方法,并构成本发明的装置。
本发明也可体现在计算机程序产品中,该程序产品包含使能实现本文中描述的方法的所有特征,并且当其被加载到计算机系统中时,能够执行所述方法。
尽管已参照优选实施例具体示出和说明了本发明,但是本领域内的那些技术人员应理解,可在形式和细节上对其进行各种改变而不会背离本发明的精神和范围。
Claims (14)
1.一种用于检验地理信息系统GIS数据的正确性的方法,包括以下步骤:
接收GIS数据;
接收各网点的业务数据;
确定所述各网点所属的地理区域,其中所述地理区域内的GIS数据将被检验;以及
根据所述各网点的业务数据检验所述各网点所属的地理区域的GIS数据是否正确,
其中所述检验步骤进一步包括:
从所述各网点的业务数据提取可反映所述各网点业务量的业务数据特征;
从所述各网点所属的地理区域内的GIS数据提取可反映该地理区域对该网点的业务量的贡献能力的GIS数据特征;以及
根据所述业务数据特征和所述GIS数据特征之间的关联模型,判断所述各网点所属的地理区域内的GIS数据是否正确。
2.如权利要求1所述的方法,其中所述提取所述GIS数据特征的步骤进一步包括:
根据各网点所在的每个地理区域中各个类型的兴趣点的相关经济人口属性计算每个兴趣点的基本分数,该基本分数反映了该兴趣点对该网点的业务量的贡献能力;
将每个地理区域中的每个兴趣点的所述基本分数在同类型的全部兴趣点的基本分数中进行归一化,而得到每个兴趣点的最终分数;以及
将每个地理区域中的所有兴趣点的最终分数按照其所属类型进行加权相加,从而获得每个地理区域中的所有兴趣点的总分数,作为每个地理区域的所述GIS数据特征。
3.如权利要求1所述的方法,其中所述提取所述GIS数据特征的步骤进一步包括:
从各网点所在的地理区域内的所述GIS数据中获得每个地理区域中各个类型的兴趣点的相关经济人口属性;以及
将每个地理区域中同类型的兴趣点的相关经济人口属性相加,从而获得每个地理区域中由各个类型的兴趣点的相关经济人口属性的总和组成的向量,作为每个地理区域的所述GIS数据特征。
4.如权利要求2所述的方法,其中,
所述关联模型为各地理区域的所述GIS数据特征与相应网点的所述业务数据特征之间的顺序一致性模型;并且
所述根据所述业务数据特征和所述GIS数据特征之间的关联模型,判断所述各网点所属的地理区域内的GIS数据是否正确的步骤包括:
将所述各网点按照所提取的所述业务数据特征进行排序,从而获得第一顺序;
将所述各网点所属的地理区域按照所提取的所述GIS数据特征进行排序,从而获得第二顺序;并且
根据所述第一顺序和所述第二顺序之间的一致性程度来判断相关地理区域内的GIS数据是否正确。
5.如权利要求2或3所述的方法,还包括建立所述关联模型的步骤,且该建立关联模型的步骤进一步包括:
获得已知为正确的、网点所属的地理区域内的GIS数据的GIS数据特征;
获得所述网点的业务数据的业务数据特征;以及
使用所述已知为正确的GIS数据特征以及所述网点的业务数据特征作为训练数据来获得关联模型的参数,从而建立所述关联模型。
6.如权利要求1所述的方法,还包括在所述接收各网点的业务数据以及所述接收GIS数据的步骤之后,将所接收的各网点的业务数据以及所接收的GIS数据进行格式化、以用于所述检验步骤的执行的步骤。
7.如权利要求1所述的方法,其中所述GIS数据包括地理数据和经济人口数据。
8.一种用于检验GIS数据的正确性的装置,包括:
GIS数据接收模块,其被配置为接收GIS数据;
业务数据接收模块,其被配置为接收各网点的业务数据;
地理区域确定器,其被配置确定所述各网点所属的地理区域,其中所述地理区域内包含将被检验的GIS数据;以及
检验模块,其被配置为根据各网点的业务数据检验所述各网点所属的地理区域的GIS数据是否正确,
其中所述检验模块进一步包括:
业务数据特征提取器,其被配置为从所述各网点的业务数据提取可反映所述各网点业务量的业务数据特征;
GIS数据特征提取器,其被配置为从所述各网点所属的地理区域内的GIS数据提取可反映该地理区域对该网点的业务量的贡献能力的GIS数据特征;以及
检验引擎,其被配置为根据所述业务数据特征和所述GIS数据特征之间的关联模型,判断所述各网点所属的地理区域内的GIS数据是否正确。
9.如权利要求8所述的装置,其中所述GIS数据特征提取模块进一步被配置为:
根据各网点所在的每个地理区域中各个类型的兴趣点的相关经济人口属性计算每个兴趣点的基本分数,该基本分数反映了该兴趣点对该网点的业务量的贡献能力;
将每个地理区域中的每个兴趣点的所述基本分数在同类型的全部兴趣点的基本分数中进行归一化,而得到每个兴趣点的最终分数;以及
将每个地理区域中的所有兴趣点的最终分数按照其所属类型进行加权相加,从而获得每个地理区域中的所有兴趣点的总分数,作为每个地理区域的所述GIS数据特征。
10.如权利要求8所述的装置,其中所述GIS数据特征提取器进一步被配置为:
从各网点所在的地理区域内的所述GIS数据中获得每个地理区域中各个类型的兴趣点的相关经济人口属性;以及
将每个地理区域中同类型的兴趣点的相关经济人口属性相加,从而获得每个地理区域中由各个类型的兴趣点的相关经济人口属性的总和组成的向量,作为每个地理区域的所述GIS数据特征。
11.如权利要求9所述的装置,其中,
所述关联模型为各地理区域的所述GIS数据特征与相应网点的所述业务数据特征之间的顺序一致性模型;并且
所述检验引擎被配置为:
将所述各网点按照所提取的所述业务数据特征进行排序,从而获得第一顺序;
将所述各网点所属的地理区域按照所提取的所述GIS数据特征进行排序,从而获得第二顺序;并且
根据所述第一顺序和所述第二顺序之间的一致性程度来判断相关地理区域内的GIS数据是否正确。
12.如权利要求9或10所述的装置,还包括用于构建所述关联模型的模型构建器,且所述模型构建器被配置为:
获得已知为正确的、网点所属的地理区域内的GIS数据的GIS数据特征;
获得所述网点的业务数据的业务数据特征;以及
使用所述已知为正确的GIS数据特征以及所述网点的业务数据特征作为训练数据来获得关联模型的参数,从而建立所述关联模型。
13.如权利要求8所述的装置,还包括数据格式化器,其被配置为将所述GIS数据接收模块和所述业务数据接收模块所接收的、各网点的业务数据以及所述GIS数据进行格式化,以便于所述检验模块执行所述检验。
14.如权利要求8所述的装置,其中所述GIS数据包括地理数据和经济人口数据。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100017702A CN101482864B (zh) | 2008-01-08 | 2008-01-08 | 用于检验gis数据的正确性的方法和装置 |
US12/349,096 US8386295B2 (en) | 2008-01-08 | 2009-01-06 | Checking the correctness of GIS data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100017702A CN101482864B (zh) | 2008-01-08 | 2008-01-08 | 用于检验gis数据的正确性的方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101482864A CN101482864A (zh) | 2009-07-15 |
CN101482864B true CN101482864B (zh) | 2012-07-25 |
Family
ID=40877166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100017702A Active CN101482864B (zh) | 2008-01-08 | 2008-01-08 | 用于检验gis数据的正确性的方法和装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8386295B2 (zh) |
CN (1) | CN101482864B (zh) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8583464B2 (en) * | 2008-04-04 | 2013-11-12 | Bank Of America Corporation | Systems and methods for optimizing market selection for entity operations location |
US9104695B1 (en) | 2009-07-27 | 2015-08-11 | Palantir Technologies, Inc. | Geotagging structured data |
US9910866B2 (en) * | 2010-06-30 | 2018-03-06 | Nokia Technologies Oy | Methods, apparatuses and computer program products for automatically generating suggested information layers in augmented reality |
CN102479229A (zh) * | 2010-11-29 | 2012-05-30 | 北京四维图新科技股份有限公司 | 一种兴趣点poi数据产生方法和系统 |
US8938653B2 (en) * | 2011-12-14 | 2015-01-20 | Microsoft Corporation | Increasing the accuracy of information returned for context signals |
WO2013103002A1 (ja) * | 2012-01-05 | 2013-07-11 | 三菱電機株式会社 | 地図表示制御装置およびこれを用いたナビゲーション装置 |
US9311726B2 (en) * | 2012-08-30 | 2016-04-12 | Fannie Mae | System and method for mapping and comparing choroplethic housing statistics |
US9501507B1 (en) | 2012-12-27 | 2016-11-22 | Palantir Technologies Inc. | Geo-temporal indexing and searching |
CN104080043A (zh) * | 2013-03-29 | 2014-10-01 | 百度在线网络技术(北京)有限公司 | 兴趣点的位置信息的校正方法及设备 |
US8799799B1 (en) | 2013-05-07 | 2014-08-05 | Palantir Technologies Inc. | Interactive geospatial map |
CN103679286A (zh) * | 2013-11-29 | 2014-03-26 | 华为技术有限公司 | 路径优化方法及装置 |
US11004146B1 (en) * | 2014-01-31 | 2021-05-11 | Intuit Inc. | Business health score and prediction of credit worthiness using credit worthiness of customers and vendors |
US10769122B2 (en) * | 2014-03-13 | 2020-09-08 | Ab Initio Technology Llc | Specifying and applying logical validation rules to data |
CN105488061B (zh) * | 2014-09-18 | 2019-08-09 | 阿里巴巴集团控股有限公司 | 一种验证数据有效性的方法及装置 |
EP3070622A1 (en) | 2015-03-16 | 2016-09-21 | Palantir Technologies, Inc. | Interactive user interfaces for location-based data analysis |
US9460175B1 (en) | 2015-06-03 | 2016-10-04 | Palantir Technologies Inc. | Server implemented geographic information system with graphical interface |
US9600146B2 (en) * | 2015-08-17 | 2017-03-21 | Palantir Technologies Inc. | Interactive geospatial map |
US10706434B1 (en) | 2015-09-01 | 2020-07-07 | Palantir Technologies Inc. | Methods and systems for determining location information |
US9639580B1 (en) | 2015-09-04 | 2017-05-02 | Palantir Technologies, Inc. | Computer-implemented systems and methods for data management and visualization |
US10109094B2 (en) | 2015-12-21 | 2018-10-23 | Palantir Technologies Inc. | Interface to index and display geospatial data |
US10068199B1 (en) | 2016-05-13 | 2018-09-04 | Palantir Technologies Inc. | System to catalogue tracking data |
US9686357B1 (en) | 2016-08-02 | 2017-06-20 | Palantir Technologies Inc. | Mapping content delivery |
US10515433B1 (en) | 2016-12-13 | 2019-12-24 | Palantir Technologies Inc. | Zoom-adaptive data granularity to achieve a flexible high-performance interface for a geospatial mapping system |
US10270727B2 (en) | 2016-12-20 | 2019-04-23 | Palantir Technologies, Inc. | Short message communication within a mobile graphical map |
US10579239B1 (en) | 2017-03-23 | 2020-03-03 | Palantir Technologies Inc. | Systems and methods for production and display of dynamically linked slide presentations |
US10895946B2 (en) | 2017-05-30 | 2021-01-19 | Palantir Technologies Inc. | Systems and methods for using tiled data |
US11334216B2 (en) | 2017-05-30 | 2022-05-17 | Palantir Technologies Inc. | Systems and methods for visually presenting geospatial information |
US10371537B1 (en) | 2017-11-29 | 2019-08-06 | Palantir Technologies Inc. | Systems and methods for flexible route planning |
US11599706B1 (en) | 2017-12-06 | 2023-03-07 | Palantir Technologies Inc. | Systems and methods for providing a view of geospatial information |
US10698756B1 (en) | 2017-12-15 | 2020-06-30 | Palantir Technologies Inc. | Linking related events for various devices and services in computer log files on a centralized server |
US10365783B2 (en) * | 2017-12-29 | 2019-07-30 | Lyft, Inc. | Optimizing transportation networks through dynamic user interfaces |
US10896234B2 (en) | 2018-03-29 | 2021-01-19 | Palantir Technologies Inc. | Interactive geographical map |
US10830599B2 (en) | 2018-04-03 | 2020-11-10 | Palantir Technologies Inc. | Systems and methods for alternative projections of geographical information |
US11585672B1 (en) | 2018-04-11 | 2023-02-21 | Palantir Technologies Inc. | Three-dimensional representations of routes |
US10429197B1 (en) | 2018-05-29 | 2019-10-01 | Palantir Technologies Inc. | Terrain analysis for automatic route determination |
US10467435B1 (en) | 2018-10-24 | 2019-11-05 | Palantir Technologies Inc. | Approaches for managing restrictions for middleware applications |
US11025672B2 (en) | 2018-10-25 | 2021-06-01 | Palantir Technologies Inc. | Approaches for securing middleware data access |
CN112925773B (zh) * | 2019-12-10 | 2024-07-30 | 中国再保险(集团)股份有限公司 | 一种构建行业风险暴露数据库的poi数据清洗与融合方法及装置 |
CN111522888B (zh) * | 2020-04-22 | 2023-06-20 | 北京百度网讯科技有限公司 | 挖掘兴趣点之间的竞争关系的方法和装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030038178A (ko) * | 2001-11-08 | 2003-05-16 | 주식회사 니즈아이 | 데이터베이스를 활용한 인터넷 상권분석 방법 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020002552A1 (en) * | 2000-06-30 | 2002-01-03 | Schultz Troy L. | Method and apparatus for a GIS based search engine utilizing real time advertising |
US7660459B2 (en) * | 2001-06-12 | 2010-02-09 | International Business Machines Corporation | Method and system for predicting customer behavior based on data network geography |
CA2355959A1 (en) * | 2001-06-27 | 2002-12-27 | Mapfusion Corp. | Spatial business intelligence system |
US7197471B2 (en) * | 2001-08-30 | 2007-03-27 | International Business Machines Corporation | System and method for assessing demographic data accuracy |
US7373244B2 (en) * | 2004-04-20 | 2008-05-13 | Keith Kreft | Information mapping approaches |
US7646916B2 (en) * | 2005-04-15 | 2010-01-12 | Mississippi State University | Linear analyst |
US7826965B2 (en) * | 2005-06-16 | 2010-11-02 | Yahoo! Inc. | Systems and methods for determining a relevance rank for a point of interest |
US7917852B2 (en) * | 2006-06-30 | 2011-03-29 | International Business Machines Corporation | System and method for visually analyzing geographic data |
US20090076888A1 (en) * | 2007-09-14 | 2009-03-19 | Mark Oster | Method and system for evaluating retail and related real estate development opportunities |
-
2008
- 2008-01-08 CN CN2008100017702A patent/CN101482864B/zh active Active
-
2009
- 2009-01-06 US US12/349,096 patent/US8386295B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030038178A (ko) * | 2001-11-08 | 2003-05-16 | 주식회사 니즈아이 | 데이터베이스를 활용한 인터넷 상권분석 방법 |
Non-Patent Citations (1)
Title |
---|
喻晓之等.银行地理信息系统的实现.《江西测绘》.2007,(第3期),2,3,6. * |
Also Published As
Publication number | Publication date |
---|---|
US20090187447A1 (en) | 2009-07-23 |
US8386295B2 (en) | 2013-02-26 |
CN101482864A (zh) | 2009-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101482864B (zh) | 用于检验gis数据的正确性的方法和装置 | |
US20150012335A1 (en) | Automated rental amount modeling and prediction | |
CN111539764B (zh) | 基于次模函数的大数据多址选择方法 | |
Chasco et al. | A scan test for spatial groupwise heteroscedasticity in cross-sectional models with an application on houses prices in Madrid | |
Lavasani et al. | Examining methodological issues on combined RP and SP data | |
CN114693351A (zh) | 信息预测方法、装置以及电子设备 | |
CN114004661A (zh) | 门店信息处理方法、装置、设备及存储介质 | |
Pontan et al. | Effect of the building maintenance and resource management through user satisfaction of maintenance. | |
Halkos et al. | Modelling regional welfare efficiency applying conditional full frontiers | |
Tayyaran et al. | Telecommuting and residential location decisions: combined stated and revealed preferences model | |
Proctor et al. | Multi-criteria evaluation revisited | |
Oliveira et al. | An estimation of freight flow using secondary data: a case study in Belo Horizonte (Brazil) | |
Cheung et al. | Automated valuation model for residential rental markets: evidence from Japan | |
MXPA06013583A (es) | Sistema automatizado y procedimiento de planificacion y creacion de circuitos optimizados de soportes publicitarios en un medio exterior. | |
CN111523614A (zh) | 小区相似判断方法及装置 | |
Miotti et al. | Property value map updating by mass appraisal method--a case in the city of Pato branco, state Paraná. | |
Afijal et al. | Decision Support System Determination for Poor Houses Beneficiary Using Profile Matching Method | |
Lee et al. | The effect of spatial configuration and land use pattern on land price formation | |
US20230260035A1 (en) | System and method for analyzing, evaluating and ranking properties using artificial intelligence | |
CN116402545B (zh) | 一种数据分析处理方法及无人零售终端 | |
Baj-Rogowska | Selecting the Optimum Location for Logistics Facilities Using Solver–Case Study | |
CN114723338A (zh) | 资源数据的评估方法、装置和计算机设备 | |
CN113393267A (zh) | 快递物流中心位置的确定方法、装置、设备及存储介质 | |
Tiglao et al. | Towards integrated urban models for developing countries: modeling households and location choices using spatial microsimulation approach | |
Ginting | The Influence of Taxpayer Knowledge and Taxpayer's Awareness On Land and Building Taxpayer Compliance: Study in One of the District in Bandung District |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |