CN101474414A - 高分子包裹磁性纳米粒子造影剂的制备及应用 - Google Patents

高分子包裹磁性纳米粒子造影剂的制备及应用 Download PDF

Info

Publication number
CN101474414A
CN101474414A CNA2009100457976A CN200910045797A CN101474414A CN 101474414 A CN101474414 A CN 101474414A CN A2009100457976 A CNA2009100457976 A CN A2009100457976A CN 200910045797 A CN200910045797 A CN 200910045797A CN 101474414 A CN101474414 A CN 101474414A
Authority
CN
China
Prior art keywords
contrast agent
polymer
solution
preparation
buffer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009100457976A
Other languages
English (en)
Other versions
CN101474414B (zh
Inventor
沈鹤柏
高明远
黄明鸣
缪飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN2009100457976A priority Critical patent/CN101474414B/zh
Publication of CN101474414A publication Critical patent/CN101474414A/zh
Application granted granted Critical
Publication of CN101474414B publication Critical patent/CN101474414B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及医学影像诊断学领域,一种高分子包裹磁性纳米粒子造影剂的制备及应用。现有的超顺磁性造影剂的制备方法烦琐。本发明高分子包裹磁性纳米粒子造影剂的制备,包括以下步骤:将氯化铁,氯化亚铁和葡聚糖溶解在二次蒸馏水中;取浓氨水缓慢加入,保持温度15-40℃,不断搅拌130-150分钟;离心分离沉淀;加入高碘酸钾溶液;放入pH8.0的硼酸缓冲溶液中;加入鼠抗人CA19-9抗体,4℃的条件下反应过夜;加入硼氰化钾溶液反应5-8小时;将混合物纯化分离,分散在pH为7.4的缓冲溶液中,得高分子包裹磁性纳米粒子造影剂。本发明具有如下优点:提高肿瘤磁共振成像对比度,效果好;制备方法简单;使用安全,简便。

Description

高分子包裹磁性纳米粒子造影剂的制备及应用
技术领域
本发明涉及医学影像诊断学领域,具体地说是一种高分子包裹磁性纳米粒子造影剂的制备及应用。
背景技术
当代磁共振成像(MRI)技术发展迅速,日益成熟完善,已经被广泛应用于生物医学领域,成为临床诊断和基础研究中必不可少的重要工具。磁共振成像是一种新的、无创性的成像方法,属于生物自旋成像技术,无射线影响。磁共振图像空间分辨率高,解剖结构关系非常清晰,提供的信息大大多于医学影像中的其他成像术。而且提供的信息也不同与已有的成像术,图像的灰阶所反映的是MR信号的强弱或弛豫原子核的相位和能级时间的长短,而不像CT图像所反映的组织密度的差别。磁共振成像(MRI)当前已广泛地应用于临床,是医学影像学非常重要的组成部分。
肿瘤的早期诊断,包括微小肿瘤与肿瘤转移灶的准确诊断,是有效地降低恶性肿瘤致死率的关键。由于磁共振成像(MRI)可以用来对生物内脏器官进行无损的快速检测,已经成为诊断肿瘤的最为有效方法之一。通常为了增强病变组织与正常组织图像间的对比度以提高病变组织的清晰度,需要选择合适的造影增强剂来显示解剖学特征。目前临床上常用的造影剂是顺磁类造影剂Gd—DTPA,但Gd—DTPA有明显的不足之处,如循环时间短,注射后Gd—DTPA可迅速通过细胞间隙,并经肾脏排泄,需要相应的快速扫描设备,顺磁类造影剂Gd-DTPA在体内分布没有特异性,而且其价格也较昂贵。相比较而言,超顺磁性氧化铁(superparamagnetic iron oxides,SP1OS)可以局部扩增外加磁场,使磁场不均匀,当水分子弥散穿过不均匀磁场时加速了质子的失相位,从而使组织的横向弛豫时间(T2)明显缩短,信号降低,而对纵向弛豫时间(T1)影响较小。此外,超顺磁性氧化铁在生物体组织内存在很高的特异性分布,可被网状内皮系统吞噬,有助于提高肿瘤与正常组织的磁共振成像(MRI)对比度,同时由于其高效、经济、安全等特点,作为造影增强剂被应用于磁共振成像(MRI),用于各种肿瘤及其他疾病的检测。由于超顺磁性造影剂的制备方法烦琐,所以发明一种超顺磁性氧化铁高分子包裹磁性纳米粒子造影剂的制备方法及其在医学影像学的应用是十分有必要的。
发明内容
本发明的目的是提供一种制备方法简单、使用简便的高分子包裹磁性纳米粒子造影剂及其在医学影像学的应用。
本发明的目的是这样实现的:
一种高分子包裹磁性纳米粒子造影剂的制备,包括以下步骤:
(1)取下列重量比的物质:
氯化铁(FeCl3·6H2O)  3.22份   氯化亚铁(FeCl2·4H2O)   1.18份
葡聚糖               2.5份    二次蒸馏水             100份
搅拌、溶解,生成透明稳定的微乳液;
(2)取浓度为25-28%的氨水溶液1ml加入到小烧杯中,再加入9ml二次蒸馏水稀释,将其缓慢加入到不断搅拌的微乳液中,保持温度15-40℃,持续搅拌130-150分钟;
(3)离心分离沉淀,得到稳定的葡聚糖包裹的磁性纳米粒子的水溶液;
(4)取2ml葡聚糖包裹的磁性纳米粒子水溶液,加入200ul 10mol/L高碘酸钾溶液,避光反应5-8小时;
(5)将上述溶液离心分离,分离后的磁性纳米粒子溶解在pH8.0的硼酸缓冲溶液中;
(6)向硼酸缓冲溶液加入10-50ul鼠抗人CAl9-9抗体,4℃的条件下反应过夜;
(7)向上述反应过的硼酸缓冲溶液加入硼氰化钾溶液反应5-8小时;
(8)将混合物纯化分离,然后分散在pH为7.4的缓冲溶液中,得高分子包裹磁性纳米粒子造影剂。
高分子包裹磁性纳米粒子造影剂在胰腺癌细胞体外磁共振成像中的应用,包括以下步骤:
(1)取50ul高分子包裹磁性纳米粒子造影剂分散在细胞培养液(RPMI1640)中,过滤除菌;
(2)将过滤后所得粒子与浓度为1×106个/mL的胰腺癌细胞BXPC-3共同孵育2小时;
(3)用胰酶细胞消化液(含0.25%胰酶和0.02%乙二胺四乙酸)进行消化,离心分离未消化的物质;
(4)将上述处理过的细胞用0.5-2%戊二醛固定,然后分散在磷酸缓冲溶液中,进行体外磁共振成像。
高分子包裹磁性纳米粒子造影剂胰腺癌细胞实验动物体内磁共振成像的应用,包括以下步骤:
(1)将胰腺癌细胞BXPC-3制成1×106的细胞悬液,注入体重20-30g的成年裸鼠单侧腋下皮下,培养2-3周,待肿瘤长到1cm左右;
(2)将裸鼠麻醉,进行磁共振成像;
(3)按照1-2mg Fe/kg体重的剂量,向裸鼠注入高分子包裹磁性纳米粒子造影剂,在不同时间对小鼠进行磁共振扫描。
本发明的要点在于:
使用超顺磁性氧化铁高分子包裹磁性纳米粒子制备造影剂。
纳米氧化铁外部包裹生物降解高分子,例如葡聚糖、壳聚糖,可以增强其生物相容性,对细胞无毒,而且在血管中循环时间大大延长。在超顺磁性氧化铁粒子包裹后表面连接具有生物活性的专一性抗体,可以大大提高其作为造影剂的靶向性。
胰腺癌是恶性程度很高的肿瘤,其生物学行为特异,临床疗效不佳。80%的患者就诊时肿瘤已处晚期而无法切除,加之胰腺癌细胞对放化疗有较强的抵抗性,患者病死率达98%。胰腺癌因其独特的解剖位置,症状隐匿,同时缺乏细胞特异性的造影剂,其早期的磁共振成像困难。本发明制备了生物降解高分子包裹的超顺磁性纳米粒子,连接了肿瘤标记物,例如抗癌胚抗元CA19-9单克隆抗体,作为靶向造影剂应用,从而为胰腺癌的早期诊断提供依据。
本发明具有如下优点:
1.提高肿瘤磁共振成像对比度,效果好。
2.制备方法简单。
3.使用安全,简便。
附图说明
图1为本发明磁性造影剂进入细胞的体外磁共振成像结构图。
图2为本发明磁性造影剂进入小鼠体内的磁共振成像结构图。
具体实施方式
下面通过具体实施例对本发明做进一步说明。
实施例1:
葡聚糖包裹的磁性纳米粒子的制备:
取3.22g氯化铁(FeCl3·6H2O),1.18g氯化亚铁(FeCl2·4H2O)和2.5g葡聚糖溶解在100ml蒸馏水中,形成透明稳定的微乳液。取1ml浓度为28%的氨水溶液用9ml二次蒸馏水稀释,将其缓慢加入到不断搅拌的微乳液中,持续温度20℃持续130分钟;离心分离沉淀,得到稳定的葡聚糖包裹的磁性纳米粒子的水溶液;
经透射电子显微镜(TEM)检测,其粒径大约为30-100nm不等。
实施例2:
磁性纳米造影剂的制备:
1.取2ml葡聚糖包裹的磁性纳米粒子水溶液,加入200ul10mol/L高碘酸钾溶液,避光反应5-8小时;
2.将上述溶液离心分离,分离后的磁性纳米粒子溶解在pH8.0的硼酸缓冲溶液中;
3.向硼酸缓冲溶液加入10-50ul鼠抗人CA19-9抗体,4℃的条件下反应过夜;
4.向上述反应过的硼酸缓冲溶液加入硼氰化钾溶液反应5-8小时;
5.将混合物纯化分离,然后分散在pH为7.4的缓冲溶液中,得高分子包裹磁性纳米粒子造影剂。
实施例3:
利用功能性磁性纳米粒子进行胰腺癌细胞体外磁共振成像研究:
1.取50ul高分子包裹磁性纳米粒子造影剂分散在细胞培养液(RPMI1640)中,过滤除菌;
2.将过滤后所得粒子与浓度为1×106个/mL的胰腺癌细胞BXPC-3共同孵育2小时;
3.用胰酶细胞消化液(含0.25%胰酶和0.02%乙二胺四乙酸)进行消化,离心分离未消化的物质;
4.将上述处理过的细胞用0.5-2%戊二醛固定,然后分散在磷酸缓冲溶液中,进行体外磁共振成像,结果见图1。
图1中a为表面连有磁性造影剂的细胞悬液;b为细胞悬液;c为PBS溶液。由图可以看出连有粒子的细胞悬液与正常细胞相比,在T2-weight和T*2-weight上都表现出明显的MRI信号下降,在T*2-weight上MRI信号下降值达到28%。
实施例4:
利用功能性的磁性纳米粒子进行胰腺癌细胞体内磁共振成像研究
1.将胰腺癌细胞BXPC-3制成1 X 106的细胞悬液,注入体重为30g的成年裸鼠单侧腋下皮下,培养2周,待肿瘤长到1cm左右;
2.将裸鼠麻醉后,进行磁共振成像;
3.按照2mg Fe/kg体重的剂量向裸鼠注入磁性纳米造影剂,在不同时间对小鼠进行磁共振扫描,结果见图2。
由图2可以看出:采用T2-weight序列成像,未打入造影剂之前,肿瘤呈现出较高的MRI信号,打入造影剂后,肿瘤MRI信号开始下降,肿瘤与正常相比一直呈现较低的MRI信号强度。打入造影剂两小时后,肿瘤MRI信号的下降值达到25%,从而为肿瘤的诊断提供有用的依据。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有更改和变化。凡在本发明的精神和原则之内,所作的任何修改、改进等,均应包括在本发明的保护范围之内。

Claims (3)

1.一种高分子包裹磁性纳米粒子造影剂的制备,包括以下步骤:
(1)取下列重量比的物质:
氯化铁(FeCl3·6H2O)  3.22份   氯化亚铁(FeCl2·4H2O)1.18份
葡聚糖               2.5份    二次蒸馏水           100份
搅拌、溶解,生成透明稳定的微乳液;
(2)取浓度为25-28%的氨水溶液1ml加入到小烧杯中,再加入9ml二次蒸馏水稀释,将其缓慢加入到不断搅拌的微乳液中,保持温度15-40℃,持续搅拌130-150分钟;
(3)离心分离沉淀,得到稳定的葡聚糖包裹的磁性纳米粒子的水溶液;
(4)取2ml葡聚糖包裹的磁性纳米粒子水溶液,加入200ul 10mol/L高碘酸钾溶液,避光反应5-8小时;
(5)将上述溶液离心分离,分离后的磁性纳米粒子溶解在pH 8.0的硼酸缓冲溶液中;
(6)向硼酸缓冲溶液加入10-50ul鼠抗人CA19-9抗体,4℃的条件下反应过夜;
(7)向上述反应过的硼酸缓冲溶液加入硼氰化钾溶液反应5-8小时;
(8)将混合物纯化分离,然后分散在pH为7.4的缓冲溶液中,得高分子包裹磁性纳米粒子造影剂。
2.高分子包裹磁性纳米粒子造影剂在胰腺癌细胞体外磁共振成像中的应用,包括以下步骤:
(1)取50ul高分子包裹磁性纳米粒子造影剂分散在细胞培养液(RPMI1640)中,过滤除菌;
(2)将过滤后所得粒子与浓度为1×106个/mL的胰腺癌细胞BXPC-3共同孵育2小时;
(3)用胰酶细胞消化液(含0.25%胰酶和0.02%乙二胺四乙酸)进行消化,离心分离未消化的物质;
(4)将上述处理过的细胞用0.5-2%戊二醛固定,然后分散在磷酸缓冲溶液中,进行体外磁共振成像。
3.高分子包裹磁性纳米粒子造影剂胰腺癌细胞实验动物体内磁共振成像的应用,包括以下步骤:
(1)将胰腺癌细胞BXPC-3制成1×106的细胞悬液,注入体重20-30g的成年裸鼠单侧腋下皮下,培养2-3周,待肿瘤长到1cm左右;
(2)将裸鼠麻醉,进行磁共振成像;
(3)按照1-2mg Fe/kg体重的剂量,向裸鼠注入高分子包裹磁性纳米粒子造影剂,在不同时间对小鼠进行磁共振扫描。
CN2009100457976A 2009-02-06 2009-02-06 高分子包裹磁性纳米粒子造影剂的制备及应用 Expired - Fee Related CN101474414B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100457976A CN101474414B (zh) 2009-02-06 2009-02-06 高分子包裹磁性纳米粒子造影剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100457976A CN101474414B (zh) 2009-02-06 2009-02-06 高分子包裹磁性纳米粒子造影剂的制备及应用

Publications (2)

Publication Number Publication Date
CN101474414A true CN101474414A (zh) 2009-07-08
CN101474414B CN101474414B (zh) 2010-09-15

Family

ID=40835241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100457976A Expired - Fee Related CN101474414B (zh) 2009-02-06 2009-02-06 高分子包裹磁性纳米粒子造影剂的制备及应用

Country Status (1)

Country Link
CN (1) CN101474414B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101757643A (zh) * 2010-03-26 2010-06-30 上海交通大学 基于稳定剂的乳剂及其制备方法和用途
CN102580120A (zh) * 2012-03-21 2012-07-18 海南医学院附属医院 一种靶向性mri对比剂及其制备方法
CN102836429A (zh) * 2011-06-22 2012-12-26 程柯 修复受损组织的抗体靶向药物、给药方法及磁共振造影剂
CN104672462A (zh) * 2015-03-05 2015-06-03 北京工商大学 一种增强纳米粒子生物相容性和稳定性的多齿仿生配体及其制备方法
CN108287234A (zh) * 2017-03-22 2018-07-17 广东顺德工业设计研究院(广东顺德创新设计研究院) 纳米免疫磁珠及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0783325T3 (da) * 1994-09-27 2000-05-01 Nycomed Imaging As Kontrastmiddel
CN1646549A (zh) * 2002-02-04 2005-07-27 财团法人理工学振兴会 结合铁氧体的有机物及其制备方法
CN1724076A (zh) * 2005-06-10 2006-01-25 中南大学 核磁共振成像造影剂及其制备方法
CN101002951A (zh) * 2007-01-17 2007-07-25 哈尔滨工业大学 一种超顺磁性磁共振造影剂及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101757643A (zh) * 2010-03-26 2010-06-30 上海交通大学 基于稳定剂的乳剂及其制备方法和用途
CN101757643B (zh) * 2010-03-26 2013-01-16 上海交通大学 基于稳定剂的乳剂及其制备方法和用途
CN102836429A (zh) * 2011-06-22 2012-12-26 程柯 修复受损组织的抗体靶向药物、给药方法及磁共振造影剂
CN102836429B (zh) * 2011-06-22 2015-04-01 苏州万木春生物技术有限公司 修复受损组织的抗体靶向药物、给药方法及磁共振造影剂
CN102580120A (zh) * 2012-03-21 2012-07-18 海南医学院附属医院 一种靶向性mri对比剂及其制备方法
CN102580120B (zh) * 2012-03-21 2014-04-02 海南医学院附属医院 一种靶向性mri对比剂及其制备方法
CN104672462A (zh) * 2015-03-05 2015-06-03 北京工商大学 一种增强纳米粒子生物相容性和稳定性的多齿仿生配体及其制备方法
CN108287234A (zh) * 2017-03-22 2018-07-17 广东顺德工业设计研究院(广东顺德创新设计研究院) 纳米免疫磁珠及其制备方法和应用

Also Published As

Publication number Publication date
CN101474414B (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
Rammohan et al. Nanodiamond–gadolinium (III) aggregates for tracking cancer growth in vivo at high field
Bai et al. Synthesis of ultrasmall Fe3O4 nanoparticles as T 1–T 2 dual-modal magnetic resonance imaging contrast agents in rabbit hepatic tumors
CN103212093A (zh) 一种具有细胞靶向性的磁性纳米材料及其生物医学应用
NZ325403A (en) Contrast media comprising superparamagnetic particles in an organic coating
Yang et al. GE11-PDA-Pt@ USPIOs nano-formulation for relief of tumor hypoxia and MRI/PAI-guided tumor radio-chemotherapy
EP2808036A1 (en) Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
Piché et al. Targeted T 1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles
CN101474414B (zh) 高分子包裹磁性纳米粒子造影剂的制备及应用
Wu et al. Reduction-active Fe3O4-loaded micelles with aggregation-enhanced MRI contrast for differential diagnosis of Neroglioma
WO2023082786A1 (zh) 前列腺癌靶向磁共振造影剂及应用
Paunesku et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images
Wei et al. Biocompatible low-retention superparamagnetic iron oxide nanoclusters as contrast agents for magnetic resonance imaging of liver tumor
CN104548142A (zh) 一种透明质酸修饰的超顺磁性氧化铁/金复合纳米探针的制备方法
Zhang et al. Green synthesis of sub‐10 nm gadolinium‐based nanoparticles for sparkling kidneys, tumor, and angiogenesis of tumor‐bearing mice in magnetic resonance imaging
Huang et al. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications
CN103041407A (zh) 核-壳型纳米造影剂、其制备方法及应用
US9775824B2 (en) Magnetic nanoparticle composition and manufacturing method and use thereof
CN101636108B (zh) 用免疫磁性mri造影剂对活化的血管内皮进行成像
Li et al. Designing smart iron oxide nanoparticles for MR imaging of tumors
Song et al. A multifunctional nanoprobe based on europium (iii) complex–Fe 3 O 4 nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo
Li et al. Enzyme-like copper-encapsulating magnetic nanoassemblies for switchable T1-weighted MRI and potentiating chemo-/photo-dynamic therapy
Wang et al. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases
CN101549161B (zh) 一种肝、脾脏特异性阳性核磁共振对比剂及其制备方法
Lu et al. Hypoxia-Responsive Aggregation of Iron Oxide Nanoparticles for T1-to-T2 Switchable Magnetic Resonance Imaging of Tumors
Li et al. A pH-responsive magnetic resonance tuning probe for precise imaging of bacterial infection in vivo

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100915

Termination date: 20140206