CN101467107A - 减小电全息显示器中有效像素间距的方法以及包括减小的有效像素间距的电全息显示器 - Google Patents

减小电全息显示器中有效像素间距的方法以及包括减小的有效像素间距的电全息显示器 Download PDF

Info

Publication number
CN101467107A
CN101467107A CNA2007800215092A CN200780021509A CN101467107A CN 101467107 A CN101467107 A CN 101467107A CN A2007800215092 A CNA2007800215092 A CN A2007800215092A CN 200780021509 A CN200780021509 A CN 200780021509A CN 101467107 A CN101467107 A CN 101467107A
Authority
CN
China
Prior art keywords
light modulator
spatial light
lens
coherent
here
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800215092A
Other languages
English (en)
Inventor
A·戈维尔
L·R·阿尔巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN101467107A publication Critical patent/CN101467107A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/52Reflective modulator

Abstract

一种电全息显示系统(500),包括:相干光源(130),适合于产生相干准直光束;空间光调制器(SLM)(120),适合于调制光束;光学单元(350、450),位于空间光调制器(120)和投影全息图像的图像平面(580)之间的光路上。光学单元(350、450)可以包括一对凸透镜(460,470),所述光学单元进行操作以便有效地减小空间光调制器(120)的像素(210)的间距(220)。这将允许电全息显示系统(500)呈现期望的衍射范围,即使当所述的系统包括空间光调制器(120)而所述空间光调制器(120)的像素间距(220)大于对于期望的衍射范围所需的像素间距亦是如此。

Description

减小电全息显示器中有效像素间距的方法以及包括减小的有效像素间距的电全息显示器
技术领域
本发明涉及电全息显示系统,更加具体地说,本发明涉及减小电全息显示器中有效像素间距的方法和有效像素间距减小的电全息显示器。
背景技术
最近,已经开发了电全息显示系统,以便产生图像的全三维(“3-D”)重建。对于开发用于再现三维移动图像的电全息显示系统存在浓厚的兴趣,比如三维电视。借助于计算机产生的全息图(CGH)的实时电全息系统被称为最终的三维电视,因为全息术是能够直接记录和重建三维图像的唯一技术。
图1表示电全息显示系统100的一个实施例。电全息显示系统100包括处理器和驱动器单元110、空间光调制器(SLM)120、相干光源130和分束器140。处理器和驱动器单元110可以包括处理器和驱动器的单独电路或部件,并且可以包括存储器,如只读存储器(ROM)、随机存取存储器(RAM)等。有益的作法是,在处理器和驱动器单元110的存储器中存储用于执行各种不同运算的软件。有益的是,空间光调制器120是反射式液晶显示器(LCD),如硅上反射式液晶(LCOS)器件。在一个实施例中,相干光源130包括激光发射二极管(LED)132和准直光学器件134。
工作时,激光发射二极管132向准直光学器件134提供光束,准直光学器件134针对空间光调制器120适当地准直并调整光束的大小。向分束器140提供来自光源130的相干的经准直的光束,分束器140将相干的经准直的光束引向空间光调制器120。与此同时,处理器和驱动器单元110产生全息数据并应用全息数据驱动空间光调制器120的像素。响应驱动空间光调制器120的每个像素的数据,对于相干的经准直的光束进行空间调制,从而产生空间调制的光束,所述空间调制的光束被反射回来到达分束器140。分束器140使空间调制光束通过,一直到图像平面180,在这里形成全息图。
但是对于这样一种电全息显示系统仍旧存在一些问题。一个问题是需要空间光调制器,这个空间光调制器要足够地小,以便显示全息图所需的微小的边缘图案,这个图案应能为人的眼睛在相当宽的范围观察到。在全息术中,图像是利用衍射光重建的。同时,一个典型的人两眼之间的距离约为6.5cm。因此,对于衍射的一个令人满意的范围而言,空间光调制器需要具有精细微小的像素间距,约为1微米的量级。然而遗憾的是,当前不存在像素间距约为1微米的电子显示器件。但对于反射式的液晶显示器,存在像素间距为10微米量级的器件。
因此,期望提供一种减小电全息显示器中有效像素间距的方法。进一步还期望提供有效像素间距减小的电全息显示器。
发明内容
在本发明的一个方面,电全息显示系统包括:相干光源,适合于产生相干准直光束;空间光调制器(SLM),适合于接收和调制相干准直光束,从而由其产生调制光束,空间光调制器包括多个像素,像素间距为a1;处理器和驱动器单元,适合于产生代表全息图像的全息数据并将合适的驱动信号加到空间光调制器的像素,使空间光调制器利用全息数据调制相干准直光束;光学单元,设置成接收调制光束并提供全息图像,其中全息图像的有效像素间距是a2,a2<a1
在本发明的另一方面,一种显示全息图像的方法包括:向空间光调制器(SLM)提供相干准直光束,空间光调制器包括多个像素,像素间距是a1;向空间光调制器的像素施加适当的驱动信号,以使空间光调制器利用全息数据调制相干准直光束,从而由其产生调制光束;和处理调制光束以便提供全息图像,其中全息图像的有效像素间距是a2,a2<a1
附图说明
图1表示电全息显示系统;
图2说明空间光调制器(SLM)的像素,和由此产生的相关的辐射图案;
图3表示提供“有效像素间距”的装置的一个实施例,所述“有效像素间距”相对于实际的像素间距明显减小;
图4表示包括可提供“有效像素间距”的光学单元的装置,所述“有效像素间距”相对于实际的像素间距有明显的减小;以及
图5表示包括光学单元的电全息显示系统,所述光学单元可提供“有效像素间距”,所述“有效像素间距”与实际像素间距相比有明显减小。
具体实施方式
图2说明电全息显示系统的空间光调制器(SLM)(如反射式液晶显示器)的像素210,以及从其产生的相关辐射图案。典型地,像素210以大体上正交的行和列组成的长方形矩阵设置。如图2所示,相邻的像素210的中心之间的距离是a1,并且在同一行或列中任何两个相邻的像素之间的这个距离是基本相同的。这个距离称之为“像素间距”220。
图2表示每个像素210的主瓣(main-lobe)衍射图案(旁瓣没有示出)。图2中的角度2*θ1称之为束宽。对于遵循垂直于像素平面和图像平面280这两者的直线路径的光线,光从像素210移动到图像平面280所用的时间,对于所有的像素210都是相同的。这意味着到达垂直于像素平面的图像平面280的光的“相位”是相同的。换句话说,来自所有像素210的光束都是准直的(平行的)。以上提供的简化观点,称之为几何光学,并不代表完全准确的物理实际,但却是一种近似。
如以上所讨论的,为了得到电全息显示系统的令人满意的衍射范围,空间光调制器200需要具有精细微小的像素间距200,数量级约为1微米。但不幸的是,当前没有一种电子显示器件的像素间距约为1微米。然而,对于反射式液晶显示器,存在像素间距220的数量级为10微米的空间光调制器。
因此,图3表示的是一种装置的一个实施例,该装置提供的“有效像素间距”320相对于空间光调制器200的实际像素间距220有明显的减小。图3的装置包括空间光调制器200以及设置在空间光调制器200和图像平面380之间的光学单元350,空间光调制器200的像素210以大体正交的行和列组成的长方形矩阵设置,像素间距220是a1
光学单元350进行操作,以便产生如在图像平面380所看见的有效像素间距320,有效像素间距320是a2,这里的a2<<a1。在一个实施例中,a1=N*a2,在这里,5≤N≤50,最好10≤N≤20。在这种情况下,如果实际像素间距210是10微米,则有效像素间距310是0.5-1.0微米。
要说明的是,光学单元350既不需要具有较小像素210的空间光调制器200,也不复制这样的装置。光学单元只模拟具有减小的像素间距210的空间光调制器200的效果。出于这个理由,在图3中用灰色代替黑色来遮盖具有有效像素间距320的“有效像素”310。此外,光学单元350并没有明显改变辐射从输入到输出的相关相位,从而可以防止劣化或干扰目标图像在图像平面380的产生。同时,如图3所示,光学单元350展宽了由每个像素210产生的有效辐射图案,因而有效束宽是2*θ2>2*θ1
光学专业人员公知的是,可以使用光学单元放大一个物体,或者加宽视角,但两者不能兼得。然而在这种情况下,可将像素尺寸有效地减小,并且同时增大了视角,这两者对于电全息显示系统来说都是有益的。
图4表示包括光学单元450的一个装置,光学单元450包括第一和第二光学透镜460、470,二者具有相互不同的焦距。有益的是,光学透镜460、470每个都是凸透镜,它们的焦距分别是:L1=1/F1,L2=1F2。每个透镜460、470都定位在离开焦点F一个焦距的位置。这样的透镜组合经常用于制造望远镜。光学单元450是图3的光学单元350的一个实施例。在这个实施例中,有效像素间距420与实际像素间距220之比与透镜460的焦距L1与透镜470的焦距L2之比是相同的(420/220=L1/L2)。例如,如果透镜460的焦距L1是透镜470的焦距L2的10倍,则有效像素间距420就是空间光调制器像素210的实际像素间距220的十分之一(1/10)。与此同时,图4的装置并没有改变光束的相对相位,光束仍旧保持准直。
图5表示电全息显示系统500的一个实施例,这个系统500包括光学单元350,用于提供“有效像素间距”,这个有效像素间距相对于空间光调制器的实际像素间距有明显的减小。
电全息显示系统500包括:处理器和驱动器单元510、空间光调制器(SLM)200、相干光源130、分束器140和光学单元350。处理器和驱动器单元510可以包括处理器和驱动器的独立的电路或部件,并且可以包括存储器,如只读存储器(ROM)、随机存取存储器(RAM)等。有益的是,在处理器和驱动器单元510的存储器中存储用于执行各种不同的算法的软件。有益地,空间光调制器200是反射式液晶显示器(LCD),例如硅上反射式液晶(LCOS)器件。在一个实施例中,相干光源130包括激光发射二极管(LED)132和准直光学器件134。可选地,还可以使用另外的激光产生器件或另外的相干光发生器。在某些实施例中,如果提供另外的装置或光学结构将来自相干光源130的光引向空间光调制器200并且将来自空间光调制器200的调制光引向期望的图像平面,则可以省去分束器140。如以上说明的,在一个实施例中,光学单元350包括第一和第二光学透镜460、470。其它的装置也是可能的。
工作时,激光发射二极管132向准直光学器件134提供光束,准直光学器件134针对空间光调制器120适当地准直并调整光束的大小。即,有益的是,光束的大小和形状被调整为同时地基本上完全照射空间光调制器200的所有像素210(与所谓的扫描彩色系统相反)。向分束器140提供来自光源130的相干的经准直的光束,分束器140将相干的经准直的光束引导到空间光调制器200上。与此同时,处理器和驱动器单元510产生全息数据,并且应用该全息数据以便驱动空间光调制器200的像素。响应驱动空间光调制器200的每个像素的数据,对于相干的经准直的光束进行空间调制,从而产生空间调制的光束,该光束又被反射回来到分束器140。分束器使空间调制的光束通过到达光学单元350。光学单元350处理空间调制的光束,从而提供“有效像素间距”320,相对于空间光调制器220的实际像素间距220,这个有效像素间距320明显地减小。
在图5的装置因为包括光学单元350而减小了空间光调制器200的像素210的有效间距的同时,图5的装置因为包括光学单元350还使图像平面580上的目标图像的大小也减小了相同的倍数。通过处理器和驱动器单元510可有选择地补偿图像尺寸的这种减小,处理器和驱动器单元510对于比期望的目标(或场景)图像更大的目标或场景来计算全息图,以使图像的减小可由全息图计算中图像尺寸的增大来补偿。
虽然在这里公开了优选实施例,但仍旧保持在本发明的构思和范围内的许多变化都是可能的。在查看了这里的说明书、附图和权利要求书以后,这样一些变化对于本领域的普通技术人员来说将变得清楚明白。所以,除了所附的权利要求书的主旨和范围外,本发明不受限制。

Claims (18)

1、一种电全息显示系统(500),包括:
相干光源(130),适合于产生相干准直光束;
空间光调制器(SLM)(120),适合于接收和调制所述相干准直光束,从而由其产生调制光束,所述空间光调制器(120)包括多个像素(210),像素间距(220)为a1
处理器和驱动器单元(510),适合于产生代表全息图像的全息数据并将合适的驱动信号施加到所述空间光调制器(120)的像素,使所述空间光调制器(120)利用所述全息数据调制所述相干准直光束;
光学单元(350、450),设置成接收所述调制光束并从其产生所述全息图像,其中所述全息图像的有效像素间距(320、420)是a2,a2<a1
2、权利要求1的系统(500),其中:a1=N*a2,在这里5≤N≤50。
3、权利要求1的系统(500),其中:a1=N*a2,在这里10≤N≤20。
4、权利要求1的系统(500),其中:光学单元(350、450)包括第一和第二透镜(460、470),所述第一和第二透镜设置成使得所述调制光束相继通过所述第一和第二透镜(460、470),其中所述第一透镜(460)具有第一焦距L1,所述第一焦距L1大于所述第二透镜(470)的第二焦距L2。
5、权利要求4的系统(500),其中:L1=N*L2,在这里5≤N≤50。
6、权利要求4的系统(500),其中:L1=N*L2,在这里10≤N≤20。
7、权利要求1的系统(500),其中:所述空间光调制器(120)是反射式液晶显示器(LCD)器件。
8、权利要求1的系统(500),其中:所述空间光调制器(120)是硅上反射式液晶(LC0S)器件。
9、权利要求1的系统(500),其中:所述相干光源(130)包括激光产生器件(132)。
10、一种显示全息图像的方法,包括:
向空间光调制器(SLM)(120)提供相干准直光束,所述空间光调制器(120)包括多个像素(210),像素间距(220)是a1
向所述空间光调制器(120)的像素施加适当的驱动信号,以使所述空间光调制器(120)利用全息数据调制所述相干准直光束,从而由其产生调制光束;以及
用光学方法处理所述调制光束以便提供全息图像,其中所述全息图像的有效像素间距(320、420)是a2,a2<a1
11、权利要求10的方法,其中:a1=N*a2,在这里5≤N≤50。
12、权利要求10的方法,其中:a1=N*a2,在这里10≤N≤20。
13、权利要求10的方法,其中:用光学方法处理所述调制光束以便提供全息图像包括:使所述调制光束相继地通过第一和第二透镜(460、470),其中所述第一透镜(460)具有第一焦距L1,所述第一焦距L1大于所述第二透镜(470)的第二焦距L2。
14、权利要求13的方法,其中:L1=N*L2,在这里5≤N≤50。
15、权利要求14的方法,其中:L1=N*L2,在这里10≤N≤20。
16、权利要求10的方法,其中:所述空间光调制器(120)是反射式液晶显示器(LCD)器件。
17、权利要求10的方法,其中:所述空间光调制器(120)是硅上反射式液晶(LC0S)器件。
18、权利要求10的方法,其中:提供相干光源(130)包括提供来自激光产生器件(132)的光。
CNA2007800215092A 2006-06-09 2007-05-29 减小电全息显示器中有效像素间距的方法以及包括减小的有效像素间距的电全息显示器 Pending CN101467107A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81235406P 2006-06-09 2006-06-09
US60/812,354 2006-06-09

Publications (1)

Publication Number Publication Date
CN101467107A true CN101467107A (zh) 2009-06-24

Family

ID=38683587

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800215092A Pending CN101467107A (zh) 2006-06-09 2007-05-29 减小电全息显示器中有效像素间距的方法以及包括减小的有效像素间距的电全息显示器

Country Status (5)

Country Link
US (1) US20100225739A1 (zh)
EP (1) EP2033054A2 (zh)
JP (1) JP2009540353A (zh)
CN (1) CN101467107A (zh)
WO (1) WO2007141709A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087504A (zh) * 2011-01-26 2011-06-08 浙江大学 基于单个空间光调制器的光学模式识别器及其方法
CN102809918A (zh) * 2012-08-08 2012-12-05 浙江大学 基于多层空间光调制器的高分辨全息三维显示装置和方法
CN110442006A (zh) * 2019-06-28 2019-11-12 京东方科技集团股份有限公司 全息再现装置、全息再现系统和全息显示系统
CN112639588A (zh) * 2018-09-10 2021-04-09 德克萨斯仪器股份有限公司 具有扩展像素分辨率的紧凑型显示器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101908033B1 (ko) 2008-07-10 2018-12-10 리얼 뷰 이미징 리미티드 광시야각 디스플레이들 및 사용자 인터페이스들

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261125A (ja) * 1994-03-24 1995-10-13 Olympus Optical Co Ltd 投影型画像表示装置
JPH086481A (ja) * 1994-03-31 1996-01-12 Texas Instr Inc <Ti> 空間光変調器を使用したホログラフィック画像発生方法及びホログラフィック画像ディスプレイシステム
JP3872124B2 (ja) * 1996-03-25 2007-01-24 浜松ホトニクス株式会社 ホログラム作成装置、ホログラム表示装置、ホログラフィシステム、ホログラム作成方法およびホログラム表示方法
EP1978418A2 (en) * 1996-12-06 2008-10-08 Nippon Telegraph And Telephone Corporation Method and system for producing computer generated holograms realizing real time holographic video production and display
US6529614B1 (en) * 1998-08-05 2003-03-04 California Institute Of Technology Advanced miniature processing handware for ATR applications
JP4133832B2 (ja) * 2002-01-16 2008-08-13 独立行政法人科学技術振興機構 カラー動画ホログラフィ再生装置
GB0512179D0 (en) * 2005-06-15 2005-07-20 Light Blue Optics Ltd Holographic dispaly devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087504A (zh) * 2011-01-26 2011-06-08 浙江大学 基于单个空间光调制器的光学模式识别器及其方法
CN102809918A (zh) * 2012-08-08 2012-12-05 浙江大学 基于多层空间光调制器的高分辨全息三维显示装置和方法
CN102809918B (zh) * 2012-08-08 2014-11-05 浙江大学 基于多层空间光调制器的高分辨全息三维显示装置和方法
CN112639588A (zh) * 2018-09-10 2021-04-09 德克萨斯仪器股份有限公司 具有扩展像素分辨率的紧凑型显示器
US11874486B2 (en) 2018-09-10 2024-01-16 Texas Instruments Incorporated Compact display with extended pixel resolution
CN110442006A (zh) * 2019-06-28 2019-11-12 京东方科技集团股份有限公司 全息再现装置、全息再现系统和全息显示系统
CN110442006B (zh) * 2019-06-28 2021-08-27 京东方科技集团股份有限公司 全息再现装置、全息再现系统和全息显示系统
US11460810B2 (en) 2019-06-28 2022-10-04 Fuzhou Boe Optoelectronics Technology Co., Ltd. Holographic reproduction device, holographic reproduction system and holographic display system

Also Published As

Publication number Publication date
WO2007141709A2 (en) 2007-12-13
US20100225739A1 (en) 2010-09-09
WO2007141709A3 (en) 2008-02-28
JP2009540353A (ja) 2009-11-19
EP2033054A2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US20210333546A1 (en) Holographic image projection with holographic correction
US11635621B2 (en) 2D/3D holographic display system
KR101835289B1 (ko) 홀로그램 계산 방법
WO2017107313A1 (zh) 一种裸眼3d激光显示装置
CN108780296A (zh) 照明装置
CN105409209A (zh) 多孔径投影显示器和针对所述多孔径投影显示器的单图像生成器
KR102512258B1 (ko) 홀로그래픽 이미지 정렬
EP3792681B1 (en) Multi-image display apparatus using holographic projection
US10816932B2 (en) Apparatus for displaying a hologram
TWI820365B (zh) 用於在多個平面上形成影像重建的投射器和方法及相關的抬頭顯示器
CN101467107A (zh) 减小电全息显示器中有效像素间距的方法以及包括减小的有效像素间距的电全息显示器
CN101467106A (zh) 使用以非偏振光操作的液晶显示设备的全息显示器
US10168668B2 (en) Method of forming a rarefied hologram for video imaging and 3D lithography
US20230359027A1 (en) Head-Up Display
Tsai 21.4: Invited Paper: Near‐to‐Eye Display Application Based on Digital Electro‐optics Platform (X‐on‐Silicon)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090624