CN101460737A - 风力涡轮机操作方法 - Google Patents

风力涡轮机操作方法 Download PDF

Info

Publication number
CN101460737A
CN101460737A CNA200780018408XA CN200780018408A CN101460737A CN 101460737 A CN101460737 A CN 101460737A CN A200780018408X A CNA200780018408X A CN A200780018408XA CN 200780018408 A CN200780018408 A CN 200780018408A CN 101460737 A CN101460737 A CN 101460737A
Authority
CN
China
Prior art keywords
speed
wind turbines
operating method
variable speed
gns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200780018408XA
Other languages
English (en)
Other versions
CN101460737B (zh
Inventor
E·尼姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Gamesa Renewable Energy Innovation and Technology SL
Gamesa Eolica SA
Original Assignee
Gamesa Eolica SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Eolica SA filed Critical Gamesa Eolica SA
Publication of CN101460737A publication Critical patent/CN101460737A/zh
Application granted granted Critical
Publication of CN101460737B publication Critical patent/CN101460737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/322Control parameters, e.g. input parameters the detection or prediction of a wind gust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Environmental Sciences (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Wind Motors (AREA)

Abstract

在过度风力情况下操作包括叶片桨距控制机构的变速风力涡轮机的方法,其特征在于,包括以下步骤:a)检测过度风力的存在;b)以所述风力涡轮机叶片桨距控制机构允许的最大速度在6至14度的范围内进行桨距的迅速增加。该方法还包括附加步骤:c)改变发电机速度以避免发电机加速度极大增加,这种增加将导致需要随后的步骤b)。

Description

风力涡轮机操作方法
技术领域
本发明涉及风力涡轮机操作方法,尤其涉及在过度工作风力情况下的风力涡轮机操作方法。
背景技术
具有桨距控制机构的变速风力涡轮机在该技术领域中是已知的。
这些控制机构至少包括执行器和连接到控制装置的调节传动装置。
所述控制装置接收来自所选风力涡轮机组件的输入数据并将输出数据发送给执行器,以根据一定的规则改变叶片的角度位置,从而可以实现用于优化功率产生并在高风速的情况下保护风力涡轮机或者避免风力涡轮机出故障的操作方法。
这些情况之一是对叶片根部和塔底等主要结构组件产生过度负荷的过度工作风力。在此情况下,已知的技术通常建议使用所述控制机构来关闭涡轮机。例如,WO2004/077068描述了使用激光雷达机构在风力变化到达涡轮机塔之前很早就检测风力,从而能够使用桨距控制机构调节叶片。
本发明的目的是一种处理该情况的方法,用于保持风力涡轮机工作并使叶片根部和塔底中的弯曲力矩最小化。
发明内容
为了实现所述目的,本发明提供一种用于在过度工作风力的情况下操作具有桨距控制机构的变速风力涡轮机的方法,该方法的特征在于包括以下步骤:
a)检测过度工作风力的存在;
b)以风力涡轮机桨距控制机构允许的最大桨距速率在6至14度的范围内进行桨距角度的迅速增加。
在一优选实施例中,该方法还包括以下附加步骤:
c)改变发电机速度以避免大发电机加速度,该大发电机加速度可能导致需要随后的步骤b)。
在一优选实施例中,当在最小的预定时间段期间发电机加速度高于预定值时检测到过度工作风力的存在。
在另一优选实施例中,使用激光雷达机构检测过度工作风力的存在。
从以下对照附图对本发明的说明性而非限制性实施例的详细描述中,将理解本发明的其它特征和优点。
附图说明
图1是本发明的方法的框图。
图2示出在11米/秒的过度工作风力的情况中在根据本发明的操作方法下风力涡轮机的模拟响应的几个时间序列。
具体实施方式
国际标准IEC 61400-1第二版规定了50年过度工作风力(50-yearExtreme Operating Gust,EOG50)的极限设计负荷情况,其描述了具有规定大小和特征类高斯形状的相干风力。
在该风力下运行而不停机的操作策略下,所述负荷情况可能在风力涡轮机中产生如下负效应:
-转子和发电机大超速;
-叶片根部中的过度弯曲力矩;
-叶片向塔过度偏转;
-塔底中的过度弯曲力矩。
在气动弹性模拟中,本申请人发现在EOG50负荷情况和正常功率产生负荷情况之间的主要差别是发电机加速度的大小和持续时间。具体来说,发现在正常操作期间发电机的超速经常超过20%,但是与发电机超速持续较长时间的EOG50负荷情况相比较,该超过的持续时间是相当短的。
因此,根据本发明的方法,用于增加桨距角度的条件是检测到按发电机额定速度(generator nominal speed,GNS)的百分比测量的、范围在10%至30%GNS/秒的发电机加速度预定值,优选实施例为20%GNS/秒,并且其持续时间的预定值在0.2至0.6秒的范围内,优选实施例为0.4秒。
在另一优选实施例中,使用例如WO 2004/077068中公开的安装在转子轮毂中的激光雷达机构来检测风力。
关于桨距角度增加,已经发现在6至14度的范围内,优选在12至14度的范围内,桨距角度的增加对过度叶片弯曲力矩和可能在不同风速出现的过度发电机速度二者都有有利的影响。更大桨距角度的增加不会明显进一步减小过度的最大发电机速度。
应该尽可能快地进行桨距提升,即,以风力涡轮机桨距控制机构允许的最大桨距速率进行,对于大量的当前涡轮机来说,该速率在8-10度/秒的范围内。
快速桨距角度增加可导致能引起另一如上所述桨距提升的临界情况,因为在桨距角度增加之后转子速度立即减小可导致大的加速度。为了避免该效应,根据本发明的方法包括步骤c),其中在第一子步骤中,发电机速度以按发电机额定速度(GNS)的百分比测量的、范围在1%至4%GNS/秒的速率降低,优选实施例为2%GNS/秒,直到发电机速度达到60%至90%GNS的范围,优选实施例为80%GNS,在第二子步骤中,以范围在0.5%至2%GNS/秒的速率缓慢增加发电机速度,优选实施例为1%GNS/秒,直到达到额定速度。
可以使用如图1中所示的可在公知的变速风力涡轮机中使用的桨距控制机构实施该方法。
桨距控制机构包括叶片11、执行器21、调节传动装置23以及控制装置25。该控制装置接收来自发电机13和/或其它风力涡轮机组件15、17的输入数据并发送输出数据D1给执行器21以根据预定规则改变叶片11的角度位置。
根据本发明的方法,控制装置25接收来自发电机13或安装在转子15中的激光雷达机构的输入数据,并且在检测到过度工作风力之后发送输出数据D1给执行器21从而将叶片11的桨距角度向特定位置增加预定值。通过简单地改变作为控制装置的输入参数的参考值来完成桨距角度增加。
图2中所示的时间序列示出在11m/s的例子中利用根据本发明的操作方法获得的结果。在t=26秒时启动桨距提升。然后改变发电机速度参考,在大约9秒内达到350rpm,在350rpm停留10秒,然后在大约18秒内达到440rpm的额定值。
尽管已经结合优选实施例充分描述了本发明,但是可以在本发明的范围内进行修改,这是显而易见的,另外应该理解,不是这些实施例而是所附权利要求的内容限定本发明的范围。

Claims (12)

1.用于在过度工作风力情况下操作具有桨距控制机构的变速风力涡轮机的方法,特征在于该方法包括以下步骤:
a)检测过度工作风力的存在;以及
b)以所述风力涡轮机桨距控制机构允许的最大桨距速率在6至14度的范围内进行桨距角度的迅速增加。
2.根据权利要求1所述的变速风力涡轮机操作方法,其特征在于:当范围在0.2秒至0.6秒的最小预定时间期间发电机加速度高于范围在10%至30%GNS/秒的预定值时,检测到所述过度工作风力的存在。
3.根据权利要求2所述的变速风力涡轮机操作方法,其特征在于:所述加速度预定值是20%GNS/秒。
4.根据权利要求2或3所述的变速风力涡轮机操作方法,其特征在于:所述最小预定值是0.4秒。
5.根据权利要求1所述的变速风力涡轮机操作方法,其特征在于:使用安装在所述风力涡轮机轮毂中的激光雷达装置检测过度工作风力的存在。
6.根据权利要求1-5中任一项所述的变速风力涡轮机操作方法,其特征在于:所述桨距角度增加的大小在12-14度的范围内。
7.根据权利要求1-6中任一项所述的变速风力涡轮机操作方法,其特征在于:以8-10度/秒范围的桨距速率进行所述桨距角度的增加。
8.根据权利要求1-7中任一项所述的变速风力涡轮机操作方法,其特征在于还包括以下步骤:
c)改变发电机速度以避免大发电机加速度,该大发电机加速度导致需要随后的步骤b)。
9.根据权利要求8所述的变速风力涡轮机操作方法,其特征在于所述步骤c)包括以下子步骤:
c1)以范围在1%至4%GNS/秒的速率减小发电机速度,直到发电机速度值达到60%至90%GNS的范围;
c2)以范围在0.5%至2%GNS/秒的速率增加发电机速度,直到达到额定速度。
10.根据权利要求9所述的变速风力涡轮机操作方法,其特征在于:所述发电机速度减小率是2%GNS/秒。
11.根据权利要求9所述的变速风力涡轮机操作方法,其特征在于:所述发电机速度值是80%GNS。
12.根据权利要求9所述的变速风力涡轮机操作方法,其特征在于:所述发电机速度增加速率是1%GNS/秒。
CN200780018408XA 2006-05-31 2007-05-29 风力涡轮机操作方法 Active CN101460737B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP200601445 2006-05-31
ES200601445A ES2288121B1 (es) 2006-05-31 2006-05-31 Metodo de operacion de un aerogenerador.
PCT/ES2007/000314 WO2007138138A1 (es) 2006-05-31 2007-05-29 Método de funcionamiento de aerogenerador

Publications (2)

Publication Number Publication Date
CN101460737A true CN101460737A (zh) 2009-06-17
CN101460737B CN101460737B (zh) 2012-07-18

Family

ID=38778155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780018408XA Active CN101460737B (zh) 2006-05-31 2007-05-29 风力涡轮机操作方法

Country Status (6)

Country Link
US (1) US8301310B2 (zh)
EP (1) EP2022981B1 (zh)
CN (1) CN101460737B (zh)
DK (1) DK2022981T3 (zh)
ES (2) ES2288121B1 (zh)
WO (1) WO2007138138A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142687A (zh) * 2010-01-04 2011-08-03 维斯塔斯风力系统集团公司 风力涡轮机中的功率消耗单元的操作方法
CN102648345A (zh) * 2009-10-08 2012-08-22 维斯塔斯风力系统有限公司 风力涡轮机的控制方法
CN105971818A (zh) * 2015-03-13 2016-09-28 通用电气公司 风轮机设定点控制

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008012956B4 (de) * 2008-03-06 2011-06-30 REpower Systems AG, 22297 Blattwinkelverstellratengrenzwertanpassung
US7942629B2 (en) * 2008-04-22 2011-05-17 General Electric Company Systems and methods involving wind turbine towers for power applications
SE536174C2 (sv) * 2009-02-09 2013-06-11 Xemc Xiangtan Electric Mfg Group Corp Lt Metod för att styra ett vindkraftverk
EP2251543B1 (en) 2009-05-14 2016-12-07 ALSTOM Renewable Technologies Method and system for predicting the occurrence of a wind gust at a wind turbine
GB2476316B (en) 2009-12-21 2014-07-16 Vestas Wind Sys As A wind turbine having a control method and controller for predictive control of a wind turbine generator
GB2476506A (en) 2009-12-23 2011-06-29 Vestas Wind Sys As Method And Apparatus Protecting Wind Turbines From Low Cycle Fatigue Damage
GB2476507A (en) * 2009-12-23 2011-06-29 Vestas Wind Sys As Method And Apparatus For Protecting Wind Turbines From Gust Damage
ES2401857B1 (es) 2011-01-31 2014-03-10 Gamesa Innovation & Technology S.L. Métodos y sistemas de control de aerogeneradores mejorados.
EP2636893B1 (en) 2012-03-07 2016-08-31 Siemens Aktiengesellschaft Method to control the operation of a wind turbine
US9261077B2 (en) 2013-03-19 2016-02-16 General Electric Company System and method for real-time load control of a wind turbine
US9551321B2 (en) 2013-06-26 2017-01-24 General Electric Company System and method for controlling a wind turbine
US9631606B2 (en) 2014-04-14 2017-04-25 General Electric Company System and method for thrust-speed control of a wind turbine
US9587629B2 (en) 2014-06-30 2017-03-07 General Electric Company Methods and systems to operate a wind turbine system using a non-linear damping model
US10100812B2 (en) 2014-06-30 2018-10-16 General Electric Company Methods and systems to operate a wind turbine system
DE102015122039A1 (de) 2015-12-17 2017-06-22 Wobben Properties Gmbh Verfahren zum Steuern einer Windenergieanlage
JP6405324B2 (ja) 2016-01-29 2018-10-17 三菱重工業株式会社 風力発電装置及びその運転方法
JP6421134B2 (ja) 2016-01-29 2018-11-07 三菱重工業株式会社 風力発電装置及びその運転方法
CN106640520A (zh) * 2016-12-25 2017-05-10 东方电气风电有限公司 一种风力发电机功率提升方法
US10240581B2 (en) 2017-02-08 2019-03-26 General Electric Company System and method for controlling pitch angle of a wind turbine rotor blade
US10634121B2 (en) 2017-06-15 2020-04-28 General Electric Company Variable rated speed control in partial load operation of a wind turbine
EP4273395A1 (en) 2022-05-04 2023-11-08 General Electric Renovables España S.L. Wind turbine control

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189648A (en) * 1978-06-15 1980-02-19 United Technologies Corporation Wind turbine generator acceleration control
US4426192A (en) * 1983-02-07 1984-01-17 U.S. Windpower, Inc. Method and apparatus for controlling windmill blade pitch
US4584486A (en) * 1984-04-09 1986-04-22 The Boeing Company Blade pitch control of a wind turbine
DE69814840D1 (de) * 1997-03-26 2003-06-26 Forskningsct Riso Roskilde Windturbine mit vorrichtung zur messung der windgeschwindigkeit
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
GB2398841A (en) 2003-02-28 2004-09-01 Qinetiq Ltd Wind turbine control having a Lidar wind speed measurement apparatus
JP4102278B2 (ja) * 2003-03-19 2008-06-18 三菱電機株式会社 風力発電システム
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
US7289920B2 (en) * 2003-06-26 2007-10-30 General Electric Company Method and apparatus for capture of grid characteristics corresponding to fluctuation events
US7692322B2 (en) * 2004-02-27 2010-04-06 Mitsubishi Heavy Industries, Ltd. Wind turbine generator, active damping method thereof, and windmill tower
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
US7351033B2 (en) * 2005-09-09 2008-04-01 Mcnerney Gerald Wind turbine load control method
US7345373B2 (en) * 2005-11-29 2008-03-18 General Electric Company System and method for utility and wind turbine control
US8174136B2 (en) * 2006-04-26 2012-05-08 Alliance For Sustainable Energy, Llc Adaptive pitch control for variable speed wind turbines
US20090169379A1 (en) * 2007-01-26 2009-07-02 Mcclintic Frank Methods and apparatus for advanced wind energy capture system
ES2701707T3 (es) * 2007-05-03 2019-02-25 Siemens Ag Procedimiento de funcionamiento de un aerogenerador y aerogenerador

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648345A (zh) * 2009-10-08 2012-08-22 维斯塔斯风力系统有限公司 风力涡轮机的控制方法
CN102648345B (zh) * 2009-10-08 2015-01-07 维斯塔斯风力系统有限公司 风力涡轮机的控制方法
CN102142687A (zh) * 2010-01-04 2011-08-03 维斯塔斯风力系统集团公司 风力涡轮机中的功率消耗单元的操作方法
CN105971818A (zh) * 2015-03-13 2016-09-28 通用电气公司 风轮机设定点控制

Also Published As

Publication number Publication date
ES2288121A1 (es) 2007-12-16
CN101460737B (zh) 2012-07-18
WO2007138138A1 (es) 2007-12-06
ES2288121B1 (es) 2008-10-16
ES2706199T3 (es) 2019-03-27
US8301310B2 (en) 2012-10-30
DK2022981T3 (en) 2018-12-17
US20090224542A1 (en) 2009-09-10
EP2022981A4 (en) 2015-08-19
EP2022981A1 (en) 2009-02-11
EP2022981B1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
CN101460737B (zh) 风力涡轮机操作方法
EP1939445B1 (en) Method for predicting a power curve for a wind turbine
EP2067989B1 (en) System and method for controlling a wind power plant
US8128362B2 (en) Method of operating a wind turbine, a wind turbine and a cluster of wind turbines
EP2878811B1 (en) Methods of operating a wind turbine, and wind turbines
EP3607198B1 (en) Air density dependent turbine operation
US9835134B2 (en) Method and computing module for determining pitch angle adjustment signals of a wind turbine based on the maximum rotational speed
EP2886854B1 (en) Wind turbine control method
CN106089581B (zh) 用于风轮机的可变末梢速度比控制的系统及方法
EP2582973A2 (en) Control method for a wind turbine
EP2522853B1 (en) Wind turbine torque-speed control
EP3415752B1 (en) Variable rated speed control in partial load operation of a wind turbine
CN100424337C (zh) 用于风能设备的运行管理系统
CN111648916B (zh) 对于风力涡轮的推力极限
CN110630438B (zh) 一种风力发电机组的偏航系统的控制方法及装置
US11965483B2 (en) Method for operating a wind farm, wind power installation and wind farm
CN111396251B (zh) 基于最大推力限制操作风力涡轮机的方法
JP6865672B2 (ja) 風力発電装置の評価方法および設計方法
CN113825903A (zh) 用于基于变化元件来控制风力涡轮机的装置和方法
EP4121653B1 (en) Wind turbine control arrangement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant