CN101457321A - Magnesium base composite hydrogen storage material and preparation method - Google Patents

Magnesium base composite hydrogen storage material and preparation method Download PDF

Info

Publication number
CN101457321A
CN101457321A CN 200810164115 CN200810164115A CN101457321A CN 101457321 A CN101457321 A CN 101457321A CN 200810164115 CN200810164115 CN 200810164115 CN 200810164115 A CN200810164115 A CN 200810164115A CN 101457321 A CN101457321 A CN 101457321A
Authority
CN
China
Prior art keywords
hydrogen
mg
hydrogen storage
storage material
magnesium
Prior art date
Application number
CN 200810164115
Other languages
Chinese (zh)
Other versions
CN101457321B (en
Inventor
涂江平
王秀丽
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to CN 200810164115 priority Critical patent/CN101457321B/en
Publication of CN101457321A publication Critical patent/CN101457321A/en
Application granted granted Critical
Publication of CN101457321B publication Critical patent/CN101457321B/en

Links

Abstract

The invention discloses a magnesium-based composite hydrogen storage material comprising the following compositions by weight percent: 1.0-10.0% of Al, 1.0-5.0% of Ni, and the balance of Mg. A preparation method thereof comprising the following steps: at first, smelting block-shaped metal Mg and Al by a medium frequency induction to prepare Mg17Al12 alloy which is crushed to 300 meshes; hydrogenising Mg powder at 340 DEG C under a hydrogen atmosphere of 4.0MPa to prepare MgH2; then blending Mg17Al12, MgH2, Ni powder in accordance with contents by weight percent for ball-grinding for 60 to 100 hours under an atmosphere of argon. The magnesium-based composite hydrogen storage material can reversely absorb and release hydrogen at low temperature, and has high hydrogen storage capacity, excellent activation performance and superior hydrogen absorbing and releasing kinetics property. The magnesium-based composite hydrogen storage material can be used for manufacturing hydrogen source to facilitate purification and storage and transportation of hydrogen, and can also used for hydrogen storage material for fuel cells.

Description

一种镁基复合储氢材料及制备方法 A composite hydrogen storage material and a method of preparing magnesium-based

技术领域 FIELD

本发明涉及一种轻质低温可逆型储氢材料,特别是涉及一种镁基复合储氢材料及其制备方法。 The present invention relates to a lightweight, low-temperature reversible hydrogen storage materials, particularly to a magnesium-based hydrogen storage composite material and its preparation method. 背景技术 Background technique

随着石油资源的日益减少,环境污染问题日趋严峻,氢能由于其资源丰富、 无环境污染等优点成为理想的二次能源。 With dwindling oil resources, worsening environmental pollution, hydrogen because of its rich resources, no environmental pollution, etc. ideal secondary energy. 构成氢能体系的主要技术环节包括氢的生产、供给、储存、转换和使用等,其中能量的储存和转换一直是能量有效利用的关键。 System composed mainly of hydrogen include hydrogen technical aspects of production, supply, storage, and use of the conversion, wherein the energy storage and conversion of energy is the key to have been effectively used. 用金属氢化物储存氢气是一种安全且有很高的比容积储存容量的方法,在二次能源领域内具有不可替代的作用,特别是在燃料电池、可充电电池研究中,具有举足轻重的地位。 With a metal hydride hydrogen storage is a safe and has a high storage capacity than the capacity of the method, an irreplaceable role in the field of secondary energy, especially in the fuel cell, a rechargeable battery can be studied, plays a decisive role . 美国能源部对作为燃料电池汽车用氢源的储 DOE storage of hydrogen as a fuel cell vehicle source

氢容量规定为6-7wt.%。 Capacity is defined as hydrogen 6-7wt.%. 在各种储氢材料中,镁基储氢材料由于其储氢量大、质量轻、价格低廉而受到广泛的关注。 In various hydrogen storage material, the magnesium-based hydrogen storage material because of its hydrogen storage capacity, light weight, low price and widespread concern. Mg的理论储氢量达到7.6wt.%,是所有储氢合金中最高的。 Theoretical hydrogen storage capacity of Mg reaches 7.6wt.%, The highest of all of the hydrogen absorbing alloy. 然而纯镁作为储氢材料充放氢的动力学性能差,且放氢温度比较高,如若达到可以接受的放氢速度,放氢温度必须在350'C以上,限制了Mg氢化物的实际应用。 Kinetic properties of pure magnesium, however, as charging and discharging hydrogen storage material, and the desorption temperature is relatively high, should the discharge to an acceptable rate of hydrogen, the hydrogen discharge temperature must be above 350'C, it limits the practical application of Mg hydrides . 生成Mg的金属间化合物有效的降低了吸放氢的温度, 然而储氢量也明显下降,如性能较好的Mg2Ni合金理论储氢量只有3.6wt.。 Generated effectively reducing the temperature of hydrogen absorption and desorption between Mg metal compound, however, the hydrogen storage capacity is also decreased, as better performance of the theoretical amount of hydrogen storage alloy is Mg2Ni only 3.6 wt .. /。 /. . 因而镁基储氢复合材料是近年来研究的重点。 Thus hydrogen storage composite material is the focus of research in recent years. 与Mg复合的化合物近年来研究较多的是可在室温吸放氢的AB5型稀土系合金,然而LaNi5在第一次储氢循环后发生分解,生成不可逆的L必3和Mg2Ni的氢化物。 Compound with Mg more recent studies are AB5-type rare-earth system alloy may be hydrogen absorption and desorption at room temperature, but decompose LaNi5 hydrogen storage occurs after the first cycle, to irreversible and L 3 must Mg2Ni hydride. Al本身为轻金属,为了提高单位质量储氢量,Al与Mg的复合也已有报道。 Al itself is a light metal, in order to improve hydrogen storage capacity per unit mass, Al and Mg compound has also been reported. 镁铝系合金有Mg3Al12、 Mg17Al12、 Mg2Al3等类型。 Mg-Al-based alloys Mg3Al12, Mg17Al12, Mg2Al3 other types. 以研究过的Mg3Al12、 Mg5Al6、 Mg-14A1均可以实现可逆吸放氢, 但吸放氢反应动力学性能差,且放氢温度均在30(TC以上。目前没有报道纳米晶MgnAl^与Mg复合的储氢材料体系。 发明内容 In studied Mg3Al12, Mg5Al6, Mg-14A1 may be implemented reversible hydrogen absorption and desorption, but the performance of hydrogen absorption and desorption kinetics of a difference of the reaction, and the desorption temperature were 30 (above TC. There are currently no reports MgnAl ^ nanocrystals with Mg hydrogen storage material system. SUMMARY oF tHE iNVENTION

本发明的目的是提供一种可逆吸放氢,具有较高的储氢量、良好的活化性能和优良的吸放氢动力学性能的镁基复合储氢材料及制备方法。 Object of the present invention is to provide a reversible hydrogen absorption, has a high hydrogen storage capacity, good performance and activated magnesium-based hydrogen storage composite material and preparation method excellent in hydrogen absorption and desorption kinetics properties.

本发明的镁基复合储氢材料,按重量百分比含有1.0〜10.0 % Al, 1.0~5.0%Ni,余量为Mg 。 Magnesium-based composite hydrogen storage material of the present invention, comprising by weight percent 1.0~10.0% Al, 1.0 ~ 5.0% Ni, the balance being Mg.

上述的Al以纳米晶MgnAl^相存在,晶粒尺寸40〜80 nm。 In the above-described Al MgnAl ^ nanocrystalline phase is present, the grain size of 40~80 nm.

镁基复合储氢材料的制备方法,其步骤如下:(1) 将块状金属Mg和Al通过中频感应熔炼制备MgnAli2合金,粉碎至300目; The method of preparation of magnesium-based composite hydrogen storage material, the following steps: (1) the bulk metal melting of Mg and Al alloy prepared by MgnAli2 frequency induction pulverized to 300 mesh;

(2) 在34(TC氢气气氛4.0MPa下将Mg粉氢化制得MgH2; (2) 34 (TC under an atmosphere of hydrogen 4.0MPa hydrogenation of Mg powder prepared MgH 2;

(3) 将粉末状Mg17Al12、 MgH2、 Ni按照重量百分比1.0〜10.0 % Al, 1.0〜5.0%Ni,余Mg混合,在氩气气氛下球磨60〜100小时,球料比为20: 1, 得Mg-Al-Ni复合储氢材料。 (3) powdered Mg17Al12, MgH2, Ni percentage by weight 1.0~10.0% Al, 1.0~5.0% Ni, Mg I mixed, under an argon atmosphere at 60~100 hours milling, ball to powder ratio of 20: 1 to give mg-Al-Ni composite hydrogen storage material.

本发明的镁基复合储氢材料由于Al以金属间化合物MgnA^相存在,在复合材料中单质金属Mg具有良好的塑性,MgnAh2合金具有良好的脆性,在球磨过程中不断的颗粒焊接、重熔过程会导致Mg17Al12合金颗粒镶嵌在Mg颗粒表面,当这些颗粒被氢化成氢化物时,MgnAlu合金颗粒将会被Mg氢化物层包围, 从而起到氢原子扩散的快速通道作用,促进氢化反应的进行。 Magnesium-based composite hydrogen storage material of the present invention since Al intermetallic compound MgnA ^ phases present in the composite elemental Mg metal with good ductility, MgnAh2 alloy has good brittleness, continuous welding in the particles during milling, remelting procedure causes Mg17Al12 alloy particles embedded in the surface of the Mg particles, when the particles are hydrogenated to hydrides, MgnAlu Mg alloy particles will be surrounded by a hydride layer, and thus play a role in the rapid diffusion of hydrogen atoms in the passage, to promote the hydrogenation reaction is carried out . 同时球磨后的MgnAlu合金具有一定的可逆吸放氢性能,具有吸放氢活性,也利于促进镁基复合材料吸放氢反应的进行。 Meanwhile MgnAlu alloy after milling with a certain reversible hydrogen absorption properties, has an active hydrogen absorption, but also help facilitate magnesium-based composite material of the discharge reaction.

在本发明的镁基复合储氢材料中Ni单质的加入对于氢的吸附和脱附具有良好的催化作用。 Ni in the magnesium-based composite hydrogen storage material of the present invention is a simple substance is added to hydrogen adsorption and desorption has good catalytic. 另外,晶粒细化以及球磨过程中引入的大量晶界和晶格缺陷的存在,也促进了合金储氢性能的提高。 Further, refinement and grain boundaries and a large number of lattice defects introduced during milling of grains, but also promotes improved hydrogen storage properties of the alloy. 本发明镁基复合材料具有吸放氢温度低、 可逆吸放氢量高和良好的吸放氢动力学性能及活化性能,可用于制造氢源,便于氢气的提纯和储运,也可用于燃料电池用储氢材料。 Magnesium-based composite material of the present invention has a hydrogen absorption and desorption temperature is low, the reversible absorption and release amount of hydrogen and a high hydrogen absorption and desorption kinetics good activation properties and performance, can be used for producing a hydrogen source, to facilitate purification and storage of hydrogen, the fuel can also be used battery hydrogen storage materials.

与现有技术相比,本发明具有以下优点:(1) Al本身为轻质金属,与Mg 合金化后的MgnAl^本身可以可逆吸放氢,具有一定的储氢量;(2) Mg和Al 都具有良好的塑性,难以实现晶粒细化,本发明中先将Mg与Al通过感应熔炼合金化,生成脆性金属间化合物MgnAb,剩余Mg粉通过氢化生成MgH2以提高其脆性,使得球磨细化效率大大提高;(3) Ni的加入对Mg的吸放氢反应起到了良好的催化作用;(4)与金属Mg粉相比,该复合材料在120'C下可以吸氢, 并且在26(TC便可以吸放氢,且吸放氢动力学性能良好,活化容易。 附图说明 Compared with the prior art, the present invention has the following advantages: (1) Al itself after a lightweight metal, alloyed with Mg MgnAl ^ itself can reversibly absorb and desorb hydrogen having a hydrogen storage capacity of a certain; (2) Mg, and Al has good plasticity, it is difficult to achieve grain refinement, the present invention firstly by induction melting of Mg to Al alloy, a brittle intermetallic compound between MgnAb, remaining Mg powder MgH2 generated by hydrogenation to increase its brittleness, so that the ball milled greatly improved efficiency; (3) discharge Ni added hydrogen absorption reaction of Mg plays a good catalyst; (4) compared with the Mg metal powder, the composite material may be absorbing at 120'C, and 26 (TC can hydrogen absorption and hydrogen absorption and desorption kinetics good performance, easy activation. BRIEF DESCRIPTION

图1是纳米晶MgnAl^合金的吸氢曲线(初始氢压4.0MPa)。 FIG. 1 is a graph absorbing nanocrystalline alloy MgnAl ^ (initial hydrogen pressure 4.0MPa).

图2是纳米晶MgnAb.合金在280°C、 O.lMPa氢压下的放氢曲线。 FIG 2 is a nanocrystalline MgnAb. Alloy 280 ° C, O.lMPa hydrogen pressure of the hydrogen desorption curve.

具体实施方式 Detailed ways

实施例1: Example 1:

将块状金属Mg、 Al按照原子比17: 12配比,在真空条件下通过中频感应熔炼制备MgnAlu合金,经机械粉碎至300目。 The bulk metal Mg, Al in terms of atomic ratio of 17: 12 ratio, under vacuum induction melting preparation MgnAlu through an intermediate alloy by mechanical grinding to 300 mesh. 在氩气保护气氛下球磨80小时获得纳米晶MgnAlu合金粉。 Milling MgnAlu 80 hours to obtain nanocrystalline alloy powder under an argon atmosphere. 在20(TC、 4.0MPa氢压下该合金不经过任何活化处理便可吸氢,且吸氢速度随温度的升高而提高。纳米晶Mg17Al12合金的吸氢曲线如图l所示,纳米晶MgnAl。合金的放氢曲线如图2所示。由图可见,球磨后的纳米晶Mg17Al12合金具有一定的可逆吸放氢性能,具有吸放氢活性,有利于促进镁基复合材料吸放氢反应的进行。 实施例2: In 20 (TC, 4.0MPa hydrogen pressure of the alloy without any activation treatment can be absorbing, and hydrogen absorption rate is increased with increasing temperature. Mg17Al12 hydrogen absorbing nanocrystalline alloy curve shown in Figure L, nanocrystalline MgnAl. alloy hydrogen desorption curve shown in Figure 2. the figure shows, the milling Mg17Al12 nanocrystalline alloy having a certain reversible hydrogen absorption and desorption properties, having an active hydrogen absorption and desorption, and promoting the magnesium-based composite material discharge reaction Example 2 is:

将块状金属Mg、 Al在真空条件下中频感应烙炼法制备MgnAl。 The bulk metal Mg, Al under vacuum intermediate frequency induction branded Preparation MgnAl refining. 合金,经机械粉碎至300目。 Alloy, mechanically crushed to 300 mesh. Mg粉(200目)在34(TC氢气气氛下(氢压4.0MPa)氢化制得MgH2。将Mg口Ali2、 MgH2、 Ni (300目)按照重量百分比含量3.54%A1、 5.0 %Ni,余Mg混合。在氩气气氛下球磨80小时,获得Mg-Al-Ni复合储氢材料。 该储氢材料在120。C下便可发生吸氢反应,160°C、 30分钟内吸氢量可达到5.6wt.%, 180°C、吸氢量达到6.0%以上。260°C、 1个大气压条件下80分钟放氢量达到5.0wt.0/。。 实施例3: Mg powder (200 mesh) 34 (TC under hydrogen atmosphere (hydrogen pressure 4.0MPa) hydrogenating prepared MgH2. Mouth of Mg Ali2, MgH2, Ni (300 mesh) as a percentage by weight content of 3.54% A1, 5.0% Ni, remainder Mg mixing in a ball mill under an argon atmosphere for 80 hours to obtain Mg-Al-Ni composite hydrogen storage material of the hydrogen storage materials in hydrogen absorbing reaction can occur at 120.C, 160 ° C, within 30 minutes the amount of hydrogen absorption can be achieved . 5.6wt%, 180 ° C, hydrogen storage capacity of more than 6.0% .260 ° C, 1 atm of hydrogen under the conditions of 80 minutes the amount of discharge reaches 5.0wt.0 / .. Example 3:

将块状金属Mg、 Al在真空条件下中频感应熔炼法制备MgnAli2合金,经机械粉碎至300目。 The bulk metal Mg, Al under vacuum induction melting intermediate prepared MgnAli2 alloy, mechanically pulverized to 300 mesh. Mg粉(200目)在340。 Mg powder (200 mesh) at 340. C氢气气氛下(氢压4.0MPa)氢化制得MgH2。 C under hydrogen atmosphere (hydrogen pressure 4.0MPa) hydrogenating prepared MgH2. 将MgnAln、 MgH2、 Ni (300目)按照重量百分比含量9.5%A1、 1.0 %Ni,余Mg混合。 The MgnAln, MgH2, Ni (300 mesh) as a percentage by weight content of 9.5% A1, 1.0% Ni, remainder Mg mixed. 在氩气气氛下球磨80小时,获得Mg-Al-Ni复合储氢材料。 Ball mill for 80 hours under an argon atmosphere to obtain a Mg-Al-Ni composite hydrogen storage material. 该储氢材料在12(TC下便可发生吸氢反应,160°C、 30分钟内吸氢量可达到5.05wt.%, 180°C、吸氢量达到5.82%。 260°C、 1个大气压条件下80分钟放氢量达到4.85 wt.%。 The hydrogen storage material hydrogen absorbing reaction can occur in the (lower TC 12, 160 ° C, within 30 minutes the amount of hydrogen absorption can reach 5.05wt.%, 180 ° C, hydrogen absorption reached 5.82%. 260 ° C, 1 th 80 minutes under atmospheric pressure of hydrogen reaches the discharge amount of 4.85 wt.%.

实施例4: Example 4:

将块状金属Mg、 Al在真空条件下中频感应熔炼法制备MgnAlu合金,经机械粉碎至300目。 The bulk metal Mg, Al under vacuum induction melting intermediate prepared MgnAlu alloy, mechanically pulverized to 300 mesh. Mg粉(200目)在34(TC氢气气氛下(氢压4.0MPa)氢化制得MgH2。将MgnAlK、 MgH2、 Ni (300目)按照重量百分比含量1.5%A1、 4.0 %Ni,余Mg混合。在氩气气氛下球磨80小时,获得Mg-Al-Ni复合储氢材料。 该储氢材料在12(TC下便可发生吸氢反应,160°C、 30分钟内吸氢量可达到5.75wt.%, 180°C、吸氢量达到6.0%以上。260°C、 1个大气压条件下80分钟放氢量达到5.1wt.%。 Mg powder (200 mesh) 34 (TC under hydrogen atmosphere (hydrogen pressure 4.0MPa) hydrogenating prepared MgH2. The MgnAlK, MgH2, Ni (300 mesh), 4.0% Ni, as a percentage by weight of the mixed remainder Mg content 1.5% A1. under an argon atmosphere a ball mill for 80 hours to obtain Mg-Al-Ni composite hydrogen storage material of the hydrogen storage material hydrogen absorbing reaction can occur in the (lower TC 12, 160 ° C, within 30 minutes the amount of hydrogen absorption can reach 5.75wt .%, 180 ° C, hydrogen storage capacity of more than 6.0% .260 ° C, 80 minutes to put the amount of hydrogen in an atmospheric pressure reaches 5.1wt.%.

Claims (3)

1、一种镁基复合储氢材料,其特征是按重量百分比含有1.0~10.0%Al,1.0~5.0%Ni,余量为Mg。 1 A magnesium-based composite hydrogen storage material, wherein the percentage by weight containing 1.0 ~ 10.0% Al, 1.0 ~ 5.0% Ni, the balance being Mg.
2、 根据权利要求1所述的镁基复合储氢材料,其特征是所说的Al以纳米晶MgnAlu相存在,晶粒尺寸40〜80 nm。 2, the magnesium-based composite hydrogen storage material according to claim 1, wherein said Al MgnAlu nanocrystalline phase is present, the grain size of 40~80 nm.
3、 根据权利要求1所述的镁基复合储氢材料的制备方法,其步骤如下:(1) 将块状金属Mg和Al通过中频感应熔炼制备MgnAl,2合金,粉碎至300目;(2) 在34(TC氢气气氛4.0MPa下将Mg粉氢化制得MgH2;(3) 将粉末状Mg17Al12、 MgH2、 Ni按照重量百分比1.0〜10.0 % Al, 1.0〜5.0%Ni,余Mg混合,在氩气气氛下球磨60〜100小时,球料比为20: 1, 得Mg-Al-Ni复合储氢材料。 3. The method of preparing magnesium-based composite hydrogen storage material of claim 1 claim, comprises the following steps: (1) the Mg and Al bulk metal through an intermediate frequency induction melting preparation MgnAl, 2 alloy, pulverized to 300 mesh; (2 ) in 34 (4.0MPa under hydrogen atmosphere TC Mg powder prepared hydride MgH2; (3) powdered Mg17Al12, MgH2, Ni percentage by weight 1.0~10.0% Al, 1.0~5.0% Ni, Mg I mixed in an argon 60~100 hours under atmosphere milling, ball to powder ratio of 20: 1 to obtain Mg-Al-Ni composite hydrogen storage material.
CN 200810164115 2008-12-25 2008-12-25 Magnesium base composite hydrogen storage material and preparation method CN101457321B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810164115 CN101457321B (en) 2008-12-25 2008-12-25 Magnesium base composite hydrogen storage material and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810164115 CN101457321B (en) 2008-12-25 2008-12-25 Magnesium base composite hydrogen storage material and preparation method

Publications (2)

Publication Number Publication Date
CN101457321A true CN101457321A (en) 2009-06-17
CN101457321B CN101457321B (en) 2010-06-16

Family

ID=40768439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810164115 CN101457321B (en) 2008-12-25 2008-12-25 Magnesium base composite hydrogen storage material and preparation method

Country Status (1)

Country Link
CN (1) CN101457321B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101967590A (en) * 2010-10-26 2011-02-09 华南理工大学 Magnesium indium solid solution and preparation method thereof
US20130029886A1 (en) * 2011-07-29 2013-01-31 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
CN103663369A (en) * 2012-09-12 2014-03-26 财团法人工业技术研究院 Hydrogen storage composite materials and methods of forming the same
US20150093589A1 (en) * 2011-07-29 2015-04-02 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
CN105063445A (en) * 2015-08-12 2015-11-18 厦门理工学院 Magnesium-based ternary solid solution hydrogen-storage alloy and preparation method thereof
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
CN105734323A (en) * 2016-03-02 2016-07-06 浙江大学 Nanometer magnesium base reversible hydrogen storage composite material and preparation method thereof
CN105908035A (en) * 2016-04-26 2016-08-31 哈尔滨工程大学 High-temperature-resistant high-strength magnesium-based composite and preparation method thereof
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
CN107760947A (en) * 2017-09-18 2018-03-06 西北工业大学 Mg-Al-Ni series hydrogen storage particle and catalytic modification preparation method thereof
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
CN108103337A (en) * 2017-11-21 2018-06-01 上海交通大学 Preparation method for magnesium-based hydrogen storage material
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
CN101967590B (en) 2010-10-26 2012-05-23 华南理工大学 Magnesium indium solid solution and preparation method thereof
CN101967590A (en) * 2010-10-26 2011-02-09 华南理工大学 Magnesium indium solid solution and preparation method thereof
US9631138B2 (en) 2011-04-28 2017-04-25 Baker Hughes Incorporated Functionally gradient composite article
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9926763B2 (en) 2011-06-17 2018-03-27 Baker Hughes, A Ge Company, Llc Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US10092953B2 (en) 2011-07-29 2018-10-09 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US20130029886A1 (en) * 2011-07-29 2013-01-31 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US20150093589A1 (en) * 2011-07-29 2015-04-02 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) * 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9802250B2 (en) 2011-08-30 2017-10-31 Baker Hughes Magnesium alloy powder metal compact
US9925589B2 (en) 2011-08-30 2018-03-27 Baker Hughes, A Ge Company, Llc Aluminum alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9926766B2 (en) 2012-01-25 2018-03-27 Baker Hughes, A Ge Company, Llc Seat for a tubular treating system
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
CN103663369A (en) * 2012-09-12 2014-03-26 财团法人工业技术研究院 Hydrogen storage composite materials and methods of forming the same
CN103663369B (en) * 2012-09-12 2015-09-09 财团法人工业技术研究院 Hydrogen storage material and a method of forming composite
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
CN105063445A (en) * 2015-08-12 2015-11-18 厦门理工学院 Magnesium-based ternary solid solution hydrogen-storage alloy and preparation method thereof
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN105734323A (en) * 2016-03-02 2016-07-06 浙江大学 Nanometer magnesium base reversible hydrogen storage composite material and preparation method thereof
CN105908035A (en) * 2016-04-26 2016-08-31 哈尔滨工程大学 High-temperature-resistant high-strength magnesium-based composite and preparation method thereof
CN107760947A (en) * 2017-09-18 2018-03-06 西北工业大学 Mg-Al-Ni series hydrogen storage particle and catalytic modification preparation method thereof
CN108103337A (en) * 2017-11-21 2018-06-01 上海交通大学 Preparation method for magnesium-based hydrogen storage material

Also Published As

Publication number Publication date
CN101457321B (en) 2010-06-16

Similar Documents

Publication Publication Date Title
Ouyang et al. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials–a review
EP1237786B1 (en) Hydrogen-based ecosystem
Kleperis et al. Electrochemical behavior of metal hydrides
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
Bououdina et al. Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties
US6193929B1 (en) High storage capacity alloys enabling a hydrogen-based ecosystem
US6672078B2 (en) Hydrogen infrastructure, a combined bulk hydrogen storage/single stage metal hydride hydrogen compressor therefor and alloys for use therein
Jain et al. Hydrogen storage in Mg: a most promising material
Kwon et al. Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti
Xie et al. Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy
EP0874781A1 (en) Nanocrystalline composite for hydrogen storage
Song et al. Hydrogen storage properties of a Mg–Ni–Fe mixture prepared via planetary ball milling in a H2 atmosphere
US6478844B1 (en) Method for making hydrogen storage alloy
DE60033317T2 (en) Modified on magnesium-based alloy for hydrogen storage
Mao et al. Enhanced hydrogen storage performance of LiAlH4–MgH2–TiF3 composite
CN1142304C (en) Mg-base hydrogen-bearing alloy material and preparing method and application thereof
Pan et al. XRD study of the hydrogenation and dehydrogenation process of the two different phase components in a Ti–V-based multiphase hydrogen storage electrode alloy
WO2001053550A1 (en) Composite hydrogen storage material of hydrogen storage alloy/carbon nanotube and producing method thereof
Wang et al. Preparation and electrode properties of new ternary alloys: REMgNi4 (RE= La, Ce, Pr, Nd)
CN1170950C (en) Magnesium-base hydrogen storing alloy material
CN101238231A (en) Hydrogen-storage alloy, hydrogen-storage alloy electrode, secondary cell, and process for producing hydrogen-storage alloy
WO2001053195A9 (en) Catalysis of the hydrogen sorption kinetics of hydrides by using nitrides and carbides
CN101457321B (en) Magnesium base composite hydrogen storage material and preparation method
Guo et al. Materials challenges for hydrogen storage
WO2005017218A2 (en) Hydrogen storage alloys providing for the reversible storage of hydrogen at low temperatures

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model