CN101452714B - 一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法 - Google Patents

一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法 Download PDF

Info

Publication number
CN101452714B
CN101452714B CN200710178784A CN200710178784A CN101452714B CN 101452714 B CN101452714 B CN 101452714B CN 200710178784 A CN200710178784 A CN 200710178784A CN 200710178784 A CN200710178784 A CN 200710178784A CN 101452714 B CN101452714 B CN 101452714B
Authority
CN
China
Prior art keywords
bank
hole
sub
run length
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200710178784A
Other languages
English (en)
Other versions
CN101452714A (zh
Inventor
裴京
唐毅
倪屹
潘龙法
徐海峥
熊剑平
陆达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN200710178784A priority Critical patent/CN101452714B/zh
Publication of CN101452714A publication Critical patent/CN101452714A/zh
Application granted granted Critical
Publication of CN101452714B publication Critical patent/CN101452714B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

本发明是一种在光记录介质实现多阶存储的方法、光记录介质及其制作方法。在用于存储信息的坑/岸上形成奇数段个相接的子坑和子岸,并且使所述坑的第一段和最后一段形成为子坑/岸。通过以下的任意一项或多项组合,使同一游程长度获得多种读出信号,从而实现多阶存储:改变对坑/岸分解所得子岸/子坑的长度;改变对坑/岸分解所得子岸/子坑的位置;改变对坑/岸分解所得坑岸组合段的数目。本发明还包括采用此方法的光记录介质及其制作方法。本发明在不改变原来光盘存储写入和读出装置的条件下,在光记录介质实现多阶存储,显著提高只读光盘存储容量和数据传输率,与目前的光盘系统保持了最大的兼容性。

Description

一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法
技术领域
本发明涉及数字存储技术,更具体而言,涉及采用光记录介质的数字存储技术。 
背景技术
现有的数字光盘产品都是将信息转换成二进制数据,并将二进制数据以某种调制方式与存储介质记录符的两种不同物理状态相对应,实现数据存储,这类存储方式称为二值存储。目前的只读光盘存储技术所采用的都是二值存储方式,根据反射光光强的高低来判断当前所对应的位置是“坑”(Pit)或者“岸”(Land),每个记录单元上可以记录两个状态数,也就是正好对应1位(bit)的信息。 
常规的二值存储光盘都采用游程长度受限的编码方案,即RLL(RunLength Limited,游程长度受限)编码。RLL是指光盘所存储的通道序列满足以下条件:在该序列的两个‘1’之间最少有d个‘0’,最多有k个‘0’。d和k这两个参数分别规定了可能出现在序列中的最小和最大的游程。参数d控制着最高传输频率,因此可能影响序列通过带限信道传输时的码间串扰。在二进制数据传输中,通常希望接收到的信号是能够自同步的。同步通常利用一个锁相环来再现。锁相环依照接收到的波形的跳变来调整检测时刻的相位。最大游程参数k确保适当的跳变频率以满足读取时钟同步的需要。 
多阶存储技术是相对二值存储提出的。如果将数据流调制成M进制数据(M>2),并将调制后的M进制数据与记录介质的M种不同物理状态以及读出信号相对应,即可实现M阶存储。M阶存储在一个信息记录斑的位置上可以存储log2(M)比特数据,因此当M大于2时,每个记录单元上可以记录超过1比特的信息,并且数据传输率同时得到了提高。多阶存储是在不改变激光波长和光学数值孔径的情况下,能显著提高存储 容量和数据传输率的一种新型技术。因此多阶存储系统与目前的光存储系统具有很好的兼容性。 
而目前的多阶存储又可以分为定长度多阶存储和游程长度受限多阶存储。定长多阶存储的信息符长度恒定,靠读出信号的幅值来存储信息。游程长度受限多阶存储信息符长度和读出信号幅值都发生改变,信息符的长度和幅值都能存储信息。相比定长度多阶存储,游程长度受限多阶存储能够实现更大的存储容量。现有公开的多阶游程长度受限存储是通过改变整个坑点的深度和(或)宽度来实现的。 
上述多阶游程受限存储方法,只利用了坑的变化来实现多阶,没有充分利用岸的变化;它的读出信号是不对称和非去直流的,这给后面的信号处理带来很大的困难。本发明提出的多阶游程受限存储方法可以克服上述缺点。 
发明内容
本发明的目的是提出一种实现多阶存储的方法、光记录介质及其制作方法。 
一种在光记录介质上实现多阶游程长度受限存储的方法,包括步骤: 
在用于存储信息的坑的游程长度方向上形成奇数段个相接的子坑和子岸,并且使所述坑的游程长度上的第一段和最后一段形成为子坑; 
在用于存储信息的岸的游程长度方向上形成奇数段个相接的子坑和子岸,并且使所述岸的游程长度上的第一段和最后一段形成为子岸。 
进一步,控制所述子坑和子岸的长度,使所述坑在分解后的读出信号不超过切分电平;控制所述子坑和子岸的长度,使所述岸在分解后的读出信号不低于切分电平。 
进一步,所述在坑的游程长度方向上形成的子岸的长度小于岸的游程长度。 
进一步,所述在岸的游程长度方向上形成的子坑的长度小于坑的游程长度。 
进一步,通过改变对坑/岸分解所得子岸/子坑的长度,使读出信号的升高/降低的幅度不同,实现多阶存储。 
进一步,通过改变对坑/岸分解所得子岸/子坑的位置,使读出信号的升高/降低的位置不同,实现多阶存储。 
进一步,通过改变对坑/岸分解所得子坑/子岸组合段的数目实现多阶存储。 
进一步,通过改变对坑/岸分解所得子岸/子坑的长度,改变对坑/岸分解所得子岸/子坑的位置,改变对坑/岸分解所得子坑/子岸组合段的数目三种方式中的两种或三种方式的组合实现多阶存储。 
进一步,所述光记录介质的游程长度是受限的,在所述光记录介质的通道序列中,两个非“0”数据之间最少有d个“0”,最多有k个“0”,其中,k、d均为整数,k大于等于d,d大于等于0,参数d确定了出现在所述通道序列中的最小游程长度,参数k确定了出现在所述通道序列中的最大游程长度。 
进一步,所述游程长度决定了实现存储的阶数,部分游程长度只实现二值存储。 
一种实现多阶存储的光记录介质,包括: 
沿用于存储信息的坑的游程长度方向相接地形成的奇数段个子坑和子岸; 
沿用于存储信息的岸的游程长度方向相接地形成的奇数段个子坑和子岸, 
其中所述坑的游程长度上的第一段和最后一段为子坑,所述岸的游程长度上的第一段和最后一段为子岸。 
进一步,控制所述子坑和子岸的长度,控制所述子坑和子岸的长度,使所述坑在分解后的读出信号不超过切分电平;控制所述子坑和子岸的长度,使所述岸在分解后的读出信号不低于切分电平。 
进一步,同一游程长度的坑/岸被分解为所述奇数段个子坑和子岸,其中子岸/子坑的长度不同,使读出信号的升高/降低的幅度不同,实现多阶存储。 
进一步,同一游程长度的坑/岸被分解为所述奇数段个子坑和子岸,其中子岸/子坑的位置不同,使读出信号的升高/降低的位置不同,实现多阶 存储。 
进一步,同一游程长度的坑/岸被分解为所述奇数段个子坑和子岸,总的段数不同,实现多阶存储。 
进一步,同一游程长度的坑/岸被分解为所述奇数段个子坑和子岸,其中的子岸/子坑的长度、位置以及总的段数三个参数中的任意两个或三个都不同,实现多阶存储。 
一种制造实现多阶存储的光记录介质的方法,包括步骤: 
刻录母盘,形成不同游程长度的坑和岸; 
制作金属的负像副盘; 
使用注塑机压制盘片; 
对压制出的盘片进行溅镀; 
压模模压成光盘; 
其特征在于,所述刻录母盘步骤中,在用于存储信息的坑的游程长度上形成奇数段个相接的子坑和子岸,并且使所述坑的游程长度上的第一段和最后一段形成为子坑;在用于存储信息的岸的游程长度上形成奇数段个相接的子坑和子岸,并且使所述岸的游程长度上的第一段和最后一段形成为子岸,以实现多阶存储。 
进一步,控制所述子坑和子岸的长度,使所述坑在分解后的读出信号不超过切分电平;控制所述子坑和子岸的长度,使所述岸在分解后的读出信号不低于切分电平。 
进一步,通过改变对坑/岸分解所得子岸/子坑的长度,使读出信号的升高/降低的幅度不同,实现多阶存储。 
进一步,通过改变对坑/岸分解所得子岸/子坑的位置,使读出信号的升高/降低的位置不同,实现多阶存储。 
进一步,通过改变对坑/岸分解所得子坑/子岸组合段的数目实现多阶存储。 
进一步,在所述刻录母盘步骤中,对原有的坑或岸对应脉冲的边缘进行调整,以使原有的坑和岸在被分成奇数段个相接的子坑和子岸后,读出信号的游程长度仍然接近原有的游程长度,以减小游程长度的误差。 
进一步,所述坑和岸的形成以及将坑和岸分解成子坑和子岸相接的多段组合形式,是通过控制刻录母盘时扫描激光的开闭时间实现的;激光开指将激光置于一个较大功率,对应的记录材料的扫描区域留下坑;激光闭指的是将激光置于一个小功率或零功率,对应的记录材料的扫描区域不会留下坑,形成岸。 
进一步,所述坑沿宽度方向的纵截面为等高的多阶梯形,所述母盘盘片采用光刻胶材料。 
进一步,所述坑沿宽度方向的纵截面为等高的多阶梯形,所述母盘盘片采用改性光刻胶材料。 
进一步,所述改性光刻胶是将生产母盘用的普通光刻胶经过物理改性或化学改性后得到的;其中,所述物理改性通过选自包括热处理、光处理、电处理、和磁处理的组的至少一种处理方式进行,所述化学改性通过增加选自包括引发剂、增感剂、和树脂的组的至少一种添加剂进行。 
进一步,所述母盘盘片采用树脂材料。 
进一步,所述激光的开闭,在使用半导体激光时,是通过控制激光器的电流来直接改变激光器输出功率来实现的。 
进一步,所述激光的开闭,在使用气体激光器时,气体激光器本身的功率不变,是通过控制声光调制器或电光调制器来改变照射到记录材料上的功率来实现的。 
本发明在不改变原来光盘存储写入和读出装置的条件下,在光记录介质实现多阶存储,显著提高只读光盘存储容量和数据传输率,与目前的光盘系统保持了最大的兼容性。 
附图说明
图1(a)为传统的坑的示意图,图1(b)为传统的坑被分解成三段后的示意图; 
图2(a)为传统的岸的示意图,图2(b)为传统的岸被分解成三段后的示意图; 
图3(a)和图3(b)是改变“短岸”长度的示意图; 
图4(a)和图4(b)是改变“短坑”长度的示意图; 
图5(a)和图5(b)是改变“短岸”位置的示意图; 
图6(a)和图6(b)是改变“短坑”位置的示意图; 
图7(a)和图7(b)是改变分解段数的示意图; 
图8(a)和图8(b)是改变分解段数的示意图; 
图9是6T游程不同阶次的实际读出信号; 
图10是7T游程不同阶次的实际读出信号; 
图11是8T游程不同阶次的实际读出信号; 
图12是9T游程的不同阶次的实际读出信号; 
图13是10T游程的不同阶次的实际读出信号; 
图14是11T游程的不同阶次的实际读出信号。 
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。 
在传统二值游程长度受限的光盘存储的刻写过程中,一束会聚的激光扫描过记录材料的表面,通过调制激光的功率来记录信息。激光的功率至少被调制成两种功率,一种能使记录材料上留下信息符,另一种不能使记录材料上留下信息符。被留下信息符的地方被称之为坑,不能被留下信息符的地方被称之为岸。在读出过程中,同样是一束会聚的激光沿记录时的扫描方向扫描过光盘记录层,反射回的光强将被光电探测器检测。有坑的地方会使反射的光强降低,也就是使光电探测器输出的读出信号幅值降低。对检测读出信号的进行切分,可以得到坑和岸的长度,从而获得记录的信息。 
传统二值游程长度受限光盘只通过坑和岸的长度来存储信息,对同一游程长度它只有一种坑和一种岸。在本发明中,在用于存储信息的坑上形成奇数段个相接的子坑和子岸,并且使所述坑的游程长度上的第一段和最后一段形成为子坑;在用于存储信息的岸上形成奇数段个相接的 子坑和子岸,并且使所述岸的游程长度上的第一段和最后一段形成为子岸。 
这里的子坑和子岸是相对于分解前的坑和岸而言。在做信号检测时,分解所得的子坑和子岸将作为一个整体进行游程长度的识别,而不对每个子坑和子岸的游程长度进行识别,子坑子岸的长度也不一定要为数据时钟的整数倍。分解所得的子坑和子岸的组合将造成读出信号波形上的变化,这种波形上的变化是阶次识别的依据,即子坑和子岸的组合形式决定了记录符的阶次。 
分解后的坑的读出信号会在局部有升高,控制分解所得每段的长度,可以使其升高后的读出信号仍然不超过切分电平,亦即分解后的坑的游程长度不变;分解后岸的读出信号会在局部有降低,控制分解所得每段的长度,可以使其降低后的读出信号仍然不低于切分电平,亦即分解后的岸的游程长度不变。 
执行下面中的任意一项或多项,可以让同一游程长度获得多种读出信号,从而实现多阶存储:(1)改变对坑(岸)分解所得岸(坑)的长度,使读出信号的升高(降低)的幅度不一样;(2)改变对坑(岸)分解所得岸(坑)的位置,使读出信号的升高(降低)的位置不一样;(3)改变对坑(岸)分解所得坑岸组合段的数目。在读出过程中,同时检测读出信号的游程长度和幅值形式,就可以恢复出写入游程长度和阶次信息。 
把原来的坑分解成坑岸相接的奇数段,其中的岸的长度至少要小于传统游程长度受限光盘的最短岸的长度(下面的描述中称这种岸为“短岸”)。在刻写过程中,由于刻写光斑本身是有一定的大小的,在“短岸”本身长度过小时,“短岸”将会受到刻写相邻坑时的光斑的干扰。表现在几何形貌上,“短岸”本身也会具有一定深度,但深度会小于传统的长岸。这就使“短岸”对光的反射能力会小于传统的长岸。同时,读出光斑也是有一定大小的,在读出“短岸”时,也将有很大一部分光强落在相邻的坑上,亦即,读出“短岸”时的码间干扰会很大。所以,“短岸”引起的读出信号幅值的升高是有限的。控制“短岸”的长度,可以让上升后的读出信号不超过切分电平。亦即,在被分成坑岸相接的奇数段后原来坑的游程长度可以保持不变。图1(a)为传统的坑的示意图,图1(b)为传统 的坑被分解成三段后的示意图。图中可以看出分解后的坑保持了原有的游程长度,也可以看出分解后的坑在读出信号中有一个局部的升高。 
把原来的岸分解成坑岸相接的奇数段,其中的坑的长度至少要小于传统游程长度受限光盘的最短坑的长度(下面的描述中称这种坑为“短坑”)。在刻写过程中,由于坑的深度和宽度取决于记录材料的曝光度,也就是激光光强对照射时间的积分,而“短坑”区域的照射时间短,所以得到的“短坑的”深度和宽度会小于传统的长坑。这就使“短坑”引起的反射光降低的能力会小于传统长坑。同时,读出光斑也是有一定的大小的,在读出“短坑”时,也将有很大一部分光强落在相邻的岸上,亦即,读出“短岸”时的码间干扰会很大。所以,“短坑”引起的读出信号幅值的降低是有限的。控制“短坑”的长度,可以让上升后的读出信号不超过切分电平。亦即,在被分成坑岸相接的奇数段后原来岸的游程长度可以保持不变。图2(a)为传统的岸的示意图,图2(b)为传统的岸被分解成三段后的示意图。图中可以看出分解后的岸保持了原有的游程长度,也可以看出分解后的坑在读出信号中有一个局部的降低。 
传统的坑被分解成坑岸相接的多段中,改变其中的“短岸”的长度,可以改变“短岸”引起的读出信号幅值增大量和幅值增大区域的长度。“短岸”越长,幅值增大量越大,幅值增大的区域也越长。所以对同一游程长度的坑而言,通过改变分解所得的“短岸”的长度,可以获得多种读出信号,即实现多种阶次。图3(a)和图3(b)是改变“短岸”长度的示意图。图3(b)的“短岸”长度大于图3(a)的“短岸”长度,在读出信号中,图3(b)中“短岸”引起的读出信号幅值的升高量大于图3(a),幅值增大区域的长度也长于图3(a)。 
传统的岸被分解成坑岸相接的多段中,改变其中的“短坑”的长度,可以改变“短坑”引起的读出信号幅值减小量和幅值减小区域的长度。“短坑”越长,幅值减小量越大,幅值减小的区域也越长。所以对同一游程长度的岸而言,通过改变分解所得的“短坑”的长度,可以获得多种读出信号,即实现多种阶次。图4(a)和图4(b)是改变“短坑”长度的示意图。图4(b)的“短坑”长度大于图4(a)的“短坑”长度,在读出信号中,图4(b)中“短坑”引起的读出信号幅值的减小量大于图4(a),幅值增大区 域的长度也长于图4(a)。 
传统的坑被分解成坑岸相接的多段中,改变其中的“短岸”的位置,可以改变“短岸”引起的读出信号幅值增大处的位置。“短岸”的位置和它引起的读出信号幅值升高区域的位置是相对应的,即,“短岸”的位置越靠近原来坑的前沿,读出信号幅值升高区域也将越靠近前沿,反之亦然。所以,对同一游程长度的坑而言,通过改变分解所得的“短岸”的位置,可以获得多种读出信号,即实现多种阶次。图5(a)和图5(b)是改变“短岸”位置的示意图。图5(a)中的“短岸”较之图5(b)中更靠近原来坑的前沿,在读出信号中,图5(a)中“短岸”引起的局部幅值升高处的位置也更靠近原来坑的前沿。 
传统的岸被分解成坑岸相接的多段中,改变其中的“短坑”的位置,可以改变“短坑”引起的读出信号幅值减小处的位置。“短坑”的位置和它引起的读出信号幅值减小区域的位置是相对应的,即,“短坑”的位置越靠近原来岸的前沿,读出信号幅值减小区域也将越靠近前沿,反之亦然。所以,对同一游程长度的岸而言,通过改变分解所得的“短坑”的位置,可以获得多种读出信号,即实现多种阶次。图6(a)和图6(b)是改变“短坑”位置的示意图。图6(a)中的“短坑”较之图6(b)中更靠近原来岸的前沿,在读出信号中,图6(a)中“短坑”引起的局部幅值减小处的位置也更靠近原来坑的前沿。 
传统的坑被分解成坑岸相接的奇数段,改变段的数目,就可以改变其中包含的“短岸”的数目,也就改变了读出信号中幅值升高区域的数量,使同一游程长度获得多种读出信号,也就是实现了多种阶次。图7(a)和图7(b)是改变分解段数的示意图。图7(a)中传统的坑被分解为3段,图7(b)中传统的坑被分解5段,图7(a)中的读出信号中有1个由“短岸”引起的局部幅值升高区域,图7(b)中有2个。 
传统的岸被分解成坑岸相接的奇数段,改变段的数目,就可以改变其中包含的“短坑”的数目,也就改变了读出信号中幅值降低区域的数量,使同一游程长度获得多种读出信号,也就是实现了多种阶次。图8(a)和图8(b)是改变分解段数的示意图。图8(a)中传统的岸被分解为3段,图8(b)中传统的岸被分解5段,图8(a)中的读出信号中有1个由“短坑”引起的 局部幅值降低区域,图8(b)中有2个。 
上面具体说明了在实现本发明的多阶存储可改变的每一项是如何影响读出信号的。在实际运用中,可以同时改变其中的两项或三项,亦可得到不同的读出信号。其中的各种组合所产生的对读出信号的影响可综合考虑单独改变每一项的结果得出,这里不再一一列举。 
本发明中涉及的多阶游程长度受限只读光盘,可以让不同的游程长度具有不同的阶次。对于游程较小的坑或岸,由于本身的长度有限,其分解成多段的形式就有限,可以只实现较少的阶次,对游程较大的坑或岸则可以实现较多的阶次。甚至对于某些游程的坑或岸不做分解,让其保持只有两个阶次。 
对于同一个游程长度和不同游程长度的坑和岸,其分解成多段的形式可以不一样。具体怎么分解,要根据后面的信号检测方法来选择。 
本发明中,坑/岸的形成以及将坑/岸分解成坑岸相接的多段组合形式,都是通过控制写入时扫描激光的开闭时间实现的。激光开指将激光置于一个较大功率,对应的记录材料的扫描区域留下坑;激光闭指的是将激光置于一个小功率或零功率,对应的记录材料的扫描区域不会留下坑,形成岸。 
本发明中的多阶存储方法在读出过程中,要同时检测读出信号的游程和阶次,最后根据得到的游程和阶次恢复出写入的信息。 
以下介绍一个更为具体的采用本发明的实施例,以帮助理解本发明的内容和精神。需要说明的是,下面的具体实施例是使用本发明内容的一个具体案例,本实施例并没有涵盖本发明的所有内容。本发明并不止于本实施例中内容。所有用到本发明内容和精神的具体实施例,都包含在本发明专利保护范围内。下面是本实施例的具体内容: 
在光盘的制作过程中,通常先制作母盘,制作母盘的步骤包括:在玻璃基片上涂上一层母盘光刻胶(在本发明中,采用英国Rohm & Haas的型号为Microposit S1800-4的光刻胶),使用母盘刻录系统(在本发明中,英格兰NIMBUS的∏mastering System)对母盘进行刻录,采用日本Nichia的型号为NLHV 500C的激光器)使光刻胶曝光,进行显影,制作出母盘。 
然后,以此母盘为模具,使用玻璃盘溅镀机(在本发明中,采用瑞士UNAXIS的型号为Pyramet的溅镀机)对玻璃基片进行溅镀(喷镀工艺),镀上一层较薄的金属层,然后镀上相对较厚的金属层,获得金属的负像副盘,即可用作注塑复制的压模(Stamper)。在本发明中,采用了日本Panasonic公司出品的DVD光盘生产线。使用注塑机(在本发明中,采用日本Panasonic公司的DL0004型和DR0004型立式注塑机)压制盘片,然后使用瑞士UNAXIS的SWIVEL型或CUBLITE型溅镀机对压制出的盘片进行溅镀,最后,使用压模模压生成光盘。完成线采用的是日本Panasonic公司的GRBA-151型系统。在线检测仪采用的是德国BASLER的S3DVD在线检测仪。 
传统只读光盘的母盘刻录是通过控制刻录激光的开闭来实现的。所谓刻录激光器开,指把刻录激光置于某个较大功率,以使记录材料发生反应,经显影后可留下坑;所谓刻录激光闭,指把刻录激光置于某个较小功率或零功率,不能使记录材料发生反应,经显影后不能留下坑,而形成岸。控制刻录激光的开闭有两种方案:方案1)对半导体激光器,可以通过调节激光器的驱动电流来获得不同输出功率;方案2)对气体激光器,可以通过改变声光(或电光)调制器的调制幅度,来获得不同输出功率。 
根据本发明内容,本实施例中的母盘刻录也是通过控制刻录激光的开闭来实现的。只不过把部分游程长度的坑和岸分成了坑岸相接的奇数段,以实现多阶存储。在刻录过程中,仍然是遵循坑对应处开激光,岸对应处闭激光的规则。 
本实施例是在传统二值存储DVD的基础上,将部分游程长度做了分段。本实施例没有改变传统DVD的游程长度和道间距,即使用了3~11T和14T的游程长度。其中T为一个信道时钟,对应长度约为133nm。本实施例对3~5T,14T游程长度的坑和岸没有进行分段,还是保留了原来的二阶存储的形式。对6~11T游程长度的坑和岸都被分解成了坑岸相接的三段,通过调整中间“短坑”或“短岸”的长短和位置,使各个游程实现了大于2的多个阶次。表1是6~11T坑和岸的分段数值表。表中,TxLy表示xT游程岸的第y阶,TxPy表示的是xT游程坑的第y阶;后面的数值,只有一个数的表示没有对坑或者岸进行分解,有三个数的表示 把坑或岸分解成了坑岸相接的三段,三个数表示三段的长度。对于坑被分解来说是坑-岸-坑的三段,对于岸被分解来说是岸-坑-岸的三段。 
 游程长度  分段数值(单位T) 实现阶次
 6T  T6L0=6;    T6L1=[7/3 4/3 7/3];    T6L2=[19/9 16/9 19/9]; T6P0=6;    T6P1=[8/3 2/3 8/3];    T6P2=[22/9 10/9 22/9]; 6
 7T  T7L0=7;    T7L1=[25/9 13/9 25/9]; T7L2=[23/9 17/9 23/9]; T7P0=7;    T7P1=[28/9 7/9 28/9];  T7P2=[26/9 11/9 26/9]; 6
 8T  T8L0=8;    T8L1=[10 13/9 29/9];   T8L2=[28/9 17/9 3];    T8L3=[34/9 5/3 23/9];  T8L4=[23/9 5/3 34/9]; T8P0=8;    T8P1=[32/9 8/9 32/9];  T8P2=[10/9 4/3 10/9];  T8P3=[4 4/3 8/3];      T8P4=[8/3 4/3 4]; 10
 9T  T9L0=9;    T9L1=[34/9 13/9 34/9]; T9L2=[32/9 17/9  32/9];T9L3=[38/9 5/3 28/9]; T9L4=[28/9 5/3 38/9]; T9P0=9;    T9P1=[37/9 8/9 4];     T9P2=[34/9 13/9 34/9];      T9P3=[14/3 4/3 3];     T9P4=[3 4/3 14/3]; 10
 10T  T10L0=10;  T10L1=[13/3  13/9  38/9]; T10L2=[47/9 14/9 29/9];             T10L3=[29/9 14/9 47/9]; T10L4=[37/9  17/9 4];               T10L5=[43/9 17/9 10/3]; T10L6=[10/3 17/9 43/9]; T10P0=10;  T10P1=[41/9 8/9 41/9]; T10P2=[50/9 1 31/9];    T10P3=[31/9 1 50/9];   T10P4=[13/3 13/9 38/9]; T10P5=[5 13/9 32/9];   T10P6=[32/9 13/9 5]; 14
 11T  T11L0=11;  T11L1=[43/9  13/9  43/9]; T11L2=[53/9 14/9 32/9];             T11L3=[32/9 14/9 53/9]; T11L4=[41/9 17/9 41/9];             T11L5=[50/9 17/9 32/9]; T11L6=[32/9 17/9 50/9]; T11P0=11;  T11P1=[46/9 8/9 5];    T11P2=[19/9 1 11/3];      T11P3=[11/3 1 19/3];   T11P4=[43/9 13/9 43/9];      T11P5=[52/9 13/9 34/9];T11P6=[34/9 13/9 52/9]; 14
表1.6T~11T游程分段数值表 
从表1的数值中可以看出,6T、7T仅利用了中间“短坑”(或“短岸”)的长度变化(图3(a)和图3(b)、图4(a)和图4(b)所示原理),实现了6个阶次。8T~11T则综合利用了“短坑”(或“短岸”)的长度和位置变化(图3(a)和图3(b)、图4(a)和图4(b)、图5(a)和图5(b)、图6(a)和图6(b)所示原理),实现了更多的阶次。 
该实施例在盘片制作过程中,使用了跟传统DVD盘片相同的生产设备,只是在激光器的开闭控制上有所不同,按照表1所示参数对部分游程进行了分段,实现了多阶。 
图9是6T游程不同阶次的实际读出信号。6T只利用了“短坑”(或“短岸”)的长度变化。T6L1和T6L2的“短坑”都位于中心。T6L1中的“短坑”短于T6L2中的“短坑”,所以读出信号中T6L1中心位置的幅值比T6L2的要高。6T游程的坑的分阶方式与岸类似。 
在实际读出时,6T游程的阶次是通过判断中点处幅值的大小来识别的。对于岸,中点幅值的从大到小依次为T6L0、T6L1、T6L2;对于坑,中点幅值的从小到大依次为T6P0、T6P1、T6P2。 
图10是7T游程不同阶次的实际读出信号,它与6T游程的阶次划分方式类似。读出时7T游程阶次的识别跟6T类似。 
图11是8T游程不同阶次的实际读出信号。T8L1和T8L2的“短坑”都位于中心,但“短坑”的长度不一样。T8L1的“短坑”短于T8L2中的“短坑”,所以读出信号中T8L1中心位置的幅值比T8L2的要高。而T8L3和T8L4的“短坑”的长度一样,并且与“T8L2”的“短坑”长度相当,但它们的“短坑”分别位于偏左和偏右的位置,所以读出信号幅值降低的地方也相应的偏左和偏右。8T游程的坑的分阶方式与岸类似。 
在实际读出时,8T游程的阶次是通过对偏左、中心和偏右三处的幅值来判断的。例如对于T8L0,这三处的幅值都较高,并且中心处的幅值相对其他阶次明显高很多;T8L1这三处的幅值基本相等,但普遍比T8L0要低;T8L2这三处的幅值呈“稍高”、“低”、“稍高”的对称分布,但幅值要比T8L1还要低;T8L3这三处呈现出“低”、“中低”、“较高”的单调递增规律;T8L4这三处呈现出“低”、“中低”、“较高”的单调递增规律; T8L6这三处呈现出“较高”、“中低”、“低”的单调递减规律。对于坑而言,这三处的幅值特征跟上述类似。通过比较读出信号这三处幅值的相对关系和整体的大小关系就可以判定其阶次。 
图12是9T游程的不同阶次的实际读出信号,它与8T游程的阶次划分方式类似。读出时7T游程阶次的识别跟6T类似。 
图13是10T游程的不同阶次的实际读出信号。T10L1、T10L2和T10L3的“短坑”长度相当,但它们的位置分别在中心、偏左和偏右,所以读出信号的下降处也相应的位于中心、偏左和偏右。T10L4、T10L5和T10L6的“短坑”长度相当,但都大于T10L1、T10L2和T10L3的“短坑”长度,所以它们引起的读出信号的降低量也会更大。而T10L4、T10L5和T10L6的“短坑”的位置分别在中心、偏左和偏右,所以读出信号的下降处也相应的位于中心、偏左和偏右。10T游程的坑的游程划分与岸类似。 
在实际读出中,10T游程的阶次是通过对偏左、中心和偏右三处的幅值来判断的。例如对于T10L0、T10L1、T10L4,这三处的幅值都呈对称分布,但幅值上有明显的区别,从大到小依次为T10L0、T10L1和T10L4;对于T10L2和T10L5,这三处的幅值呈递增变化,但T10L1偏左和中心处的幅值比T10L5要明显小;对于T10L3和T10L6,这三处的幅值呈递减变化,但T10L2偏右和中心处的幅值比T10L6要明显小。对于坑而言,这三处的幅值特征跟上述类似。通过比较读出信号这三处幅值的相对关系和整体的大小关系就可以判定其阶次。 
图14是11T游程的不同阶次的实际读出信号,它与10T游程的阶次划分方式类似。读出时11T游程阶次的识别跟10T类似。 
而在盘片读出时,采用了跟传统DVD相同的光学头和伺服电路。在读读出信号进行检测时,除了检测游程信息,还对同一游程的阶次进行了检测。检测方法就是按照上述特征的对读出信号中的一个点或者多个点的幅值进行比较。 
以上是该发明的一个具体实施例,它并没有涵盖本发明的所有内容,例如它在分段段数上都是分成了3段,而按照本发明的可以分成更多奇数段。本发明也不只于在传统DVD基础上实施,更不止于实施例中的分段数据。所以,需要申明的是,该实施例只是用于帮助理解该发明的内 容和精神,所有发明内容和权利要求中提到的内容都在本发明的保护范围之内。 

Claims (23)

1.一种在光记录介质上实现多阶游程长度受限存储的方法,包括步骤:
在用于存储信息的坑的游程长度方向上形成奇数段个相接的子坑和子岸,并且使所述坑的游程长度上的第一段和最后一段形成为子坑;
在用于存储信息的岸的游程长度方向上形成奇数段个相接的子坑和子岸,并且使所述岸的游程长度上的第一段和最后一段形成为子岸。
2.根据权利要求1所述的方法,其特征在于,控制所述子坑和子岸的长度,使所述坑在分解后的读出信号不超过切分电平;控制所述子坑和子岸的长度,使所述岸在分解后的读出信号不低于切分电平。
3.根据权利要求1所述的方法,其特征在于,所述在坑的游程长度方向上形成的子岸的长度小于岸的游程长度。
4.根据权利要求1所述的方法,其特征在于,所述在岸的游程长度方向上形成的子坑的长度小于坑的游程长度。
5.根据权利要求1所述的方法,其特征在于,通过改变对坑/岸分解所得子岸/子坑的长度,使读出信号的升高/降低的幅度不同,实现多阶存储。
6.根据权利要求1所述的方法,其特征在于,通过改变对坑/岸分解所得子岸/子坑的位置,使读出信号的升高/降低的位置不同,实现多阶存储。
7.根据权利要求1所述的方法,其特征在于,通过改变对坑/岸分解所得子坑/子岸组合段的数目实现多阶存储。
8.根据权利要求1所述的方法,其特征在于,通过改变对坑/岸分解所得子岸/子坑的长度,改变对坑/岸分解所得子岸/子坑的位置,改变对坑/岸分解所得子坑/子岸组合段的数目三种方式中的两种或三种方式的组合实现多阶存储。
9.根据权利要求1所述的方法,其特征在于,所述光记录介质的游程长度是受限的,在所述光记录介质的通道序列中,两个非“0”数据之间最少有d个“0”,最多有k个“0”,其中,k、d均为整数,k大于等于d,d大于等于0,参数d确定了出现在所述通道序列中的最小游程长度,参数k确定了出现在所述通道序列中的最大游程长度。
10.根据权利要求1所述的方法,其特征在于,所述游程长度决定了实现存储的阶数,部分游程长度只实现二值存储。
11.一种制造实现多阶存储的光记录介质的方法,包括步骤:
刻录母盘,形成不同游程长度的坑和岸;
制作金属的负像副盘;
使用注塑机压制盘片;
对压制出的盘片进行溅镀;
压模模压成光盘;
其特征在于,所述刻录母盘步骤中,在用于存储信息的坑的游程长度上形成奇数段个相接的子坑和子岸,并且使所述坑的游程长度上的第一段和最后一段形成为子坑;在用于存储信息的岸的游程长度上形成奇数段个相接的子坑和子岸,并且使所述岸的游程长度上的第一段和最后一段形成为子岸,以实现多阶存储。
12.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,控制所述子坑和子岸的长度,使所述坑在分解后的读出信号不超过切分电平;控制所述子坑和子岸的长度,使所述岸在分解后的读出信号不低于切分电平。
13.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,通过改变对坑/岸分解所得子岸/子坑的长度,使读出信号的升高/降低的幅度不同,实现多阶存储。
14.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,通过改变对坑/岸分解所得子岸/子坑的位置,使读出信号的升高/降低的位置不同,实现多阶存储。
15.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,通过改变对坑/岸分解所得子坑/子岸组合段的数目实现多阶存储。
16.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,在所述刻录母盘步骤中,对所述坑或岸对应脉冲的边缘进行调整,以使所述坑和岸在被分成奇数段个相接的子坑和子岸后,读出信号的游程长度仍然接近原有的游程长度,以减小游程长度的误差。
17.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述坑和岸的形成以及将坑和岸分解成子坑和子岸相接的多段组合形式,是通过控制刻录母盘时扫描激光的开闭时间实现的;激光开指将激光置于一个较大功率,对应的记录材料的扫描区域留下坑;激光闭指的是将激光置于一个小功率或零功率,对应的记录材料的扫描区域不会留下坑,形成岸。
18.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述坑沿宽度方向的纵截面为等高的多阶梯形,所述母盘盘片采用光刻胶材料。
19.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述坑沿宽度方向的纵截面为等高的多阶梯形,所述母盘盘片采用改性光刻胶材料。
20.根据权利要求19所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述改性光刻胶是将生产母盘用的普通光刻胶经过物理改性或化学改性后得到的;其中,所述物理改性通过选自包括热处理、光处理、电处理、和磁处理的组的至少一种处理方式进行,所述化学改性通过增加选自包括引发剂、增感剂、和树脂的组的至少一种添加剂进行。
21.根据权利要求11所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述母盘盘片采用树脂材料。
22.根据权利要求17所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述激光的开闭,在使用半导体激光时,是通过控制激光器的电流来直接改变激光器输出功率来实现的。
23.根据权利要求17所述的制造实现多阶存储的光记录介质的方法,其特征在于,所述激光的开闭,在使用气体激光器时,气体激光器本身的功率不变,是通过控制声光调制器或电光调制器来改变照射到记录材料上的功率来实现的。
CN200710178784A 2007-12-05 2007-12-05 一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法 Expired - Fee Related CN101452714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710178784A CN101452714B (zh) 2007-12-05 2007-12-05 一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710178784A CN101452714B (zh) 2007-12-05 2007-12-05 一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法

Publications (2)

Publication Number Publication Date
CN101452714A CN101452714A (zh) 2009-06-10
CN101452714B true CN101452714B (zh) 2012-09-05

Family

ID=40734910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710178784A Expired - Fee Related CN101452714B (zh) 2007-12-05 2007-12-05 一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法

Country Status (1)

Country Link
CN (1) CN101452714B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761979B (zh) * 2013-12-28 2016-06-22 华中科技大学 一种多维光存储光盘的信号检测方法
CN105096983B (zh) * 2015-07-09 2017-11-28 清华大学 具有数据隐藏和加密功能的可信光盘驱动器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215758B1 (en) * 1996-10-04 2001-04-10 Sony Corporation Recording medium
CN1664940A (zh) * 2005-03-08 2005-09-07 清华大学 多阶只读光盘及其制法
CN1687991A (zh) * 2005-03-25 2005-10-26 清华大学 游程长度受限的多阶可录光盘及其制法
CN1996479A (zh) * 2006-12-29 2007-07-11 清华大学 多阶游长数据转换方法及装置以及蓝光多阶光存储装置
CN1996480A (zh) * 2006-12-29 2007-07-11 清华大学 多阶游长数据转换方法及装置以及蓝光多阶光存储装置
CN101064163A (zh) * 2007-04-13 2007-10-31 清华大学 蓝光多阶光存储装置、编解码方法以及装置
CN200976266Y (zh) * 2006-01-05 2007-11-14 北京保利星数据光盘有限公司 一种多阶只读光盘

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215758B1 (en) * 1996-10-04 2001-04-10 Sony Corporation Recording medium
CN1664940A (zh) * 2005-03-08 2005-09-07 清华大学 多阶只读光盘及其制法
CN1687991A (zh) * 2005-03-25 2005-10-26 清华大学 游程长度受限的多阶可录光盘及其制法
CN200976266Y (zh) * 2006-01-05 2007-11-14 北京保利星数据光盘有限公司 一种多阶只读光盘
CN1996479A (zh) * 2006-12-29 2007-07-11 清华大学 多阶游长数据转换方法及装置以及蓝光多阶光存储装置
CN1996480A (zh) * 2006-12-29 2007-07-11 清华大学 多阶游长数据转换方法及装置以及蓝光多阶光存储装置
CN101064163A (zh) * 2007-04-13 2007-10-31 清华大学 蓝光多阶光存储装置、编解码方法以及装置

Also Published As

Publication number Publication date
CN101452714A (zh) 2009-06-10

Similar Documents

Publication Publication Date Title
EP1361570A2 (en) Information recording method information recording apparatus and optical information recording medium
US8355307B2 (en) Optical recording method, optical recording device, master medium exposure device, optical information recording medium, and reproducing method
CN100412975C (zh) 游程长度受限的多阶可录光盘的信息记录方法
CN101114470B (zh) 光记录介质的光信息记录方法、光记录装置
CN101452714B (zh) 一种实现多阶存储的方法及制作实现多阶存储的光记录介质的方法
CN101615403B (zh) 多层光学记录介质、记录装置、以及记录激光功率调节方法
CN100369140C (zh) 多阶只读光盘及其制法
CN100568364C (zh) 记录载体和用于扫描该记录载体的装置
US7245570B2 (en) Information recording method and information recording apparatus
CN100452204C (zh) 多阶只读光盘的制法
US20060203706A1 (en) Multilevel read-only optical disk and method for producing the same
CN100452208C (zh) 多阶只读光盘的制法
CN101185129B (zh) 记录设备、记录方法、盘制造方法和光盘记录介质
CN100452203C (zh) 多阶只读母盘的制法
CN200976266Y (zh) 一种多阶只读光盘
CN101136215A (zh) 多阶游程受限只读光盘母盘及其刻录方法
CN100452209C (zh) 多阶只读母盘的制法
US8274873B2 (en) Optical recording method, optical recording apparatus, apparatus for manufacturing a master through exposure process, optical information recording medium and reproduction method
US20030147321A1 (en) Recording power adjusting method and optical information record apparatus using the same
CN201111894Y (zh) 双光束多阶存储光盘
US7738338B2 (en) Optical information reproducing method
CN1181154A (zh) 用于改变光可记录介质上的凹坑深度的方法和装置
CN101136214A (zh) 一种双光束多阶存储光盘
JPH06259889A (ja) ディスク及びディスク信号記録方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20141205

EXPY Termination of patent right or utility model