CN101435799A - 基于声发射技术的水轮机故障诊断方法及装置 - Google Patents

基于声发射技术的水轮机故障诊断方法及装置 Download PDF

Info

Publication number
CN101435799A
CN101435799A CNA200810240424XA CN200810240424A CN101435799A CN 101435799 A CN101435799 A CN 101435799A CN A200810240424X A CNA200810240424X A CN A200810240424XA CN 200810240424 A CN200810240424 A CN 200810240424A CN 101435799 A CN101435799 A CN 101435799A
Authority
CN
China
Prior art keywords
acoustic emission
signal
fault
emission signal
hydroturbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810240424XA
Other languages
English (en)
Other versions
CN101435799B (zh
Inventor
卢文秀
褚福磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN200810240424XA priority Critical patent/CN101435799B/zh
Publication of CN101435799A publication Critical patent/CN101435799A/zh
Application granted granted Critical
Publication of CN101435799B publication Critical patent/CN101435799B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

基于声发射技术的水轮机故障诊断方法及装置,本发明将声发射技术应用于水轮机组故障诊断,通过声发射传感器获取水轮机尾水管、水车室导叶上的声发射信号,采用形态滤波技术进行消噪,采用脉冲重复率分析声发射信号的周期性强弱,并结合频谱分析和波形贴近度分析对常见的碰摩、裂纹和空化空蚀状态进行识别,应用小波包技术进行信号的分解与重构,计算声发射声强烈度,进行声强烈度随工况参数如有功、水头、导叶开度的趋势分析,进而全面了解水水轮发电机组的运行状态和性能,并指导水轮机的运行。

Description

基于声发射技术的水轮机故障诊断方法及装置
技术领域
本发明涉及一种应用于水力发电领域的混流式、轴流式、斜流式等水轮发电机组的故障诊断方法及装置,该方法及装置使用声发射技术,能对水轮机的碰摩、裂纹和空化空蚀状态进行识别。
背景技术
影响水轮机组运行状态的各种因素如机械、电气和水力因素具有复杂性和相关性,三种因素往往相互耦合,使得水轮机组的动力学和振动机理比较复杂,多数水电厂虽然已经安装了基于振动的状态监测和故障诊断系统,但是传统的振动诊断有许多局限性,如水轮机过流部件的裂纹、空蚀以及卡门涡等,很难实现对故障点进行直接监测,以常规振动方式(如摆度、振动位移、压力脉动等)进行测量几乎无法捕捉到故障信号。空化空蚀已经成为造成水轮机损伤的主要原因之一,空化空蚀损伤程度成为是否进行大修的关键参数,但是基于振动的诊断方法很难对空化空蚀进行诊断和评价。为了更好的对水轮机组运行状态进行监测和评价,需要一些新的技术和方法。利用声发射信号进行水轮机组的状态监测和故障诊断,正是基于这一需求而发展起来的新技术。
声发射又称应力波发射,声发射检测技术是无损检测中的一种新方法,它是通过检测材料在受到外力作用下变形或内部结构破坏而产生的高频应力波信号的诊断方法。典型的声发射信号的频率范围为20KHz~1MHz,金属材料的声发射信号范围在20KHz~300KHz。声发射信号检测提取的是高频信号,能够有效的避开低频信号的干扰,因此对故障特征的提取和分析非常有效。声发射检测方法现已在石油化工工业、电力工业、材料试验、民用工程、航空航天工业、金属加工、交通运输业等领域展开了广泛的应用,特别是在压力容器、油罐等大型构件的在役检测,声发射技术已经成为唯一可行的检测手段。
目前水轮机组常规振动测试的主要内容有:大轴位移、振动、水压脉动、加速度以及应力应变等,基本上没有涉及到对声发射信号的细致深入的研究;已有的水轮机组故障的声发射分析仅停留在定性、模糊的描述,如文献“水轮机转轮安全评估基础方法研究,华电技术,Vol.30,No.4,2008,pp35-38”提出用声发射技术在线监测水轮机叶片裂纹的产生和扩展过程,但只是提出了一些框架,没有具体的定量分析和实现方法;另外,现行的“水力机组现场测试规范及手册”中的声发射研究仅处于初步测试阶段,利用声发射技术进行故障分析还处于试验研究阶段。
迄今为止,在国内外使用声发射技术对水轮机进行故障诊断的应用中,我们尚未发现能定性和定量诊断碰摩、裂纹和空化空蚀故障的方法和装置。
发明内容
本发明的目的是提供一种可用于水轮发电机组的故障诊断方法及装置,可以对碰摩、裂纹故障的发生提供预警信号,对空化空蚀的严重程度进行评价,并掌握空化空蚀的扩展规律,指导运行人员进行水轮机的维护和维修。
本发明的目的是通过如下技术方案实现的:
1)在水轮机尾水管壁上、水车室导叶拐臂上分别布置声发射传感器;
2)通过计算机采集原始的声发射信号;
3)对原始的声发射信号进行消噪处理,将背景白噪声与有规律性的声发射信号进行分离,去除干扰信号;
4)对同一稳定工况下的声发射信号的时域波形进行分析,通过下式计算脉冲重复率:
P ( i ) = Σ 1 M E j ( i ) M
如果P(i)>0.7,声发射信号属于周期性强的碰摩和裂纹信号;否则就是随机性强的空化空蚀声发射信号;
5)对于周期性强的碰摩和裂纹声发射信号,进行FFT(快速傅立叶)变换,把声发射信号频率段20KHz-200KHz平均分段,计算各个频率段的频谱值,频谱值再进行归一化处理然后与典型碰摩故障的归一化频谱值做互相关分析,获得最大的碰摩互相关系数ρr,与典型裂纹故障的归一化频谱值做互相关分析,获得最大的裂纹互相关系数ρc;如果ρr>0.7,为碰摩故障;ρc>0.7,为裂纹故障;
6)对声发射信号,进行5层小波包分解,即把频域0~500KHz分成6段,重构31.25K~62.5K段信号作碰摩声发射声强烈度计算,重构125K~250K段信号进行裂纹和空化空蚀声发射声强烈度计算;声强烈度计算公式为:
E = Σ 1 N f ( n ) * 1 = Σ 1 N f ( n )
7)作重构声发射信号的声强烈度E随工况参数包括有功、水头、导叶开度的变化关系曲线,并根据声强烈度E对水轮机运行状态作出评价:
声强烈度E>8,表示故障比较严重,停机检修;
声强烈度2<E<8,表示存在故障,但不是很严重,预警;
声强烈度E<2,表示不存在故障,或者故障很轻微,正常运行。
本发明提出了一种实施上述技术方案的诊断装置,其特征在于:该诊断装置包括声发射传感器,键相传感器,功率变送器,水位传感器,导叶开度传感器,带通滤波器,低通滤波器,第一采集卡,第二采集卡以及对数据进行处理和显示的计算机,所述的键相传感器、功率变送器、水位传感器和导叶开度传感器分别连接到所述低通滤波器上,再通过第二采集卡把信号采集到所述的计算机中;所述的声发射传感器连接到带通滤波器上,再通过第一采集卡把信号采集到所述的计算机中。
本发明与现有技术相比,具有以下优点及突出性效果:本发明采用20KHz以上超声波段的声发射技术,与以往的采用噪声强度或振动加速度传感器来评价空化空蚀状态的技术相比,具有避免环境低频噪声干扰的优点,并且能对碰摩、裂纹和空化空蚀三种故障状态进行量化评价;能选择恰当的数据采集策略,保证数据在分析、操作以及数据传输时在任何工况下能够实现连续的采集,保证不因用户操作或者数据传输而丢失数据;采用抗震和密封设计,适合现场环境的要求,各部件安装、维护、更换方便。
附图说明
图1是本发明提供的故障诊断流程图。
图2是本发明提供的故障诊断装置硬件布置图。
具体实施方式
下面结合附图对本发明的原理及具体实施方式作进一步的说明。
图1为本发明提供的故障诊断流程图。
声发射信号的预处理
本发明提供了一种涉及声发射信号消噪处理的算法。此算法是基于数学形态学的形态滤波方法,它利用形态学变换算法,将含有复杂成分的信号分解为具有物理意义的各个部分,使信号与背景剥离并保持其全局或局部的主要形态特征。本发明在充分讨论形态滤波算子和结构元素的选取原则基础上,设计多尺度混合形态滤波器用于滤除信号中的噪声及无关的谐波成分,然后再对滤波降噪后的信号进行形态闭开的差值滤波处理,得到明显的周期性冲击特征。
数学形态学中最常见的基本变换运算有四种,分别是腐蚀、膨胀、开运算、闭运算。假设输入序列f(n)为定义在F=(0,1,…,N-1)上的离散函数,定义结构元素序列g(n)为G=(0,1…,M-1)上的离散函数,且N≥M,则f(n)关于g(n)的腐蚀和膨胀分别定义为:
(fΘg)(n)=min[f(n+m)-g(m)]                     (1)
m∈0,1,…,M—1
( f &CirclePlus; g ) ( n ) = max [ f ( n - m ) + g ( m ) ] - - - ( 2 )
m∈0,1,…,M—1
f(n)关于g(n)的开运算和闭运算分别定义为:
( f &CenterDot; g ) ( n ) = ( f &CirclePlus; g&Theta;g ) ( n ) - - - ( 4 )
采用开、闭运算的级联形式可以去除信号中的正、负两种噪声。通过不同顺序级联开、闭运算,得到如下形态开—闭和形态闭—开滤波器:
Figure A200810240424D00062
Figure A200810240424D00063
对故障信号的降噪处理采用如下的组合滤波器:
y ( n ) = 1 2 ( F oc [ f ( n ) ) + F co ( f ( n ) ) ] - - - ( 7 )
为了提取故障信号中的冲击成分,对降噪后的信号采用形态闭开的差值滤波处理,形态闭开的差值变换具有良好的提取信号冲击特征的特点,其滤波器为:
Figure A200810240424D00065
声发射信号分析
对于实际运行的水轮机组,碰摩和裂纹故障的发生是渐变的,是逐步演化的,空化空蚀故障的声发射信号是与工况相关的量。本发明提出了脉冲重复率,波形贴近度,声强烈度三个参量来判断故障的发生以及碰摩、裂纹和空蚀故障的区分。下面对其具体的原理和算法进行详细描述。
脉冲重复率
脉冲重复率定义为单位时间内声发射脉冲信号重复出现的概率,也表征了声发射信号释放的频率高低,该技术主要用于区分随机出现的和必然出现的声发射脉冲。对于水轮机组的碰摩、裂纹和空蚀三种状况来说,碰摩和裂纹的声发射信号是周期性的,空化的声发射信号是随机产生的,通过计算每个周期内,相同相位所生成的脉冲重复率来区分空化空蚀还是其它两种故障。具体算法如下:
把每周期内声发射信号根据相位分成36段,计算每段信号内脉冲超过门槛电压值的次数Ni,如果此次数Ni大于某一设定值N0,则认为这这一段信号内有声发射脉冲事件,记为E(i)=1,否则E(i)=0;在一段时间内,即M个周期内,定义脉冲重复率P(i)为
P ( i ) = &Sigma; 1 M E j ( i ) M - - - ( 9 )
其中j表示第j个周期,i表示一个周期内第i个段,i=1,2,..,36
如果P(i)>0.7,则认为声发射信号是必然出现的,属于周期性强的信号,也就是碰摩和裂纹信号;否则认为是随机出现的,是空化空蚀信号。
周期性强的碰摩和声裂纹声发射信号采用下述的波形贴近度进行区分。
波形贴近度
典型的碰摩故障声发射信号为突发型,典型的裂纹声发射波形图在一个完整的周期内,裂纹开闭各一次,所以有两次比较大的声发射信号,并且裂纹开时信号幅值大,裂纹闭时信号幅值小。本发明提出了波形贴近度来反映两个声发射信号的波形相似程度。它主要从频域对信号进行比较,具体算法如下:
频域处理:对典型故障信号,进行FFT变换,然后把声发射信号频率段20KHz-200KHz平均分成2000段,计算获得各个频率段的频谱值,处理后的频谱值进行归一化处理;然后把实测数据也进行FFT变换,计算获得各个频率段的频谱值;两组频谱数据做互相关分析,获得最大的互相关系数ρ。
设定阈值为0.7,即假如与碰摩故障的互相关系数最大值在0.7以上,可以判断此故障为碰摩故障;与裂纹故障的互相关系数最大值在0.7以上,可以判断此故障为裂纹故障。
声强烈度
本发明定义声强烈度来反映声发射信号能量的大小,声强烈度为单位时间内超过一定阈值的脉冲所包含的能量之和。声强烈度用来表示故障的严重程度。
碰摩故障的声发射频率成分主要集中在70KHz以下,裂纹故障的声发射频率成分会在150KHz左右的区间也有比较大的数值,而空化空蚀则在150KHz之上还有一定的频率成分,因此可以采用一定频率范围的能量值来区分各故障。在本发明中,首先采用小波包分解技术把信号分解,然后提取比较感兴趣的频率成分进行信号重构。
有关小波包分解的详细内容可参考相关文献,这里只做简单的说明。假设一维信号的小波变换为:
f ( x ) = a 0 &phi; ( x ) + a 1 &psi; ( x ) + &CenterDot; &CenterDot; &CenterDot; + a 2 j + k &psi; ( 2 j x - k ) + &CenterDot; &CenterDot; &CenterDot;
其中 a 0 = &Integral; - &infin; + &infin; f ( x ) &phi; ( x ) dx , a 2 j + k = 2 j &Integral; - &infin; + &infin; f ( x ) &psi; ( 2 j x - k ) dx                (10)
φ(x)--尺度函数
ψ(x)--小波函数
利用离散小波变换,得到f(x)的正交小波变换公式:
c j , k = &Sigma; m c j - 1 , m h ( m - 2 k ) d j , k = &Sigma; n d j - 1 , k g ( n - 2 k ) - - - ( 11 )
式中h和g为正交镜像滤波器,c为尺度系数,d为小波系数,j为分解层数;那么小波把频域0~fmax均匀分为 0 ~ 1 2 j f max , 1 2 j f max ~ 1 2 j - 1 f max , . . . , 1 2 f max ~ f max , 共j+1份。小波重构是分解过程的逆运算,相应重构方式为:
c j - 1 , k = &Sigma; m h ( m - 2 k ) c j , m + &Sigma; n g ( n - 2 k ) d j , n - - - ( 12 )
具体算法如下:
对故障信号,进行5层小波分解,即把频域分成0~15.625K,15.625K~31.25K,31.25K~62.5K,62.5K~125K,125K~250K,250K~500KHz6段,然后对31.25K~62.5K和125K~250K段信号进行重构。重构后的信号再进行如下的声强烈度计算。其中31.25K~62.5K段重构信号作为碰摩声发射声强烈度,125K~250K段重构信号作为裂纹和空化空蚀声发射声强烈度。
以下是计算公式:
首先计算出采样点中超过门槛值的所有峰值点,没有超过门槛值的采样点设为0值,然后计算出所有点的平方的值连线,就得到一条检波包络线,再计算该线和X轴之间的面积就得到一事件的总能量。下式中f(n)是表示包络线的函数,自变量n的范围是-N。其中N是一次采集的总采样点个数。
E = &Sigma; 1 N f ( n ) * 1 = &Sigma; 1 N f ( n ) - - - ( 13 )
趋势分析
作重构声发射信号的声强烈度随工况参数包括有功、水头、导叶开度的变化关系曲线,通过曲线可以全面了解水力机组的运行状态和性能,并建立水轮机组状态评价体系。
声强烈度E>8,表示故障比较严重;
声强烈度2<E<8,表示存在故障,但不是很严重;
声强烈度E<2,表示不存在故障,或者故障很轻微。
故障诊断硬件装置
图2是本发明提供的故障诊断硬件装置布置图,它是由一系列采集信号的传感器、滤波器、数据采集卡以及对数据进行处理和显示的计算机组成,所述的传感器包括声发射传感器1、键相传感器2、功率变送器3、水位传感器4、导叶开度传感器5,其中键相传感器2、功率变送器3、水位传感器4、导叶开度传感器5连接到低通滤波器6上,再通过第二采集卡8把信号采集到计算机10中,声发射传感器1连接到带通滤波器7,再通过第一采集卡9把信号采集到计算机10中。
硬件装置性能如下:①低通滤波器6为6阶抗混滤波器,截至频率为1KHz。②带通滤波器为8阶巴特沃兹滤波器,带通频率为20~200KHz。③第一采集卡9具有4通道高速模拟量采集,采集速度可达10MHz/s。④第二采集卡8具有16通道模拟量采集,采集速度可达5KHz/s。

Claims (2)

1.一种基于声发射技术的水轮机故障诊断方法,其特征在于包括以下步骤:
1)在水轮机尾水管壁上、水车室导叶拐臂上分别布置声发射传感器;
2)通过计算机采集原始的声发射信号;
3)对原始的声发射信号进行消噪处理,将背景白噪声与有规律性的声发射信号进行分离,去除干扰信号;
4)对同一稳定工况下的声发射信号的时域波形进行分析,通过下式计算脉冲重复率:
P ( i ) = &Sigma; 1 M E j ( i ) M
如果P(i)>0.7,声发射信号属于周期性强的碰摩和裂纹信号;否则就是随机性强的空化空蚀声发射信号;
5)对于周期性强的碰摩和裂纹声发射信号,进行FFT变换,把声发射信号频率段20KHz-200KHz平均分段,计算各个频率段的频谱值,频谱值再进行归一化处理;然后与典型碰摩故障的归一化频谱值做互相关分析,获得最大的碰摩互相关系数ρr,与典型裂纹故障的归一化频谱值做互相关分析,获得最大的裂纹互相关系数ρc;如果ρr>0.7,为碰摩故障;ρc>0.7,为裂纹故障;
6)对声发射信号,进行5层小波包分解,即把频域0~500KHz分成6段,再重构31.25K~62.5K段信号作碰摩声发射声强烈度计算,重构125K~250K段信号进行裂纹和空化空蚀声发射声强烈度计算;声强烈度计算公式为:
E = &Sigma; 1 N f ( n ) * 1 = &Sigma; 1 N f ( n )
7)作重构声发射信号的声强烈度E随工况参数包括有功、水头、导叶开度的变化关系曲线,并根据声强烈度E对水轮机运行状态作出评价:
声强烈度E>8,表示故障比较严重,停机检修;
声强烈度2<E<8,表示存在故障,但不是很严重,预警;
声强烈度E<2,表示不存在故障,或者故障很轻微,正常运行。
2.一种实施权利要求1所述方法的诊断装置,其特征在于:该诊断装置包括声发射传感器(1),键相传感器(2),功率变送器(3),水位传感器(4),导叶开度传感器(5),带通滤波器(7),低通滤波器(6),第一采集卡(9),第二采集卡(8)以及对数据进行处理和显示的计算机(10),所述的键相传感器(2)、功率变送器(3)、水位传感器(4)和导叶开度传感器(5)分别连接到所述低通滤波器(6)上,再通过第二采集卡(8)把信号采集到所述的计算机(1)中;所述的声发射传感器(1)连接到带通滤波器(7)上,再通过第一采集卡(9)把信号采集到所述的计算机(10)中。
CN200810240424XA 2008-12-19 2008-12-19 基于声发射技术的水轮机故障诊断方法及装置 Expired - Fee Related CN101435799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810240424XA CN101435799B (zh) 2008-12-19 2008-12-19 基于声发射技术的水轮机故障诊断方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810240424XA CN101435799B (zh) 2008-12-19 2008-12-19 基于声发射技术的水轮机故障诊断方法及装置

Publications (2)

Publication Number Publication Date
CN101435799A true CN101435799A (zh) 2009-05-20
CN101435799B CN101435799B (zh) 2011-12-28

Family

ID=40710346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810240424XA Expired - Fee Related CN101435799B (zh) 2008-12-19 2008-12-19 基于声发射技术的水轮机故障诊断方法及装置

Country Status (1)

Country Link
CN (1) CN101435799B (zh)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323338A (zh) * 2011-08-19 2012-01-18 北京航空航天大学 一种基于声发射的紧固件损伤位置的检测方法
CN101813512B (zh) * 2009-12-07 2012-05-30 哈尔滨电机厂有限责任公司 采用计算机程序确定模型水轮机转轮叶片初生空化的声学方法
CN102539539A (zh) * 2012-01-19 2012-07-04 清华大学 基于声发射的空蚀检测方法
CN102680080A (zh) * 2012-05-03 2012-09-19 中国科学技术大学 一种基于改进的自适应形态滤波的非稳态信号检测方法
CN102692449A (zh) * 2012-04-12 2012-09-26 北京工业大学 一种通过综合分析对高炉炉顶齿轮箱的故障诊断方法
CN103033745A (zh) * 2011-08-29 2013-04-10 通用电气公司 检测发电机的机械故障的方法和系统
CN103153576A (zh) * 2010-06-07 2013-06-12 乌尔里克·佐伊特 用于对注塑过程进行监控和优化的方法和设备
CN103439091A (zh) * 2013-06-25 2013-12-11 国电大渡河检修安装有限公司 水轮机转轮叶片裂纹故障早期预警和诊断方法及系统
CN103744021A (zh) * 2013-12-23 2014-04-23 煤炭科学研究总院 一种电机故障监控装置及方法
CN103901111A (zh) * 2014-03-24 2014-07-02 上海电机学院 风力发电机组叶片的无损检测系统及方法
CN104791187A (zh) * 2015-04-08 2015-07-22 武汉四创自动控制技术有限责任公司 能实现健康状态预测的水轮机调节系统及方法
CN105044207A (zh) * 2015-06-05 2015-11-11 汕头市超声仪器研究所有限公司 降低超声探伤仪白噪声的方法
CN103389341B (zh) * 2012-05-10 2015-12-02 沈阳工业大学 风力机叶片裂纹检测方法
CN105716758A (zh) * 2016-05-05 2016-06-29 智性纤维复合加固南通有限公司 一种纤维增强塑料智能碳板及其制备方法
CN103033745B (zh) * 2011-08-29 2016-11-30 通用电气公司 检测发电机的机械故障的方法和系统
CN106401989A (zh) * 2016-10-20 2017-02-15 浙江理工大学 一种离心泵空化监测装置
CN106596088A (zh) * 2016-12-13 2017-04-26 东南大学 基于近场声源聚焦定位的碰摩声发射故障位置识别方法
CN106645424A (zh) * 2016-12-09 2017-05-10 四川西南交大铁路发展股份有限公司 一种钢轨裂纹在线监测噪声滤除和裂纹判定方法及其系统
CN106706282A (zh) * 2016-11-04 2017-05-24 东南大学 一种基于傅里叶分解的旋转机械故障诊断方法
CN106769054A (zh) * 2016-12-14 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于声发射信号的水轮机组空蚀空化状态诊断方法
CN106769053A (zh) * 2016-12-07 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于声发射信号的水轮机故障诊断系统及方法
CN107505401A (zh) * 2017-08-09 2017-12-22 武汉理工大学 基于傅氏变换的频域检测系统
CN108760037A (zh) * 2018-06-15 2018-11-06 西安交通大学 一种基于频谱分析的风力发电机叶片结构损伤检测方法
CN109044365A (zh) * 2018-07-02 2018-12-21 苏州大学 基于大脑血红蛋白信息的二维运动状态的识别方法
CN109342018A (zh) * 2018-12-14 2019-02-15 国家电网有限公司 一种水轮机空化状态监测方法
CN110824304A (zh) * 2019-10-16 2020-02-21 福建和盛高科技产业有限公司 一种氧化锌避雷器绝缘劣化趋势分析方法
CN111220264A (zh) * 2019-10-28 2020-06-02 大唐水电科学技术研究院有限公司 水轮发电机组用振动检测装置
CN111220702A (zh) * 2019-10-28 2020-06-02 大唐水电科学技术研究院有限公司 一种水轮机空蚀监测及评价方法
CN111965259A (zh) * 2020-08-19 2020-11-20 深圳职业技术学院 基于声波的故障检测及巡检系统
CN112525534A (zh) * 2020-11-10 2021-03-19 北京物声科技有限公司 一种基于声发射技术的轴承和齿轮损伤定量化评估方法
CN112576537A (zh) * 2020-12-14 2021-03-30 湘潭大学 一种离心泵汽蚀程度的实时评估方法及评估系统
CN112894882A (zh) * 2020-12-30 2021-06-04 哈尔滨工业大学芜湖机器人产业技术研究院 基于工业互联网的机器人故障检测系统
US11125642B2 (en) * 2018-07-03 2021-09-21 Tsinghua University Multi-scale real-time acoustic emission monitoring and analysis method for mechanical seal
CN114412696A (zh) * 2021-12-29 2022-04-29 腾安电子科技(江苏)有限公司 水轮机运行异常报警方法、系统及水轮机监测系统
CN115372764A (zh) * 2022-07-12 2022-11-22 国网湖北省电力有限公司黄石供电公司 一种基于全声频监测的开关柜绝缘类部件的故障诊断方法
CN115655631A (zh) * 2022-12-12 2023-01-31 杭州兆华电子股份有限公司 一种基于水轮发电机在风洞环境中的声纹检测方法及装置

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813512B (zh) * 2009-12-07 2012-05-30 哈尔滨电机厂有限责任公司 采用计算机程序确定模型水轮机转轮叶片初生空化的声学方法
CN103153576A (zh) * 2010-06-07 2013-06-12 乌尔里克·佐伊特 用于对注塑过程进行监控和优化的方法和设备
CN102323338A (zh) * 2011-08-19 2012-01-18 北京航空航天大学 一种基于声发射的紧固件损伤位置的检测方法
CN103033745B (zh) * 2011-08-29 2016-11-30 通用电气公司 检测发电机的机械故障的方法和系统
CN103033745A (zh) * 2011-08-29 2013-04-10 通用电气公司 检测发电机的机械故障的方法和系统
CN102539539A (zh) * 2012-01-19 2012-07-04 清华大学 基于声发射的空蚀检测方法
CN102692449A (zh) * 2012-04-12 2012-09-26 北京工业大学 一种通过综合分析对高炉炉顶齿轮箱的故障诊断方法
CN102680080B (zh) * 2012-05-03 2014-09-10 中国科学技术大学 一种基于改进的自适应形态滤波的非稳态信号检测方法
CN102680080A (zh) * 2012-05-03 2012-09-19 中国科学技术大学 一种基于改进的自适应形态滤波的非稳态信号检测方法
CN103389341B (zh) * 2012-05-10 2015-12-02 沈阳工业大学 风力机叶片裂纹检测方法
CN103439091B (zh) * 2013-06-25 2015-11-18 国电大渡河检修安装有限公司 水轮机转轮叶片裂纹故障早期预警和诊断方法及系统
CN103439091A (zh) * 2013-06-25 2013-12-11 国电大渡河检修安装有限公司 水轮机转轮叶片裂纹故障早期预警和诊断方法及系统
CN103744021A (zh) * 2013-12-23 2014-04-23 煤炭科学研究总院 一种电机故障监控装置及方法
CN103901111A (zh) * 2014-03-24 2014-07-02 上海电机学院 风力发电机组叶片的无损检测系统及方法
CN104791187A (zh) * 2015-04-08 2015-07-22 武汉四创自动控制技术有限责任公司 能实现健康状态预测的水轮机调节系统及方法
CN105044207A (zh) * 2015-06-05 2015-11-11 汕头市超声仪器研究所有限公司 降低超声探伤仪白噪声的方法
CN105716758A (zh) * 2016-05-05 2016-06-29 智性纤维复合加固南通有限公司 一种纤维增强塑料智能碳板及其制备方法
CN106401989A (zh) * 2016-10-20 2017-02-15 浙江理工大学 一种离心泵空化监测装置
CN106401989B (zh) * 2016-10-20 2017-11-14 浙江理工大学 一种离心泵空化监测装置
CN106706282A (zh) * 2016-11-04 2017-05-24 东南大学 一种基于傅里叶分解的旋转机械故障诊断方法
CN106769053A (zh) * 2016-12-07 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于声发射信号的水轮机故障诊断系统及方法
CN106645424A (zh) * 2016-12-09 2017-05-10 四川西南交大铁路发展股份有限公司 一种钢轨裂纹在线监测噪声滤除和裂纹判定方法及其系统
CN106645424B (zh) * 2016-12-09 2020-01-17 四川西南交大铁路发展股份有限公司 一种钢轨裂纹在线监测噪声滤除和裂纹判定方法
CN106596088A (zh) * 2016-12-13 2017-04-26 东南大学 基于近场声源聚焦定位的碰摩声发射故障位置识别方法
CN106769054A (zh) * 2016-12-14 2017-05-31 贵州电网有限责任公司电力科学研究院 一种基于声发射信号的水轮机组空蚀空化状态诊断方法
CN107505401A (zh) * 2017-08-09 2017-12-22 武汉理工大学 基于傅氏变换的频域检测系统
CN108760037A (zh) * 2018-06-15 2018-11-06 西安交通大学 一种基于频谱分析的风力发电机叶片结构损伤检测方法
CN108760037B (zh) * 2018-06-15 2020-03-17 西安交通大学 一种基于频谱分析的风力发电机叶片结构损伤检测方法
CN109044365A (zh) * 2018-07-02 2018-12-21 苏州大学 基于大脑血红蛋白信息的二维运动状态的识别方法
US11125642B2 (en) * 2018-07-03 2021-09-21 Tsinghua University Multi-scale real-time acoustic emission monitoring and analysis method for mechanical seal
CN109342018A (zh) * 2018-12-14 2019-02-15 国家电网有限公司 一种水轮机空化状态监测方法
CN110824304A (zh) * 2019-10-16 2020-02-21 福建和盛高科技产业有限公司 一种氧化锌避雷器绝缘劣化趋势分析方法
CN111220264A (zh) * 2019-10-28 2020-06-02 大唐水电科学技术研究院有限公司 水轮发电机组用振动检测装置
CN111220702A (zh) * 2019-10-28 2020-06-02 大唐水电科学技术研究院有限公司 一种水轮机空蚀监测及评价方法
CN111965259A (zh) * 2020-08-19 2020-11-20 深圳职业技术学院 基于声波的故障检测及巡检系统
CN111965259B (zh) * 2020-08-19 2021-05-07 深圳职业技术学院 基于声波的故障检测及巡检系统
CN112525534A (zh) * 2020-11-10 2021-03-19 北京物声科技有限公司 一种基于声发射技术的轴承和齿轮损伤定量化评估方法
CN112576537A (zh) * 2020-12-14 2021-03-30 湘潭大学 一种离心泵汽蚀程度的实时评估方法及评估系统
CN112894882A (zh) * 2020-12-30 2021-06-04 哈尔滨工业大学芜湖机器人产业技术研究院 基于工业互联网的机器人故障检测系统
CN114412696A (zh) * 2021-12-29 2022-04-29 腾安电子科技(江苏)有限公司 水轮机运行异常报警方法、系统及水轮机监测系统
CN114412696B (zh) * 2021-12-29 2024-03-19 腾安电子科技(江苏)有限公司 水轮机运行异常报警方法、系统及水轮机监测系统
CN115372764A (zh) * 2022-07-12 2022-11-22 国网湖北省电力有限公司黄石供电公司 一种基于全声频监测的开关柜绝缘类部件的故障诊断方法
CN115655631A (zh) * 2022-12-12 2023-01-31 杭州兆华电子股份有限公司 一种基于水轮发电机在风洞环境中的声纹检测方法及装置
CN115655631B (zh) * 2022-12-12 2023-04-07 杭州兆华电子股份有限公司 一种基于水轮发电机在风洞环境中的声纹检测方法及装置

Also Published As

Publication number Publication date
CN101435799B (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
CN101435799B (zh) 基于声发射技术的水轮机故障诊断方法及装置
Salameh et al. Gearbox condition monitoring in wind turbines: A review
Guo et al. Fault feature extraction for rolling element bearing diagnosis based on a multi-stage noise reduction method
Wang et al. A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis
Yang et al. ARX model-based gearbox fault detection and localization under varying load conditions
CN102798529B (zh) 大型风力机组轴承故障诊断方法及系统
CN104677623B (zh) 一种风力发电机叶片故障在位声学诊断方法及监测系统
CN102937522B (zh) 一种齿轮箱复合故障诊断方法及系统
CN102269655B (zh) 一种轴承故障的诊断方法
Wang et al. A novel comprehensive evaluation method of the draft tube pressure pulsation of Francis turbine based on EEMD and information entropy
Combet et al. Novel detection of local tooth damage in gears by the wavelet bicoherence
CN104165925B (zh) 随机共振的离心式压缩机半开式叶轮裂纹故障检测方法
CN103499437A (zh) 可调品质因子双树复小波变换的旋转机械故障检测方法
Han et al. Compound faults diagnosis method for wind turbine mainshaft bearing with Teager and second-order stochastic resonance
CN106769054A (zh) 一种基于声发射信号的水轮机组空蚀空化状态诊断方法
Xiao et al. Adaptive MOMEDA based on improved advance-retreat algorithm for fault features extraction of axial piston pump
CN108072517A (zh) 一种旋转机械微弱故障信号检测方法
Cao et al. Deterioration state diagnosis and wear evolution evaluation of planetary gearbox using vibration and wear debris analysis
Zhang et al. Generalized transmissibility damage indicator with application to wind turbine component condition monitoring
Shi et al. Purification and feature extraction of shaft orbits for diagnosing large rotating machinery
CN103808405A (zh) 烟气发电机组振动故障的自动诊断方法和装置
Yao et al. Fault detection of complex planetary gearbox using acoustic signals
Xu et al. Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain
JP2001329856A (ja) ガスタービンおよびその疲労診断装置並びにその疲労診断方法
Feng et al. Gas turbine blade fracturing fault diagnosis based on broadband casing vibration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111228

Termination date: 20121219