CN101432726A - 用于内燃机的空气流量估测方法和装置 - Google Patents

用于内燃机的空气流量估测方法和装置 Download PDF

Info

Publication number
CN101432726A
CN101432726A CNA2007800145511A CN200780014551A CN101432726A CN 101432726 A CN101432726 A CN 101432726A CN A2007800145511 A CNA2007800145511 A CN A2007800145511A CN 200780014551 A CN200780014551 A CN 200780014551A CN 101432726 A CN101432726 A CN 101432726A
Authority
CN
China
Prior art keywords
internal combustion
flow rate
combustion engine
measuring
auto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800145511A
Other languages
English (en)
Other versions
CN101432726B (zh
Inventor
J·康
C·-F·张
G·-S·陈
T·-W·郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101432726A publication Critical patent/CN101432726A/zh
Application granted granted Critical
Publication of CN101432726B publication Critical patent/CN101432726B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

一种基于模型的估测空气质量流量的方法,在没有引入过滤空气质量流量信号的不期望的延时特性的情况下提供了精确的空气质量流量估测。

Description

用于内燃机的空气流量估测方法和装置
技术领域
本发明涉及内燃机。尤其是,本发明涉及发动机空气质量流量的精确估测。
背景技术
均质压燃(HCCI)发动机的燃烧过程主要取决于进气阀关闭时汽缸内气体成分、温度和压力这样的因素。因此,发动机的控制输入,例如燃料喷射量和喷射时间以及进/排气阀轮廓,必须进行十分谨慎地调整以确保自燃过程的鲁棒性。为了最佳的燃料经济性,HCCI发动机通常采用贫油混合气(稀薄燃烧)并在非节流状态下运行。另外,在采用了废气再压缩策略的HCCI发动机中,通过提前排气阀的关闭时间捕获到在先循环中不同量的热废气,从而控制汽缸内气体的温度。进气阀的打开时间从标准值延迟到更迟的时间点,其优选为相对进气上止点(TDC)与排气阀关闭时间对称。汽缸内气体的成分和温度都极大地受到排气阀关闭时间的影响。尤其是,当提前关闭排气阀时,大部分在先循环的热废气被保留在其中,只给即将进入的新鲜气流留下了很少的空间。这样就提高了汽缸的气体温度并降低了汽缸中氧气的浓度。负阀门重叠角(NVO),定义为在进气上止点附近进气和排气阀同时关闭的曲轴转角,其指示着热废气的捕获量。
采用可变阀门驱动系统,如全柔性阀门驱动(FFVA)系统(即电动可变阀门、液动可变阀门或电液可变阀门)或具有双凸轮定相系统的简化机械两级阀门升程系统,已经可以实现鲁棒HCCI燃烧。尤其是,结合发动机的控制输入,如喷射量、喷射时间、点火时间、节流阀位置和EGR阀位置,通过同时对进气阀和排气阀轮廓进行调节,从而维持最优燃烧相位。另外,空燃比控制对于维持尤其是瞬态工况的鲁棒HCCI燃烧是非常重要的。
在传统的汽油火花点燃式发动机中,由节流阀控制空气流量,并与在节流阀体处利用MAF传感器所测量的空气质量流量成比例地计量燃油。只要进气岐管绝对压力远远低于环境压力(即节流发动机状态),MAF信号中的噪音级(即高频成分)就比较低。然而,当处于最小节流状态时,由于带进气岐管的汽缸的进气动态特性与MAF传感器之间的显著耦合作用,噪音级较为显著。当处于HCCI发动机状态时,油门通常打开比较大以将泵送损失减到最小,并且由排气阀和进气阀的轮廓(即升程、持续时间和相位的结合)对空气流量进行控制。因此,运行在HCCI模式下的发动机仍然受到带噪音的MAF信号的影响。类似地,在非节流运转的柴油机中,MAF信号也是有噪音的。虽然可以利用低通滤波器减少MAF测量中的高频成分,过滤信号仍然会在MAF测量中产生不期望的延时。利用过滤的并因此延时的MAF测量来调整燃料喷射命令,在发动机瞬态工况下将导致空燃比产生显著偏差,从而引发不期望的燃烧后果,包括例如,不完全燃烧、不点火(失火),排放超标、燃烧相移等。
发明内容
本发明提供了一种基于MAF测量的基于模型的估测和控制方法,其在不引入延时的情况下精确估测鲁棒瞬态工况的空气质量流量。
一种在非节流内燃机中用于未过滤进气流量的测定方法,包括采用低阶微分方程模拟进气流量。低阶微分方程包括估测气流量项和期望气流量项,其中根据低阶微分方程,实际流量跟随期望流量。根据气流量估计项和期望项的自适应参数,低阶微分方程进行相应调整。这样的调整使得估计气流量和实际气流量之间的误差减到最小。
一种在非节流内燃机中用于未过滤进气流量的测定装置,包括用于在没有任何节流的情况下对发动机汽缸进气流量进行控制的空气流露控制装置和测定非节流气流的空气流量传感器。还包括基于期望流量和气流量传感器所测流量对气流控制单元进行控制的闭环流量控制器。根据低阶动态方程,所控流量跟随期望流量。最后还包括基于期望气流量和自适应参数进行未延迟估测的自适应流量估测器。
附图说明
本发明的实施例的某些部件和部件的排布是以实物形式呈现,将通过形成其中一部分的附图对其优选实施例进行详细描述,其中:
图1示意性地示出了HCCI发动机和控制系统;
图2示出了响应于期望空气质量流量信号的空气质量流量测量值;
图3示出了本发明中空气质量流量的测量值、过滤值和模拟值;
图4A-4D示出了本发明中HCCI发动机运转状态下的各种数据曲线。
具体实施方式
现在将根据HCCI发动机对本发明进行描述。然而,本发明也可以应用到其它类型的发动机,包括传统的节流火花点燃式发动机,狄塞尔循环发动机,或者任何采用测量的空气质量流量的发动机。
参考图1,图1是一个方块图,其示出了在均质压燃(HCCI)下运转的发动机12和燃烧控制系统14以及控制该发动机燃烧的方法。
发动机12包括各种零件或部件,其包括连有进气系统17和排气系统19的产生动力的燃烧室13,具有一定形式的阀门驱动系统15的用于控制燃烧室进气和排气的进气阀21和排气阀23,具有连在进气系统和排气系统之间的EGR阀27的外部排气再循环系统25,和用于提供燃料并点燃或辅助点燃燃烧室中燃烧混合物的燃料喷射系统和点火系统(未分别示出)。
发动机12设计为依靠喷射燃料为汽油或类似混合物,在如果可能包括发动机起动的发动机转速和负载扩大范围内以非节流HCCI燃烧状态运行。然而,在不适合HCCI运行的情况下,可以使用传统或改进控制方法来进行火花点火和节流控制运行,以便获得最大发动机动力。可应用的燃料供给策略包括缸内直接喷射、进气口燃油喷射或节流阀体燃油喷射。汽油和轻乙醇混合物可广泛应用的等级都是优选的燃料;然而,替代的液体或气体燃料,如高乙醇混合物(例如E80,E85)、纯乙醇(E99)、纯甲醇(M100)、天然气,氢气、沼气、各种重整油、合成气等,也可以用于本发明的实施例。
所述的控制系统14和方法特别适用于发动机的非节流运转,其中,由于如对MAF信号进行信号过滤而引起的延时是不期望的。燃烧控制系统14包括一个或多个用于执行本发明燃烧控制方法中重复系列步骤或函数的计算机或控制器。
本发明目前的应用中,假设HCCI发动机采用电液、液动或电动凸轮移相器中的一个,执行排气再压缩策略,且利用MAF传感器进行空气质量流量(MAF)测量。本发明包括通过可变阀门驱动系统利用NVO进行气流控制,和基于MAF测量的自适应气流模型。整个控制结构由图1中的控制系统14代表性地表示。
利用位于节流阀体的MAF传感器30对输入发动机的气流进行测量,并且反馈控制器61基于MAF测量来调节NVO从而获得期望的气流量。反馈控制器设计成使得可以通过低阶动态性(例如,第一或第二阶)来估计实际气流量对期望气流量的响应。然后,利用低阶差分方程来模拟气流量的闭环响应。
图2示出了一个实施例,其中反馈控制器61设计成可以通过如下的一阶差分方程来估计气流量的闭环动态性能:
χ . = - 1 τ χ + 1 τ r - - - ( 1 )
其中x为传感器测得的气流量,r为期望气流量,τ为闭环系统的时间常数。为了估测进入发动机的气流量,引入如下的一阶自适应气流模型63:
χ e . = - 1 τ e ( 1 + α ) χ e + 1 τ e βr - - - ( 2 )
其中xe是估测气流量,τe是闭环系统的估算时间常数,α和β是自适应控制器中引入的参数,用于将模型响应和实际气流响应之间的偏差减到最小。基于受控气流的一阶性能,通过如下部分地依赖于期望气流量的关系,可获得实际和估计模拟气流量之间的差:
e . = - 1 τ e - ( 1 τ e + 1 τ e - 1 τ ) χ e + ( 1 τ e β - 1 τ ) r - - - ( 3 )
其中e=xe-x。可以利用以下的李亚普诺夫(Lyapunov)函数得到α和β的调整律:
V = 1 2 e 2 + τ e 2 γ ( 1 τ e + 1 τ e α - 1 r ) 2 + τ e 2 γ + ( 1 τ e β - 1 τ ) 2 > 0 , γ > 0 - - - ( 4 )
最后,就能获得如下的自适应律 V . = - 1 τ e 2 ≤ 0 , 且e→0,τ→∞,且α和β受到如下限制:
dα dt = γ χ e e dβ dt = - γre - - - ( 5 )
图3中示出了以恒转速2000RPM,MAP为95kPa运转的多缸HCCI发动机的MAF传感器输出值。另外,图中还示出了过滤信号和自适应模型估测信号。
图3中可以看出,MAF传感器信号(测得的)包括需要用强过滤来平滑处理的高频成分。然而,过滤(虚线)将引入大约1秒的延时。自适应模型MAF估测信号(实线)的延时可以忽略。基于自适应模型的估测气流量,可利用修正的燃料喷射命令控制期望空燃比。
已经在多缸HCCI发动机上试验实施例中的方法,结果如图4A-4D所示。基于本发明中的期望空燃比和估测气流量,可获得燃料供给率的进度安排。发动机在MAP为95kPa,采用排气再压缩阀策略且恒转速为2000RPM的状态下运转。期望MAF以大致2g/s2的增长率从6.5%变化到8.5%。期望空燃比设定为常量16:1,且燃料供给率是由自适应模型的估测气流量和期望空燃比来确定。图4C显示负载瞬态空燃比偏移量峰峰值小于1。另外,在该图中还示出了定义成燃料燃烧50%时的曲轴角度位置(CA50)的燃烧相位。图4D中还示出了本发明中瞬态时的合适燃烧相位控制。
虽然已经参考优选实施例对本发明进行了描述,但是应当理解,可以在所述的发明范围和精神内做出众多的改变。因此,并不是旨在将本发明局限于揭露的实施例,而是具有权利要求言语允许的一个全范围。

Claims (21)

1.一种用于在非节流内燃机中测定非过滤进气流量的方法,包括:
采用包括估测气流量项和期望气流量项的低阶差分方程模拟进气流量,
其中实际气流量根据低阶差分方程跟随期望气流量;以及
根据自适应参数调整低阶差分方程,所述自适应参数应用于估测气流量项和期望气流量项;
其中所述自适应参数适用于使得估测气流量项和实际气流量之间的误差减到最小。
2.如权利要求1所述的用于在非节流内燃机中测定非过滤进气流量的方法,其特征在于,所述低阶差分方程包括一阶差分方程。
3.如权利要求1所述的用于在非节流内燃机中测定非过滤进气流量的方法,其特征在于,所述低阶差分方程包括二阶差分方程。
4.如权利要求2所述的用于在非节流内燃机中测定非过滤进气流量的方法,其特征在于,所述自适应参数包括应用于估测气流量的第一自适应参数和应用于期望气流量的第二自适应参数。
5.如权利要求4所述的用于在非节流内燃机中测定非过滤进气流量的方法,其特征在于,基于李亚普诺夫函数对所述第一和第二自适应参数进行调整。
6.如权利要求1所述的用于在非节流内燃机中测定非过滤进气流量的方法,其特征在于,基于李亚普诺夫函数对所述自适应参数进行调整
7.一种用于在内燃机中测定非过滤进气流量的装置,包括:
用于在没有任何气流节流的情况下控制发动机燃烧室进气的空气流量控制装置;
用于测定非节流气流的空气流量传感器;
用于基于期望气流量和流量传感器所测气流量对流量控制装置进行控制的闭环空气流量控制器,其中所述受控空气流量根据低阶动态特性跟随期望流量;以及
基于期望气流量和自适应参数提供基本上不延迟的空气流量估测的自适应空气流量估计器。
8.如权利要求7所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述自适应参数适用于使得估测气流量和实际流量之间的误差减到最小。
9.如权利要求7所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述低阶动态特性包括一阶动态特性。
10.如权利要求7所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述低阶动态特性包括二阶动态特性。
11.如权利要求9所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述自适应参数包括应用于估测气流量的第一自适应参数和应用于期望气流量的第二自适应参数。
12.如权利要求7所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述空气流量控制装置包括可变阀门驱动系统。
13.如权利要求12所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,可变阀门驱动系统包括全柔性阀门机构。
14.如权利要求12所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述可变阀门驱动系统包括凸轮调相。
15.如权利要求12所述的用于在内燃机中测定非过滤进气流量的装置,其特征在于,所述可变阀门驱动系统包括多级阀门升程。
16.一种用于在内燃机中测定非过滤进气流量的方法,包括:
通过包含低阶差分方程的反馈控制器利用可变阀门驱动系统对进入发动机燃烧室的基本上非节流气流进行控制,其中实际空气流量跟随期望空气流量;
利用低阶差分方程以及用于估测气流量和期望气流量的自适应参数测定估测气流量。
17.如权利要求16所述的用于在内燃机中测定非过滤进气流量的方法,其特征在于,所述低阶差分方程包括一阶差分方程。
18.如权利要求16所述的用于在内燃机中测定非过滤进气流量的方法,其特征在于,所述低阶差分方程包括二阶差分方程。
19.如权利要求17所述的用于在内燃机中测定非过滤进气流量的方法,其特征在于,所述自适应参数包括应用于估测气流量的第一自适应参数和应用于期望气流量的第二自适应参数。
20.如权利要求19所述的用于在内燃机中测定非过滤进气流量的方法,其特征在于,基于李亚普诺夫函数对所述第一和第二自适应参数进行调整。
21.如权利要求16所述的用于在内燃机中测定非过滤进气流量的方法,其特征在于,基于李亚普诺夫函数对所述自适应参数进行调整。
CN2007800145511A 2006-04-24 2007-04-24 用于内燃机的空气流量估测方法和装置 Expired - Fee Related CN101432726B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US79458006P 2006-04-24 2006-04-24
US60/794,580 2006-04-24
PCT/US2007/067256 WO2007127706A2 (en) 2006-04-24 2007-04-24 Airflow estimation method and apparatus for internal combustion engine

Publications (2)

Publication Number Publication Date
CN101432726A true CN101432726A (zh) 2009-05-13
CN101432726B CN101432726B (zh) 2013-04-03

Family

ID=38656315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800145511A Expired - Fee Related CN101432726B (zh) 2006-04-24 2007-04-24 用于内燃机的空气流量估测方法和装置

Country Status (4)

Country Link
US (1) US7783409B2 (zh)
CN (1) CN101432726B (zh)
DE (1) DE112007000998B4 (zh)
WO (1) WO2007127706A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486143A (zh) * 2010-12-06 2012-06-06 现代自动车株式会社 发动机的排放气体控制方法
CN103161599A (zh) * 2011-12-15 2013-06-19 罗伯特·博世有限公司 求取发动机系统中的物理参量的模拟值的方法和装置
CN104632441A (zh) * 2013-11-12 2015-05-20 通用汽车环球科技运作有限责任公司 以hcci燃烧模式运行的内燃机的运行控制方法和设备
CN105041495A (zh) * 2014-04-18 2015-11-11 通用汽车环球科技运作有限责任公司 用于控制动力传动系的方法和系统

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925479B2 (en) * 2007-07-20 2011-04-12 Honda Motor Co., Ltd. Efficient process for evaluating engine cooling airflow performance
US8224559B2 (en) * 2010-01-21 2012-07-17 GM Global Technology Operations LLC Method and apparatus to monitor a mass airflow metering device in an internal combustion engine
US9222426B2 (en) * 2012-02-17 2015-12-29 Ford Global Technologies, Llc Transient air flow control
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9599053B2 (en) 2014-03-26 2017-03-21 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9382865B2 (en) 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9376965B2 (en) * 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
DE102015203210A1 (de) * 2015-02-23 2016-08-25 Volkswagen Ag Verfahren zum Regeln einer Regelstrecke, Vorrichtung zur Erzeugung von Reglerparametern und Steuergerät
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US20180058350A1 (en) * 2016-08-31 2018-03-01 GM Global Technology Operations LLC Method and apparatus for controlling operation of an internal combustion engine
US10848090B2 (en) 2018-06-28 2020-11-24 Toyota Motor Engineering & Manufacturing North America, Inc. Control methodology to reduce motor drive loss

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59603079D1 (de) * 1995-04-10 1999-10-21 Siemens Ag Verfahren zum modellgestützten bestimmen der in die zylinder einer brennkraftmaschine einströmenden luftmasse
JP2000045830A (ja) * 1998-07-31 2000-02-15 Hitachi Ltd エンジンの空燃比制御装置
US6216083B1 (en) * 1998-10-22 2001-04-10 Yamaha Motor Co., Ltd. System for intelligent control of an engine based on soft computing
JP4094195B2 (ja) * 1999-12-03 2008-06-04 日産自動車株式会社 エンジンの吸入空気量制御装置
US6711491B2 (en) * 2001-11-05 2004-03-23 Ford Global Technologies, Llc Mass airflow sensor for pulsating oscillating flow systems
DE10222137B3 (de) * 2002-05-17 2004-02-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine
JP3957180B2 (ja) * 2002-08-09 2007-08-15 本田技研工業株式会社 デシメーションフィルタを用いた内燃機関の空燃比制御装置
DE102004049737A1 (de) * 2004-10-13 2006-06-22 Bayerische Motoren Werke Ag Verfahren zur Bestimmung des Frischluftmassenstroms eines Verbrennungsmotors
US7467614B2 (en) * 2004-12-29 2008-12-23 Honeywell International Inc. Pedal position and/or pedal change rate for use in control of an engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486143A (zh) * 2010-12-06 2012-06-06 现代自动车株式会社 发动机的排放气体控制方法
CN102486143B (zh) * 2010-12-06 2015-11-25 现代自动车株式会社 发动机的排放气体控制系统及其控制方法
CN103161599A (zh) * 2011-12-15 2013-06-19 罗伯特·博世有限公司 求取发动机系统中的物理参量的模拟值的方法和装置
CN103161599B (zh) * 2011-12-15 2018-01-09 罗伯特·博世有限公司 求取发动机系统中的物理参量的模拟值的方法和装置
CN104632441A (zh) * 2013-11-12 2015-05-20 通用汽车环球科技运作有限责任公司 以hcci燃烧模式运行的内燃机的运行控制方法和设备
CN105041495A (zh) * 2014-04-18 2015-11-11 通用汽车环球科技运作有限责任公司 用于控制动力传动系的方法和系统
CN105041495B (zh) * 2014-04-18 2018-02-06 通用汽车环球科技运作有限责任公司 用于控制动力传动系的方法和系统

Also Published As

Publication number Publication date
CN101432726B (zh) 2013-04-03
US7783409B2 (en) 2010-08-24
DE112007000998T5 (de) 2009-03-05
DE112007000998B4 (de) 2012-02-09
US20080167787A1 (en) 2008-07-10
WO2007127706A2 (en) 2007-11-08
WO2007127706A3 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
CN101432726B (zh) 用于内燃机的空气流量估测方法和装置
US7128063B2 (en) HCCI engine combustion control
US7540270B2 (en) Method and apparatus for controlling combustion mode transitions in an internal combustion engine
CN101646854B (zh) 在均质充量压燃式发动机中在低载操作条件下利用排气再压缩控制燃料重整的方法和装置
CN101627196B (zh) 控制均质充气压缩点火式发动机的方法和装置
CN101427258B (zh) 均质充量压燃发动机操作
US9810139B2 (en) Method for operating a compression ignition engine
US7739027B2 (en) Method and apparatus for monitoring an EGR valve in an internal combustion engine
US9103293B2 (en) Method for reducing sensitivity for engine scavenging
CN101627198B (zh) 用于控制均质充量压燃发动机中的燃料喷射的方法和设备
CN101287897A (zh) 用于具有受控自动点火燃烧的直接喷射发动机的负荷瞬态控制方法
US9890728B2 (en) Engine operating system and method
US7231892B2 (en) Method for extending HCCI load range using a two-stroke cycle and variable valve actuation
Agrell et al. Control of HCCI during engine transients by aid of variable valve timings through the use of model based non-linear compensation
US7644696B2 (en) Internal combustion engine system, and a method in such an engine system
Yap et al. An experimental study of bioethanol HCCI
US7841326B2 (en) Method for operating an internal combustion engine
Larimore Experimental analysis and control of recompression homogeneous charge compression ignition combustion at the high cyclic variability limit
Agrell et al. Transient control of HCCI combustion by aid of variable valve timing through the use of a engine state corrected CA50-controller combined with an in-cylinder state estimator estimating lambda
Leroy Cylinder filling control of variable-valve-actuation equipped internal combustion engines
Wenig et al. Fundamentals of pressure trace analysis for gasoline engines with Homogeneous Charge Compression Ignition
Chen et al. Combustion phasing and work output modeling for homogeneous charge compression ignition (HCCI) engines
JP2018017189A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130403