CN101423389B - 一种纳米氧化锆结合钛酸铝复合材料的制备方法 - Google Patents

一种纳米氧化锆结合钛酸铝复合材料的制备方法 Download PDF

Info

Publication number
CN101423389B
CN101423389B CN2008101820360A CN200810182036A CN101423389B CN 101423389 B CN101423389 B CN 101423389B CN 2008101820360 A CN2008101820360 A CN 2008101820360A CN 200810182036 A CN200810182036 A CN 200810182036A CN 101423389 B CN101423389 B CN 101423389B
Authority
CN
China
Prior art keywords
composite material
nano zircite
aluminium titanate
preparation
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101820360A
Other languages
English (en)
Other versions
CN101423389A (zh
Inventor
王瑞生
卜景龙
贾翠
王志发
范增为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Polytechnic University
Original Assignee
Hebei Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Polytechnic University filed Critical Hebei Polytechnic University
Priority to CN2008101820360A priority Critical patent/CN101423389B/zh
Publication of CN101423389A publication Critical patent/CN101423389A/zh
Application granted granted Critical
Publication of CN101423389B publication Critical patent/CN101423389B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种纳米氧化锆结合钛酸铝的复合材料的制备方法,属陶瓷材料领域。其制备方法是将粒径<0.01mm钛酸铝微粉分散在浓度0.02~0.06mol/L的氧氯化锆水溶液中,在搅拌时滴加氨水至pH为8.7~9.5得悬浮体沉淀,该沉淀经脱水干燥后在>600℃焙烧2h获得<100nm纳米氧化锆结合钛酸铝复合材料粉体,该粉体各成分的重量百分比组成为:氧化锆2%~10%,钛酸铝90—98%;该粉体压力成型坯体的压强≥100MPa;坯体经1500℃保温2h烧结获得纳米氧化锆结合钛酸铝复合材料。该材料的强度比普通钛酸铝材料高,是钢铁冶金连铸水口或有色冶金升液管有希望的更新材料。

Description

一种纳米氧化锆结合钛酸铝复合材料的制备方法
技术领域
本发明属于陶瓷材料领域,具体涉及一种纳米氧化锆结合钛酸铝复合材料的制备方法。
背景技术
本发明是开发一种可用于冶金、汽车、航天等领域的纳米氧化锆结合钛酸铝的复合材料。该复合材料是以钛酸铝为主成分,与少量的纳米钛酸锆复合而成,该复合材料具有良好的高温性能、強度及抗热震性。
目前钢铁冶金方坯连铸系统中的钢水中间包氧化锆(ZrO2)定径水口材料存在着受瞬时热冲击作用极易发生热震开裂剥落、水口孔径扩大导致浇钢作业中断甚至造成跑钢以至于损毁连铸关键设备结晶器。急需研究开发一种耐高温、热膨胀系数较小、高抗热震性的高温结构陶瓷材料,替代现有的定径水口氧化锆材料。
钛酸铝(Al2TiO5)陶瓷材料具有高的熔点(1860℃),在室温~1000℃温度范围,钛酸铝具有低的热膨胀系数α(α小于零,或接近于零),是目前仅有的低膨胀、高熔点的抗热震陶瓷材料。但是钛酸铝陶瓷材料具有两个缺点:一是钛酸铝晶体各晶轴的热膨胀差异较大,导致钛酸铝在冷却时产生微裂纹,故而钛酸铝材料的机械强度较低,常温抗折强度低于20MPa;二是高温合成的钛酸铝降温至900℃~1300℃不稳定,分解成金红石(TiO2)和刚玉(α-Al2O3),而失去了低膨胀特性。在钛酸铝合成配料中引入SiO2、MgO、MgF2、ZrO2、Fe2O3等稳定剂,钛酸铝中温分解得到有效抑制,其强度也有所改善。
钛酸铝陶瓷材料在齿科不锈钢合金熔炼坩埚、有色金属铝冶炼坩埚、铸铝升液管、浮法玻璃流液闸板、汽车尾气净化器载体等。引入稳定剂的钛酸铝材料其强度有所提高(常温抗折强度30MPa左右),但仍属较低强度陶瓷材料,限制了钛酸铝材料在钢铁冶金、航天等领域的进一步应用。王志发等以工业氧化铝和钛白粉为原料,以少量SiO2、MgF2为稳定剂,所研制的钛酸铝坩埚具有优良的抗热震及抗钢液侵蚀性能。应用于口腔齿科合金钢义齿的感应熔炼铸造过程,可经受室温~1650℃感应熔炼的温度急变20次未开裂损坏,且钛酸铝坩埚经受1650℃合金钢液的熔炼铸造过程,坩埚内表面基本无合金钢液残留及侵蚀痕迹,但该钛酸铝坩埚存在强度较低的缺点。
氧化锆(ZrO2)的熔点为2677℃,对金属及硅酸盐熔渣具有优良的抗侵蚀能力。本发明采用液相沉淀法在钛酸铝材料中引入纳米氧化锆(n-ZrO2),以耐高温、高表面活性的纳米氧化锆颗粒作为钛酸铝材料的结合相,制备耐高温、高强度、高抗热震性能的纳米氧化锆结合钛酸铝复合材料,为钢铁及有色冶金、航天等工业领域提供一种新型高温结构材料,该复合材料有望作为钢铁冶金连铸定径水口的更新材料。国内外在纳米氧化锆结合钛酸铝复合材料方面的研究与应用尚未见报道。
发明内容
本发明的发明目的在于上述现有技术中的不足,提供一种耐高温、強度高、高抗热震的纳米氧化锆结合钛酸铝复合材料的制备方法。
本发明的技术方案与技术特征为:
本发明为一种纳米氧化锆结合钛酸铝复合材料的制备方法,其特征在于该制备方法包括以下步骤:纳米氧化锆结合钛酸铝复合材料粉体制备;复合材料成型;复合材料高温烧成。各制备步骤的主要技术特征如下:
纳米氧化锆结合钛酸铝复合材料粉体制备方法是:将粒径<0.01mm的钛酸铝微粉分散在摩尔浓度为0.02~0.06mol/L的氧氯化锆水溶液中,在快速搅拌时滴加氨水至pH为8.7~9.5得到悬浮体沉淀,悬浮体沉淀经脱水、干燥后在≥600℃焙烧2h获得<100nm纳米氧化锆结合钛酸铝的复合材料粉体,复合材料粉体中各成分的重量百分比为:纳米氧化锆2~5%,钛酸铝95~98%。
该复合材料成型方法是:采用液压压力机将复合材料粉体成型制备复合材料坯体,成型压强≥150MPa;该复合材料的成型方法还包括:等静压成型、热压铸成型、注浆成型、辊压成型、真空挤压成型或凝胶注模成型。
该复合材料高温烧成方法是:采用电炉烧成,复合材料坯体经1500℃保温2h烧成获得纳米氧化锆结合钛酸铝的复合材料;该复合材料的烧成方法还包括:热压烧结、高温真空烧结或高温氮气烧结。
本发明纳米氧化锆结合钛酸铝复合材料配料组成确定的技术思路为:
在Al2O3-TiO2-ZrO2三元系统中,ZrO2-Al2TiO5-Al2O3子系统低共熔温度为1610℃,ZrO2-Al2TiO5-ZrTiO4子系统低共熔温度为1590℃,Al2TiO5-ZrTiO4-TiO2子系统的低共熔温度为1580℃,三个低共熔温度点的组成位置基本处于Al2TiO5含量为50%~70%的范围内,因此制备Al2TiO5-ZrO2复合材料的组成点应远离三个低共熔点位置,且在Al2O3-TiO2-ZrO2三元相图的Al2TiO5与ZrO2的连线上。
在Al2TiO5组成点到ZrTiO4组成点的组成线上,从Al2TiO5与ZrO2质量比为90∶10的组成点至Al2TiO5的范围内,处于液相线1800℃以上的高温区。故在以上比例范围内配料,可得到耐高温的Al2TiO5-ZrO2复合材料。本发明制备纳米氧化锆结合钛酸铝复合材料的配料组成确定为近Al2TiO5端的高温区域。
根据复相材料的复相韧化机理,以及利用纳米氧化锆颗粒高比表面能的活性烧结作用,采用液相沉淀法在钛酸铝材料中引入纳米氧化锆,在复合材料烧结过程中,可防止钛酸铝晶粒的不均匀生长,获得纳米氧化锆结合钛酸铝的均匀细晶结构,具有高的强度及抗热震性能。
综上所述,本发明在钛酸铝材料中引入纳米氧化锆,制备具有耐高温、高强度、高抗热震的纳米氧化锆结合钛酸铝复合材料,有望应用于钢铁冶金浇钢系统,成为钢铁冶金连铸定径水口的的更新材料,并可应用推广有色冶金、玻璃、汽车尾气净化器、航天、军工等领域。
具体实施方式
实施例1
纳米氧化锆结合钛酸铝复合材料粉体制备:将平均粒径为0.006mm的钛酸铝微粉分散在摩尔浓度为0.06mol/L的氧氯化锆水溶液中,在快速搅拌时滴加氨水至pH为9.2得到悬浮体沉淀,悬浮体沉淀经脱水、干燥后在650℃焙烧2h获得纳米氧化锆(<20nm)结合钛酸铝的复合材料粉体,复合材料粉体中各成分的重量百分比为纳米氧化锆5%,钛酸铝95%。将复合材料粉体采用液压压力机进行坯体成型,坯体成型压强为200MPa。在常压空气条件下采用电炉烧成坯体,烧成温度为1500℃,保温时间为2h。
烧后纳米氧化锆结合钛酸铝复合材料的气孔率为4.03%,抗折强度为75.4MPa,热膨胀系数α为1.22×10-6/℃(室温~1000℃),热震断裂次数为30次(1100℃~室温水冷)。
实施例2
纳米氧化锆结合钛酸铝复合材料粉体制备:将平均粒径为0.006mm的钛酸铝微粉分散在摩尔浓度为0.04mol/L的氧氯化锆水溶液中,在快速搅拌时滴加氨水至pH为9.2得到悬浮体沉淀,悬浮体沉淀经脱水、干燥后在650℃焙烧2h获得纳米氧化锆(<20nm)结合钛酸铝的复合材料粉体,复合材料粉体中各成分的重量百分比为纳米氧化锆3.5%,钛酸铝95.5%。将复合材料粉体采用液压压力机进行坯体成型,坯体成型压强为200MPa。在常压空气条件下采用电炉烧成坯体,烧成温度为1500℃,保温时间为2h。
烧后纳米氧化锆结合钛酸铝复合材料的气孔率为6.89%,抗折强度为69.3MPa,热膨胀系数α为1.18×10-6/℃(室温~1000℃),热震断裂次数为32次(1100℃~室温水冷)。
实施例3
纳米氧化锆结合钛酸铝复合材料粉体制备:将平均粒径为0.006mm的钛酸铝微粉分散在摩尔浓度为0.02mol/L的氧氯化锆水溶液中,在快速搅拌时滴加氨水至pH为9.1得到悬浮体沉淀,悬浮体沉淀经脱水、干燥后在650℃焙烧2h获得纳米氧化锆(<20nm)结合钛酸铝的复合材料粉体,复合材料粉体中各成分的重量百分比为纳米氧化锆2%,钛酸铝98%。将复合材料粉体采用液压压力机进行坯体成型,坯体成型压强为200MPa。在常压空气条件下采用电炉烧成坯体,烧成温度为1500℃,保温时间为2h。
烧后纳米氧化锆结合钛酸铝复合材料的气孔率为7.54%,抗折强度为58.2MPa,热膨胀系数α为0.78×10-6/℃(室温~1000℃),热震断裂次数为36次(1100℃~室温水冷)。

Claims (6)

1.一种纳米氧化锆结合钛酸铝的复合材料的制备方法,其特征在于该复合材料制备包括以下步骤:纳米氧化锆结合钛酸铝复合材料粉体制备,复合材料成型,复合材料高温烧成,各制备步骤的主要技术特征如下:
(1)纳米氧化锆结合钛酸铝复合材料粉体制备
纳米氧化锆结合钛酸铝复合材料粉体制备方法是:将钛酸铝微粉分散在氧氯化锆水溶液中,在快速搅拌时滴加氨水至pH为8.7~9.5得到悬浮体沉淀,悬浮体沉淀经脱水、干燥后在≥600℃焙烧2h获得纳米氧化锆结合钛酸铝的复合材料粉体,复合材料粉体中各成分的重量百分比为:纳米氧化锆2~5%,钛酸铝95~98%;
(2)复合材料成型
该复合材料成型是采用液压压力机将复合材料粉体成型制备为复合材料坯体,成型压强≥150MPa;
(3)复合材料高温烧成
该复合材料高温烧成是采用电炉烧成,复合材料坯体经1500℃保温2h烧成获得纳米氧化锆结合钛酸铝的复合材料。
2.如权利要求1所述的制备方法,其特征在于所述的氧氯化锆水溶液的摩尔浓度为0.02~0.06mol/L。
3.如权利要求1所述的制备方法,其特征在于所述的钛酸铝微粉的粒径<0.01mm。
4.如权利要求1所述的制备方法,其特征在于所述的纳米氧化锆的粒径<100nm。
5.如权利要求1所述的制备方法,其特征在于该复合材料的成型方法是用等静压成型、热压铸成型、注浆成型、辊压成型、真空挤压成型或凝胶注模成型代替液压压力机。
6.如权利要求1所述的制备方法,其特征在于该复合材料的烧成方法是用热压烧结、高温真空烧结或高温氮气烧结代替电炉烧成。
CN2008101820360A 2008-11-26 2008-11-26 一种纳米氧化锆结合钛酸铝复合材料的制备方法 Expired - Fee Related CN101423389B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101820360A CN101423389B (zh) 2008-11-26 2008-11-26 一种纳米氧化锆结合钛酸铝复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101820360A CN101423389B (zh) 2008-11-26 2008-11-26 一种纳米氧化锆结合钛酸铝复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN101423389A CN101423389A (zh) 2009-05-06
CN101423389B true CN101423389B (zh) 2012-05-16

Family

ID=40614300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101820360A Expired - Fee Related CN101423389B (zh) 2008-11-26 2008-11-26 一种纳米氧化锆结合钛酸铝复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN101423389B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671750A (zh) * 2018-06-04 2018-10-19 常州宝电节能环保科技有限公司 一种宽温度操作窗口除尘脱硝双功能陶瓷柱的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758542A (en) * 1987-02-13 1988-07-19 W. R. Grace & Co. Low thermal expansion ZrTiO4 --Al2 TiO5 --ZrO2 compositions
CN1803629A (zh) * 2006-01-12 2006-07-19 景德镇陶瓷学院 一种改性钛酸铝材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758542A (en) * 1987-02-13 1988-07-19 W. R. Grace & Co. Low thermal expansion ZrTiO4 --Al2 TiO5 --ZrO2 compositions
CN1803629A (zh) * 2006-01-12 2006-07-19 景德镇陶瓷学院 一种改性钛酸铝材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卜景龙 等.氧化锆-钛酸铝系复相材料的研究进展.《陶瓷》.2006,(第4期),11-14. *

Also Published As

Publication number Publication date
CN101423389A (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
CN103626498B (zh) 氮化硼基陶瓷喷嘴及其制备方法
JP3096814B1 (ja) チタン酸アルミニウム焼結体の製造方法
CN102335739B (zh) 复合无硅长水口及其制造方法
WO1990011981A1 (en) Carbonaceous ceramic composite for use in contact whth molten nonferrous metal
CN111704474A (zh) 一种超高温冶炼用莫来石质耐火浇注料
CN102285803A (zh) 一种电熔锆刚玉耐火砖的生产方法
CN103936436B (zh) 一种梯度功能的钇稳定氧化锆耐火制品
CN101429045B (zh) 醋酸锆粘结氧化钇模壳及其制备方法
CN102335730B (zh) 无硅浸入式水口及其制造方法
CN101423389B (zh) 一种纳米氧化锆结合钛酸铝复合材料的制备方法
CN107601883B (zh) 一种涂釉及该涂釉的使用方法
CN101423390B (zh) 一种钛酸铝-氧化锆-钛酸锆复合材料及其制备方法
CN102951913B (zh) 一种等静压成型的刚玉尖晶石坩埚及其制备方法
CN102584301B (zh) 一种氧化锆质定径水口制备方法
CN101486572A (zh) 一种ZrO2-Al2TiO5复合材料的制备方法
CN111807834A (zh) 一种铸造用钛酸铝陶瓷及其制备方法
CN108484161B (zh) 一种钛酸铝复合材料及其制备方法
CN1026028C (zh) 金属陶瓷复合坩埚及其制备方法
CN101832710A (zh) 用于熔化钛合金的坩锅
Wang et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12/ZrO2 prepared by a high-frequency zone melting method
CN101397207A (zh) 一种钛酸铝基高温结构复合材料及其制备方法
CN106927840B (zh) 抗热震复相陶瓷材料及基于该材料的陶瓷漏嘴的制备
CN105112847A (zh) 一种抗静电耐氧化的热障涂层及其制作方法
Hongbao et al. Reaction between Ti and boron nitride based investment shell molds used for casting titanium alloys
CN101407416A (zh) 一种钛酸锆基高温结构复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120516

Termination date: 20131126