CN101423188B - 一种纳米尺寸空气槽的制作方法 - Google Patents

一种纳米尺寸空气槽的制作方法 Download PDF

Info

Publication number
CN101423188B
CN101423188B CN2007101766003A CN200710176600A CN101423188B CN 101423188 B CN101423188 B CN 101423188B CN 2007101766003 A CN2007101766003 A CN 2007101766003A CN 200710176600 A CN200710176600 A CN 200710176600A CN 101423188 B CN101423188 B CN 101423188B
Authority
CN
China
Prior art keywords
air groove
preparation
silicon
groove
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101766003A
Other languages
English (en)
Other versions
CN101423188A (zh
Inventor
屠晓光
陈少武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2007101766003A priority Critical patent/CN101423188B/zh
Publication of CN101423188A publication Critical patent/CN101423188A/zh
Application granted granted Critical
Publication of CN101423188B publication Critical patent/CN101423188B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本发明提供了一种纳米尺寸空气槽的制作方法,包括:光刻步骤,在顶层为硅材料,底层为任意材料的衬底表面,利用光刻技术将曝光图形转移到光刻胶上,控制图形的最小线条尺寸在纳米量级;刻蚀步骤,采用光刻胶作掩模,利用干法刻蚀技术对顶层硅材料进行刻蚀,形成纵向刻蚀槽;氧化步骤,利用热氧化技术在顶层硅材料表面形成一层薄氧化层;沉积步骤,利用化学气相沉积技术,采用沉积源材料向刻蚀槽中填充氧化硅,最终形成纳米尺寸的空气槽。本发明克服了采用传统方法难以制作三角形截面的亚微米空气槽,波导侧壁粗糙等技术难点,利用标准微电子工艺即可以制作纳米尺寸的空气槽。

Description

一种纳米尺寸空气槽的制作方法
技术领域
本发明涉及空气槽制作方法,具体涉及一种在顶层为硅材料,底层为任意材料的衬底上的纳米尺寸空气槽制作方法。该方法可以利用标准的微电子工艺,制作出横截面为等腰三角形或等腰梯形的空气槽或三维空气锥,并可以通过对填充条件的控制,实现微掩膜的制作,进而形成一种新的纳米线的制作方法。
背景技术
微电子技术不断向小型化和多功能集成方向发展,各种先进的微加工技术不断涌现。其中,纳米尺寸曝光技术和刻蚀技术的发展水平对器件性能的改善起着决定性的作用。硅材料是微电子领域广泛研究和使用的材料,具有成本低,制作工艺成熟的特点。而且,由于硅对光通讯所用波段的光吸收系数非常小,使之成为光通讯和光电集成的优良材料。硅材料在光通讯领域的研究和应用已经发展成为一个称为硅光子学的专门学科。
利用微加工技术在硅材料上制作纳米器件是微电子技术发展的必然趋势。利用这种技术不仅可以将MOS器件的栅宽做得更窄,而且可以将硅波导的尺寸做得更小。利用微加工技术,结合具有高折射率差特性的绝缘体上的硅(SOI)材料,新一代的硅基单模光波导的横截面已经做到了250纳米×250纳米。
Cornell大学的研究者提出了slot波导的概念。即将纳米尺寸的低折射率材料夹在高折射率材料的中间,由电位移连续性方程可知,光场在低折射率的材料中的分布将远大于高折射率材料,从而实现了光在低折射率材料中的传播。利用此原理,将增益介质掺入中间的低折射率层,困扰研究者多年的硅激光器将有望实现。如果将中间材料用折射率更低的空气代替,将会实现更大的光强集中。而且,在现有技术中,中间低折射率材料的形状普遍是长方形。
在现已提出的slot波导中,由于波导横截面由刻蚀方法形成,因此,不可避免地引入了侧壁粗糙度问题。既使改用湿法制作悬浮结构,也很难控制空气槽横截面的形状。特别是当尺寸到达亚微米量级,传统方法制作空气槽的难度更大。其具体细节请见参考文献1(Vilson.R.Almeida,Qianfan Xu,Carlos A.Barrios and Michal Lipson,“Guiding and confining lightin void nanostructure”,Optics Letters,Vol.29,1209(2004))和参考文献2(Tom.Baehr-Jones,Micael.Hochberg,Chris.Walker and Axel.Scherer,“High-Q optical resonators in silicon-on-insulator-based slot waveguides”,Appl.Phys.Lett,Vol.86,081101(2005))。另外,使用传统的刻蚀方法制作的刻蚀端面形貌单一,并不能形成完整的三角形截面的空气槽,大多数形成的是梯形截面的空气槽。尽管可以采用热氧化的方法实现三角形截面空气槽,但这种方法会改变原来硅材料边界的尺寸和厚度,增加了结果的不可控性。
另一方面,为了制作10纳米以下宽度的纳米线,需要制作10纳米以下的刻蚀掩膜,而电子束曝光等微小尺寸图形的曝光方法已经达到了曝光极限,制作小于10纳米宽度的微细线条显得尤为困难。
发明内容
本发明的目的是提出了一种纳米尺寸空气槽的制作方法。采用本方法能够制作纳米尺寸的三角形空气槽,将空气作为slot波导的中间低折射率材料,解决了使用现有技术,slot波导中间的低折射率材料截面难以制作成三角形和波导侧壁粗糙的问题。同时,本发明通过对填充条件的控制,也可以实现微掩膜的制作,进而形成一种新的纳米线的制作方法。
本发明提出的纳米尺寸空气槽的制作方法。包括:
光刻步骤,在顶层为硅材料,底层为任意材料的衬底表面,利用光刻技术将曝光图形转移到光刻胶上;
刻蚀步骤,采用光刻胶作掩模,利用干法刻蚀技术对顶层硅材料进行刻蚀,形成纵向刻蚀槽;
氧化步骤,利用热氧化技术在顶层硅材料表面形成一层氧化层;
沉积步骤,利用化学气相沉积技术,采用沉积源材料向刻蚀槽中填充氧化硅,最终形成纳米尺寸的空气槽。
进一步,所述光刻技术为电子束光刻技术、深紫外线光刻技术或X射线光刻技术;
所述光刻胶为电子束光刻胶、深紫外线光刻胶或X射线光刻胶;
所述干法刻蚀技术为电感耦合等离子体刻蚀技术(ICP)或反应离子刻蚀(RIE)干法刻蚀技术;
所述顶层为硅材料,底层为任意材料的衬底为绝缘体上的硅;
所述氧化层的厚度在7纳米到15纳米之间;
所述化学气相沉积(CVD)技术为低压化学气相沉积(LPCVD)技术或等离子体增强化学气相沉积(PECVD)技术;
所述沉积源材料为正硅酸乙酯(TEOS)、氮化硅或氮氧化硅。
所述光刻胶的图形形状为矩形、正方形或圆形。
所述刻蚀槽的横截面形貌为矩形或正梯形。
所述空气槽的横截面为等腰三角形或等腰梯形。在所述横截面为等腰梯形的空气槽是通过在沉积过程中,当空气槽顶部未封口时即停止沉积而形成的。
进一步,所述空气槽为三维的棱锥或三维的圆锥,构成空气锥或空气台。
进一步,在所述空气槽的顶部未封口时即停止沉积,采用所述沉积材料作微掩膜,利用沉积技术在槽内填充纳米线材料,构成纳米线。所述纳米线材料为硅基材料中的氧化硅、氮化硅或氮氧化硅,或为金属材料中的金、银、铝、铜或锌,或为化合物材料中的氮化镓、砷化镓或磷化铟。
用本方法能够制作纳米尺寸的三角形空气槽,将空气作为slot波导的中间低折射率材料,解决了使用现有技术,slot波导中间的低折射率材料截面难以制作成三角形的难点。同时,本方法采用氧化硅作为空气槽填充物,使得最终形成的空气槽侧壁非常光滑,解决了传统制作方法中的侧壁粗糙问题。另外,本方法通过对填充条件的控制,也可以实现微掩膜的制作,进而形成一种新的纳米线的制作方法。本发明提出的方法将在微机械传感,微光学,电学及光学存储元件等多个方面有所应用。
附图说明
图1是采用本发明提出的方法,在绝缘体上的硅(SOI)经过电子束光刻和干法刻蚀后形成结构的横截面的扫描电镜(SEM)图;
图2是采用本发明提出的方法,在绝缘体上的硅(SOI)上形成的三角形空气槽的横截面的扫描电镜(SEM)图;
图3是采用本发明提出的方法制作空气槽的工艺步骤示意图;
图4是采用本发明提出的方法制作横截面为等腰三角形的空气槽的工艺步骤示意图;
图5是采用本发明提出的方法制作纳米线的工艺步骤示意图;
图6是采用本发明提出的方法制作四棱锥空气槽的工艺步骤示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图3是采用本发明提出的方法制作空气槽的步骤示意图。
为了说明的清楚起见,在该实施例的描述中,衬底材料以绝缘体上的硅(SOI)为例。
首先,对绝缘体上的硅(SOI)片进行清洗;
接着,如图3a所示,在清洗好的绝缘体上的硅(SOI)片301上涂覆一层电子束光刻胶302;
然后,如图3b所示,在绝缘体上的硅(SOI)片表面由电子束光刻技术,将曝光图形转移到电子束光刻胶上,曝光图形的形状为矩形,长边作为波导传播方向,短边与波导横截面平行,控制图形最小线条尺寸在纳米量级。
接着,如图3c所示,用光刻胶302做掩模,用电感耦合等离子体(ICP)干法刻蚀技术对顶层硅材料进行刻蚀,形成条形空气槽,槽的宽度在纳米量级,此处刻蚀以埋氧层为自停止层。槽深宽比依设计尺寸而定。槽宽越窄,深宽比越大,填充氧化硅的难度也越大。槽宽越宽,深宽比越小,填充氧化硅的难度越小。本实施例采用的尺寸为200纳米槽宽,深宽比1∶1,空气槽结构为正梯形,如图1所示。
然后,如图3d所示,用剥离液去除光刻胶。
之后,如图3e所示,先利用热氧化技术氧化厚度为7-15纳米的氧化硅。接着,利用低压化学气相沉积(LPCVD)技术,使用正硅酸乙酯(TEOS)源对刻蚀形成的槽进行填充。在本实施例中,填充氧化硅303的厚度为300纳米。
最终,形成的横截面为三角形的空气槽,其结构如图2所示。
图4是采用本发明提出的方法制作横截面为等腰三角形的空气槽的工艺步骤示意图。
首先,对绝缘体上的硅(SOI)片进行清洗;
接着,如图4a所示,在清洗好的绝缘体上的硅(SOI)片401上涂覆一层电子束光刻胶402;
然后,如图4b所示,在绝缘体上的硅(SOI)片表面由电子束光刻技术,将曝光图形转移到电子束光刻胶掩膜上,光刻胶掩膜的图形为矩形,长边作为波导传播方向,短边与波导横截面平行;
接着,如图4c所示,用光刻胶402做掩模用光刻胶做掩模进行用电感耦合等离子体(ICP)干法刻蚀技术对顶层硅材料进行刻蚀,形成条形空气槽,槽的宽度在纳米量级;
然后,如图4d所示,用剥离液去除光刻胶;
之后,如图4e所示,即先热氧化7-15纳米的氧化硅403,然后用低压化学气相沉积(LPCVD),使用正硅酸乙酯(TEOS)源对刻蚀形成的槽进行填充;
接着,如图4f所示,进一步进行填充,直至空气槽的顶端被封闭,自此外界氧化硅向空气槽填充的通道被封闭;
然后,如图4g所示,继续进行填充,氧化硅覆盖在空气槽顶端,空气槽404得以形成,其中空气槽404的横截面为等腰三角形。
由于所述刻蚀步骤中形成的条形空气槽在横截面上为矩形,属于对称结构,而氧化硅的覆盖过程为各向同性过程,所以形成的空气槽也为对称结构,即所述制作方法具有自对称功能,使形成的空气槽的横截面为等腰三角形。
图5是采用本发明提出的方法制作纳米线的工艺步骤示意图。
首先,对绝缘体上的硅(SOI)片进行清洗;
接着,如图5a所示,在清洗好的绝缘体上的硅(SOI)片501上涂覆一层电子束光刻胶502;
然后,如图5b所示,在绝缘体上的硅(SOI)片表面由电子束光刻技术,将曝光图形转移到电子束光刻胶掩膜上,曝光图形的形状为矩形,长边作为波导传播方向,短边与波导横截面平行;
接着,如图5c所示,用光刻胶502作掩模使用电感耦合等离子体(ICP)干法刻蚀技术对顶层硅材料进行刻蚀,形成条形空气槽,槽的宽度在纳米量级;
然后,如图5d所示,用剥离液去除光刻胶;
之后,如图5e所示,即先热氧化7-15纳米左右的氧化硅503,然后用低压化学气相沉积(LPCVD),使用正硅酸乙酯(TEOS)源对刻蚀形成的槽进行填充;
然后,如图5f所示,可以通过实验,用扫描电镜进行观察不同填充时间的情况下的样品,找出空气槽封闭的临界时间,控制填充时间小于此临界时间,从而得到顶端未封闭的空气槽。在空气槽尚未封闭时即停止氧化硅的沉积,将沉积源换为所需要沉积的纳米线材料,从而在空气槽内形成纳米线504。此纳米线材料为硅基材料,例如氧化硅、氮化硅或氮氧化硅,或为金属材料,例如金、银、铝、铜或锌,或为化合物材料,例如氮化镓、砷化镓或磷化铟。在本实施例中,此纳米线材料使用的是金。纳米线宽度由横截面为梯形的空气槽的顶边宽度决定。在本实施例中,空气槽横截面顶边的宽度为20纳米,则经过所述的纳米线材料沉积后,空气槽内形成的纳米线的宽度也为20纳米。
图6是采用本发明提出的方法制作四棱锥空气槽的工艺步骤示意图。
首先,对绝缘体上的硅(SOI)片进行清洗;
接着,如图6a所示,在清洗好的绝缘体上的硅(SOI)片601上涂覆一层电子束光刻胶602;
然后,如图6b所示,在SOI片表面由电子束光刻技术,将曝光图形转
移到电子束光刻胶掩膜上,曝光图形的形状为边长小于200纳米的正方形;
接着,如图6c所示,用光刻胶602做掩模进行用电感耦合等离子体(ICP)干法刻蚀技术对顶层硅材料进行刻蚀,形成条形空气槽,槽的宽度在纳米量级;
然后,使用剥离液去除光刻胶,形成的横截面如图6f中的a-a和b-b所示;
之后,如图6d所示,在刻蚀形成的空气槽上先热氧化7-15纳米的氧化硅,然后用低压化学气相沉积(LPCVD)技术,利用TEOS源对刻蚀形成的槽进行填充,直至空气槽封口,从而形成顶层氧化硅603,其横截面如图6f中的a’-a’和b’-b’所示;
最后,如图6e所示,形成四棱锥形空气槽604。
本领域的普通技术人员还可以根据以上的制作方法轻易地想到三维圆锥空气槽的制作方法。即只需将上述光刻步骤中的曝光图形形状改为圆形,其他制作步骤与上述步骤相同,便可以制作出三维圆锥空气槽。本领域的普通技术人员还可以根据所述的制作方法轻易地想到通过控制沉积厚度实现横截面为等腰梯形的空气槽或空气台的制作方法。
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (12)

1.一种纳米尺寸空气槽的制作方法,其特征在于,包括以下步骤:
光刻步骤,在顶层为硅材料,底层为任意材料的衬底表面,利用光刻技术将曝光图形转移到光刻胶上;
刻蚀步骤,采用光刻胶作掩模,利用干法刻蚀技术对顶层硅材料进行刻蚀,形成纵向刻蚀槽;
氧化步骤,利用热氧化技术在顶层硅材料表面形成一层氧化层,该氧化层的厚度在7纳米到15纳米之间;
沉积步骤,利用化学气相沉积技术,采用沉积源材料向刻蚀槽中填充氧化硅,最终形成纳米尺寸的空气槽,该空气槽的横截面形状为等腰三角形或等腰梯形,且该横截面为等腰梯形的空气槽是通过在沉积过程中,当空气槽顶部未封口时即停止沉积而形成的。
2.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述光刻技术为电子束光刻技术、深紫外线光刻技术或X射线光刻技术。
3.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述光刻胶为电子束光刻胶、深紫外线光刻胶或X射线光刻胶。
4.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述干法刻蚀技术为电感耦合等离子体刻蚀技术或反应离子刻蚀技术。
5.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述顶层为硅材料,底层为任意材料的衬底为绝缘体上的硅。
6.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述化学气相沉积技术为低压化学气相沉积技术或等离子体增强化学气相沉积技术。
7.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述沉积源材料为正硅酸乙酯、氮化硅或氮氧化硅。
8.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述曝光图形的形状为矩形、正方形或圆形。
9.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述刻蚀槽的横截面形状为矩形或正梯形。
10.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,所述空气槽为三维的棱锥或三维的圆锥。
11.如权利要求1所述的纳米尺寸空气槽的制作方法,其特征在于,在所述空气槽的顶部未封口时即停止沉积,采用所述沉积材料作微掩膜,利用沉积技术在槽内填充纳米线材料,构成纳米线。
12.如权利要求11所述的纳米尺寸空气槽的制作方法,其特征在于,所述纳米线材料为硅基材料中的氧化硅、氮化硅或氮氧化硅,或为金属材料中的金、银、铝、铜或锌,或为化合物材料中的氮化镓、砷化镓或磷化铟。
CN2007101766003A 2007-10-31 2007-10-31 一种纳米尺寸空气槽的制作方法 Expired - Fee Related CN101423188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101766003A CN101423188B (zh) 2007-10-31 2007-10-31 一种纳米尺寸空气槽的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101766003A CN101423188B (zh) 2007-10-31 2007-10-31 一种纳米尺寸空气槽的制作方法

Publications (2)

Publication Number Publication Date
CN101423188A CN101423188A (zh) 2009-05-06
CN101423188B true CN101423188B (zh) 2011-06-29

Family

ID=40614102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101766003A Expired - Fee Related CN101423188B (zh) 2007-10-31 2007-10-31 一种纳米尺寸空气槽的制作方法

Country Status (1)

Country Link
CN (1) CN101423188B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170060200A1 (en) * 2013-07-30 2017-03-02 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Method for manufacturing housing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103030107B (zh) 2011-10-06 2014-12-10 清华大学 三维纳米结构阵列的制备方法
CN103030106B (zh) 2011-10-06 2015-04-01 清华大学 三维纳米结构阵列
CN109802035B (zh) * 2019-01-24 2023-04-28 北京印刷学院 一种基于忆阻器的神经突触仿生器件及制备方法
CN110808208B (zh) * 2019-11-13 2022-03-29 中国电子科技集团公司第十三研究所 一种t型纳米栅的制备方法
CN113145183B (zh) * 2020-01-22 2022-12-06 京东方科技集团股份有限公司 一种生物芯片及其制作方法
CN111584659B (zh) * 2020-04-29 2021-10-12 深圳市奥伦德元器件有限公司 红外探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483156A (zh) * 2000-12-27 2004-03-17 3M创新有限公司 微观结构的背投屏幕
CN1588233A (zh) * 2004-08-14 2005-03-02 浙江大学 基于硅衬底的聚合物光波导器件的制作方法
CN1696049A (zh) * 2005-05-27 2005-11-16 清华大学 一种FeSi2纳米结构及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483156A (zh) * 2000-12-27 2004-03-17 3M创新有限公司 微观结构的背投屏幕
CN1588233A (zh) * 2004-08-14 2005-03-02 浙江大学 基于硅衬底的聚合物光波导器件的制作方法
CN1696049A (zh) * 2005-05-27 2005-11-16 清华大学 一种FeSi2纳米结构及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170060200A1 (en) * 2013-07-30 2017-03-02 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Method for manufacturing housing
US9921620B2 (en) * 2013-07-30 2018-03-20 Fu Tai Hua Industry (Shenzhen) Co., Ltd. Method for manufacturing housing

Also Published As

Publication number Publication date
CN101423188A (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
CN101423188B (zh) 一种纳米尺寸空气槽的制作方法
Senn et al. Fabrication of photonic crystals for applications in the visible range by nanoimprint lithography
US8965157B2 (en) Semiconductor pointed structure and method for fabricating same, spot size converter, and non-reflective terminator
Li et al. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching
US9023225B2 (en) Pattern forming method
CN101325171B (zh) 一种纳米尺寸三角形空气槽的制作方法
Zavieh et al. Demonstration of a three-dimensional simple-cubic infrared photonic crystal
US7995892B2 (en) Low loss, high and low index contrast waveguides in semiconductors
van de Haar et al. Fabrication process of a coaxial plasmonic metamaterial
Xing et al. Fabrication of InP-based two-dimensional photonic crystal membrane
Arpiainen et al. Site‐Selective Self‐Assembly of Colloidal Photonic Crystals
Berenschot et al. Chemically anisotropic single-crystalline silicon nanotetrahedra
Teo et al. High resolution and aspect ratio two-dimensional photonic band-gap crystal
Teo et al. Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections
CN113363150A (zh) 一种硅纳米结构的制备方法及激光器
US8506829B2 (en) Semiconductor hollow-core waveguide using photonic crystal gratings
Haneveld et al. Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask
Goodwin et al. Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals
Teo et al. Hole-type two-dimensional photonic crystal fabricated in silicon on insulator wafers
US20100314752A1 (en) Forming an etched planarised photonic crystal structure
US20230083043A1 (en) Waveguide platform
CN114637070B (zh) 一种基于介质纳米结构的拓扑边缘态波导及其制造方法
Yliniemi et al. Fabrication of photonic crystal waveguide elements on SOI
Teo et al. Deep reactive ion etching for pillar type nanophotonic crystal
McKenzie et al. Fabricating novel diamond waveguides using the focused ion beam hard mask

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110629

Termination date: 20111031