CN101410183A - 一种构造具有流控及电学功能的器件的方法 - Google Patents

一种构造具有流控及电学功能的器件的方法 Download PDF

Info

Publication number
CN101410183A
CN101410183A CNA2007800113597A CN200780011359A CN101410183A CN 101410183 A CN101410183 A CN 101410183A CN A2007800113597 A CNA2007800113597 A CN A2007800113597A CN 200780011359 A CN200780011359 A CN 200780011359A CN 101410183 A CN101410183 A CN 101410183A
Authority
CN
China
Prior art keywords
substrate
gasket seal
fluidic
adopting
mechanical connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800113597A
Other languages
English (en)
Other versions
CN101410183B (zh
Inventor
G-J·伯格
J·维斯
H·J·范威尔登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermofisher company
Original Assignee
C2V BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C2V BV filed Critical C2V BV
Publication of CN101410183A publication Critical patent/CN101410183A/zh
Application granted granted Critical
Publication of CN101410183B publication Critical patent/CN101410183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/0023Packaging together an electronic processing unit die and a micromechanical structure die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0638Valves, specific forms thereof with moving parts membrane valves, flap valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/563Joints or fittings ; Separable fluid transfer means to transfer fluids between at least two containers, e.g. connectors
    • B01L3/5635Joints or fittings ; Separable fluid transfer means to transfer fluids between at least two containers, e.g. connectors connecting two containers face to face, e.g. comprising a filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.

Abstract

一种构造具有流控及电学功能的器件(1)的方法,包括:将具有流控及电学功能的模块(2)装配到含有流体回路(4)的基片(3)上;将所述模块同基片进行流体连接;将所述模块同基片进行电学连接;和将所述模块同基片进行机械连接,其特征在于:采用芯片倒装技术;以及采用密封垫片(6)来进行密封。利用此方法可以构造一个混合式微流控系统,能实现可以根据各种连接(流体、机械和电连接)各自所需而自由地选取材料和工艺,这样可以独立对各个单个工艺进行优化。利用倒装芯片技术,可以很精确地将模块配置于基片上。其电学连接通过当下常用的材料及成熟的工艺流程即可实现。正因为利用传统,可直接利用的仪器及技术,使研发及生产的成本低。

Description

一种构造具有流控及电学功能的器件的方法
技术领域
本发明有关于一种构造具有流控及电学功能的器件的方法,包括:
-将具有流控及电学功能的模块装配到含有流体回路的基片上;
-将所述模块同基片进行流体连接;
-将所述模块同基片进行电学连接;
-将所述模块同基片进行机械连接。
运用此方法可以构造混合式微流控系统。
背景技术
在过去的几十年里微流控系统领域有很大的发展。其主要的应用领域有生物化学分析和环境测量。对于不同系统所要求的特定应用,产量规模及复杂程度,设计及制造微流控芯片的方法也有所不同。对于要求小批量生产,复杂程度高的情况,可利用各种标准元件,由例如金属、玻璃或塑料管、软管及电子连线等方法连接而构成系统。这种产品的生产所需人工工作强度大,系统死体积大,但很多情况下这是最经济、技术上最可行的方法。如果需要大批量生产,则使用为其量身定做的解决方法在经济上更可行。所述量身定做的方法最理想为包括一个单片机系统和一套集成的自动化的生产流程。优化的设计会使系统内部死体积减小。用此方法虽然研发成本会相对较高,但针对于特定的应用,其生产流程可达到最优化。
对于要求中等规模产量,相对复杂的系统,可以采取混合式方法,其根据特定的设计,利用常用的工艺流程,将标准元件装配连接起来来制造所需系统。这种方法的优点是可以利用标准元件和已知的工艺技术,无需或只需较小的改动。几种关于此混合式方法的提议可以在专利US 5,640,995,US 2004/0087043和WO 2004/022233中找到。然而这些文献中所提及的工艺技术并非有很强的通用兼容性,另外这些方法不能实现充分的自动化生产,以至其制造过程还需一定的人工工作量。再有,所涉及有含有装配元件步骤的方法,其较难达到精确装配元件的要求。典型的问题还有泄露、所用的胶体物一类对通道的阻塞、所用液体对器件材料的侵蚀及器件材料对流通液体及气体的沾污。
在构造混合式微流控系统中,需要进行流体,电学,机械连接。这些连接的生产要求和功能要求很难相互协调。已知的解决方法为在设计上和材料工艺的选择上做协调。理想的情况是自由地选择材料和工艺以及对于各个类型的连接做各自的优化。专利US 6,540,961描述了一个用于(分子生物)分析及诊断的流体感应元,其结构包括一个含有流体及电子元件的第一支撑基片102(柔性电路/印刷电路板/半导体材料)和第二基片/倒装芯片112,两基片由密封剂130做机械连接,由导电凸点128做电学连接。其中,密封剂除了起机械连接的作用,还起密封的作用。由于这两种功能无法分开作用,而导致无法单独调节优化流体连接或机械连接。在专利EP1415710的具体实施例中描述了一个用于生物化学分析,包括单个或多个(DNA,RNA,蛋白质)序列的装置。其中,一个集成(微流控阵列)器件310包括一个或多个阵列元件312和一个或多个微流控元件314,阵列元件与微流控元件间有相互的机械连接及流体连接,但无电学连接。一个阵列元件包括一个或多个(可灵活变化)阵列基片332[0066]。阵列元件以夹,卡或支架之类或粘固,超声焊接等方式与微流控元件进行机械连接,元件之间的密封可由密封垫片或密封剂[0071]来实现。然而用此方法不能实现电学连接。一个微流控元件可含有电学部件,例如电学元件或集成电路512[0091]。此处电学元件和微流控元件通过倒装芯片连接技术彼此连接[0094],其为电学连接而非流体连接。也可将电学元件配置于起微流控作用的例如通道或腔体[102]之上,但如何密封却没有提及。上述文献未有描述可进行机械,流体及电学连接的同时可以独自对各个连接进行调节,而不依赖影响其他连接的方法。
综上所述,目前所需的构造混合式微流控系统的技术,要求其使用尽量普遍常用的标准元件及能进行大程度自动化生产,且对于流体连接,电学连接,机械连接中的单个及各个连接可以尽量地自由地选择材料及工艺。本发明的目的在于满足此需要。
发明内容
以此为目的本发明提供一种构造具有流控及电学功能的器件的方法,包括:
-将具有流控及电学功能的模块装配到含有流体回路的基片上;
-将所述模块同基片进行流体连接;
-将所述模块同基片进行电学连接;和
-将所述模块同基片进行机械连接,
其特征在于:
-采用芯片倒装技术;以及
-采用密封垫片来进行密封。
四十年来,倒装芯片技术在微处理器,智能卡片,钟表,液晶显示器驱动芯片等的生产中有各种各样的应用。它是集成电路工业中一项很重要的封装技术。像其名字所示的一样,此技术将芯片有源的一面面对基片而进行装配。芯片同基片之间的电学连接是通过焊料凸点,冶金凸点,柔性凸点,导电聚合物,各向异性导电粘贴材料或卡箍连接等技术来实现的。关于此技术可参考:Rao Tummala,微系统封装原理(Fundamentals of Microsystems Packaging),2002,ISBN0-07-137169-9。
利用此方法可以构造一个混合式微流控系统,能实现可以根据各种连接各自所需而自由地选取材料和工艺,无需考虑此材料及工艺对其余种类连接的影响,这样可以自由地对各个单个连接进行配置优化。此方法利用倒装芯片技术,可以很精确地将模块配置于基片上。其电学连接通过当下常用的材料及成熟的工艺流程即可实现。正因为利用传统,可直接利用的仪器及技术,使研发及生产的成本较低。
在基片上设置一个容纳空间,其用来至少一部分容纳密封垫片。同时根据此容纳空间使密封垫片找准装配位置。在正确的几何设计中,适当考虑例如容纳空间的深度和/或此处芯片与基片之间的距离,密封垫片可以通过机械连接以及在机械连接的过程中获得合适的压力。这样密封的效果则无关于密封垫片与模块或基片之间的粘合效果。密封垫片的材料可以例如是弹性体,其可以就地于片上生长,如用旋转涂层或喷射的方法,也可以采用离片生长的这种材料,如在另外大块此材料上切割下所需的形状。
本发明电学连接可以利用如金球凸点来实现,在封装中,金球凸点被挤压于两片材料为金的焊盘之间。金的可锻性使其可以用来灵活补足结构尺寸上的弹性空间。而其他一些硬质的凸点及焊接材料也可在此使用。最好用密封垫片将含于基片之上或其中与/或模块之上或其中的电子元件隔离于存在于器件中的流体。此方法不仅避免了流体对电学元件的侵蚀,同时还防止了器件材料对流体的沾污及短路现象。
为完成机械连接,可以使用有粘性的辅料,如胶体,环氧胶体,这使得工艺过程短小廉价。所用辅料也可以是在高温下使用的焊接材料。另外也可使用夹具,这样在测量、探测或维修的过程中可将机械连接拆开。最好用密封垫片将含于基片之上或其中与/或模块芯片之上或其中的流体元件隔离于有粘性的辅料。这样就减小了元件受沾污及阻塞的可能性。
密封垫片同时可作为弹性薄膜,而制成例如阀门。这将在接下来根据本发明方法的具体实施例中做具体描述。
附图说明
以下将根据本发明方法的而非局限于此的两例具体实施例对本发明进行阐述。
其中,
-图1a为装配过程中的根据本发明方法而构造的一部分第一器件的剖面示意图。
-图1b为装配后的第一器件的剖面示意图。
-图2为根据本发明方法构造的一部分第二器件的剖面示意图。
具体实施方式
一个模块部件或单元(2)通常是一块基于玻璃材料或硅材料的芯片,例如其平面尺寸在3×5平方毫米左右。模块(2)通常可包含流体传感器,压力传感器,阀门,泵,反应室,进样器,分离柱,加热元或探测器。一个微流控器件(1)是由将模块(2)和其余组件装配于基片或通道板(3)上而构成。典型地,将模块(2)装配于基片(3)上所需的对准精准度为10微米或以下。利用倒装芯片技术,这个指标很容易达到。所述基片或通道板通(3)常是基于玻璃材料和/或硅材料的芯片,例如其平面尺寸在20×30平方毫米左右,其上含有流体回路(4)及电子线路(5)。这些回路和线路(4,5)构成了模块(2)和器件(1)的输入、输出之间,或者模块与其余一个或多个装配于基片(3)上的模块之间的连接。典型的通道(4)尺寸为25到250平方微米。
一个典型厚度为100微米的弹性密封垫片(6)被置于基片(3)表面的以此目的而设置的凹入结构(7)中。密封垫片也可为硬质或由几部分构成。由于密封垫片(6)的厚度较厚,则对模块芯片的生产误差、封装误差、由化学或热作用及材料老化而产生的偏离予以减免。密封垫片也可以直接在片上生长,例如通过整体或部分的喷射或涂层法。
基片(3)上还含有金连接垫片(8),模块(2)上有典型厚度为50微米的金球凸点(9)。这个厚度可再次将由生产误差带来的偏离予以减免。在封装过程中凸点(9)被挤压在垫片(8)间。如果需要,设定并置予一定的压力或移动位移,则密封垫片(6)上所应得的压力,或所需空间(10)的高度则可被确定。还可以用焊接材料或导电有粘性的硬质凸点来做电学连接。机械连接是由粘性材料(11),此例中为环氧胶体,来实现。也可利用焊接工艺,如采用材料金或锡来实现,则其所需的温度较高。
密封垫片(6)不仅使流体元件(4,12)与电学元件(5,8,9)相隔绝,还使流体元件(4,12)与胶体(11)相隔绝。这样则保护了所用的气体或液体免受沾污,及保护流体元件(4,12)免受沾污和阻塞。同时也保护了电学元件(5,8,9)免受所用流体对其的侵蚀。
密封垫片同时也可作为弹性薄膜(106)而形成例如阀门(101),如图2所示。为此目的,在基片(103)上打造有气门座圈(114),所述薄膜(106)紧贴于其上则形成阀门(101)关闭的状态。以类似的形式,其也可形成液压或气压元件,如薄膜泵。
一个典型的根据本发明的构造方法包括如下步骤:
-准备模块部分或单元;
-清洁
-装置凸点
-准备基片或通道板
-清洁
-将基片置于倒装芯片仪器上
-将(一个或多个)密封垫片置于基片上设置的凹入结构中
-在基体上涂敷胶体
-装备模块
-拾起模块
-对准模块
-将模块置于基片上并施压
-调节胶体
上述整个过程可以前后或同时重复用于其余的模块,而完成整个微流控系统的装配。
本发明方法优于其他方法之处在于:
-可以最大限度地单独优化机械连接,电学连接及流控连接,各连接不依赖影响其他连接。
-用一个或多个相对较厚的密封垫片,对模块芯片的生产误差、封装误差、由化学或热作用及材料老化而产生的偏离予以减免。
-为精确生产制作密封垫片及基片上的流体回路、精确地将模块装配于基片上及减小内部死体积提供可能。
-应用传统的倒装芯片仪器,投资成本低廉。
-应用成熟的倒装芯片技术,使稳定性及成品率提高,大量降低研发和生产的成本。
-工艺流程的兼容性强,较容易快速及廉价地更换生产线。
本发明并不局限于以上实施例,一些衍生变化版本也属于本发明专利保护范围内。

Claims (9)

1.一种构造具有流控及电学功能的器件(1)的方法,包括:
-将具有流控及电学功能的模块(2)装配到含有流体回路(4)的基片(3)上;
-将所述模块同基片进行流体连接;
-将所述模块同基片进行电学连接;和
-将所述模块同基片进行机械连接,
其特征在于:
-采用芯片倒装技术;以及
-采用密封垫片(6)来进行密封。
2.根据权利要求1所述的方法,其特征在于采用有粘性的辅料(11)来进行机械连接。
3.根据权利要求2所述的方法,其特征在于采用胶体作为所述有粘性的辅料。
4.根据权利要求2所述的方法,其特征在于采用焊接材料作为所述有粘性的辅料。
5.根据上述权利要求中的任一项所述的方法,其特征在于在所述基片上设置容纳空间(7),其用来至少部分容纳密封垫片。
6.根据上述权利要求中的任一项所述的方法,其特征在于用机械连接及在此过程中对密封垫片施加压力。
7.根据上述权利要求中的任一项所述的方法,其特征在于还使用密封垫片形成弹性薄膜(106)。
8.根据上述权利要求中的任一项所述的方法,其特征在于采用密封垫片将电学元件与存在于器件中的流体相互隔绝开来。
9.根据上述权利要求中的任一项所述的方法,其特征在于采用密封垫片将流体元件与有粘性的辅料相互隔绝开来。
CN2007800113597A 2006-03-30 2007-03-22 一种构造具有流控及电学功能的器件的方法 Expired - Fee Related CN101410183B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1031465 2006-03-30
NL1031465A NL1031465C2 (nl) 2006-03-30 2006-03-30 Werkwijze voor het opbouwen van een inrichting met fluïdische en elektrische functies.
PCT/NL2007/000076 WO2007114687A1 (en) 2006-03-30 2007-03-22 Method for building a device having fluidic and electrical functions

Publications (2)

Publication Number Publication Date
CN101410183A true CN101410183A (zh) 2009-04-15
CN101410183B CN101410183B (zh) 2012-10-17

Family

ID=37441551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800113597A Expired - Fee Related CN101410183B (zh) 2006-03-30 2007-03-22 一种构造具有流控及电学功能的器件的方法

Country Status (6)

Country Link
US (1) US7594314B2 (zh)
EP (1) EP1998893A1 (zh)
JP (1) JP5186482B2 (zh)
CN (1) CN101410183B (zh)
NL (1) NL1031465C2 (zh)
WO (1) WO2007114687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587149A (zh) * 2017-09-01 2020-08-25 米罗库鲁斯公司 数字微流控设备及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007393A1 (de) 2009-01-29 2010-08-05 Mgb Endoskopische Geräte Gmbh Berlin Insufflator
WO2012004423A1 (es) * 2010-07-07 2012-01-12 Ikerlan, S.Coop Método de fabricación de dispositivos microfluidicos.
SG11201406551WA (en) * 2012-07-12 2014-11-27 Agency Science Tech & Res A connector for microfluidic device, a method for injecting fluid into microfluidic device using the connector and a method of providing and operating a valve
EP2964986A1 (en) * 2013-03-07 2016-01-13 Debiotech S.A. Microfluidic valve having improved tolerance to particles
FR3006207A1 (fr) 2013-05-30 2014-12-05 Commissariat Energie Atomique Carte fluidique comportant un canal fluidique pourvu d'une ouverture refermable par un film souple

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1011077B (zh) * 1989-04-17 1991-01-02 厦门大学 流动体系电流检测器
US6068818A (en) * 1993-11-01 2000-05-30 Nanogen, Inc. Multicomponent devices for molecular biological analysis and diagnostics
US5640995A (en) * 1995-03-14 1997-06-24 Baxter International Inc. Electrofluidic standard module and custom circuit board assembly
US6293012B1 (en) * 1997-07-21 2001-09-25 Ysi Incorporated Method of making a fluid flow module
AU742960B2 (en) * 1998-02-20 2002-01-17 Nanogen, Inc. Advanced active devices and methods for molecular biological analysis and diagnostics
US6477901B1 (en) * 1999-12-21 2002-11-12 Integrated Sensing Systems, Inc. Micromachined fluidic apparatus
EP1322947B1 (de) * 2000-09-07 2007-12-12 GeSIM Gesellschaft für Silizium-Mikrosysteme mbH Verfahren zum herstellen einer 3-d-mikrodurchflusszelle und 3-d-mikrodurchflusszelle
GB0028647D0 (en) * 2000-11-24 2001-01-10 Nextgen Sciences Ltd Apparatus for chemical assays
TW560018B (en) * 2001-10-30 2003-11-01 Asia Pacific Microsystems Inc A wafer level packaged structure and method for manufacturing the same
DE10164494B9 (de) * 2001-12-28 2014-08-21 Epcos Ag Verkapseltes Bauelement mit geringer Bauhöhe sowie Verfahren zur Herstellung
JP3575478B2 (ja) * 2002-07-03 2004-10-13 ソニー株式会社 モジュール基板装置の製造方法、高周波モジュール及びその製造方法
WO2004022233A1 (en) 2002-09-06 2004-03-18 Epigem Limited Modular microfluidic system
US7422911B2 (en) * 2002-10-31 2008-09-09 Agilent Technologies, Inc. Composite flexible array substrate having flexible support
US20060153745A1 (en) * 2005-01-11 2006-07-13 Applera Corporation Fluid processing device for oligonucleotide synthesis and analysis
EP1919623B1 (en) * 2005-07-25 2009-12-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Chip-holder for a micro-fluidic chip
CN100536097C (zh) * 2005-07-25 2009-09-02 皇家飞利浦电子股份有限公司 带有电子和流体功能的生物医学设备的互连和封装方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587149A (zh) * 2017-09-01 2020-08-25 米罗库鲁斯公司 数字微流控设备及其使用方法
CN111587149B (zh) * 2017-09-01 2022-11-11 米罗库鲁斯公司 数字微流控设备及其使用方法

Also Published As

Publication number Publication date
CN101410183B (zh) 2012-10-17
US20080250633A1 (en) 2008-10-16
EP1998893A1 (en) 2008-12-10
JP5186482B2 (ja) 2013-04-17
WO2007114687A1 (en) 2007-10-11
US7594314B2 (en) 2009-09-29
JP2009532857A (ja) 2009-09-10
NL1031465C2 (nl) 2007-10-03

Similar Documents

Publication Publication Date Title
CN101410183B (zh) 一种构造具有流控及电学功能的器件的方法
US8931328B2 (en) Multilayer structure having a microfluidic channel and a system for detecting leakage from the microfluidic channel, and method of detecting leakage in a microfluidic device
CN100536097C (zh) 带有电子和流体功能的生物医学设备的互连和封装方法
CN101875481A (zh) 一种基于低温共烧陶瓷的mems封装方法
EP2269947B1 (en) Method for manufacturing and testing microfluidic chips
US9387475B2 (en) Assembly of at least one microfluidic device and mounting piece
CN102680158A (zh) 基于硅通孔技术的集成式微型压力流量传感器
EP2521907B1 (en) Fluidics interface system
van der Schoot et al. A modular miniaturized chemical analysis system
JP4621475B2 (ja) センサ一体型マイクロチップ、およびマイクロチップシステム
EP3705864B1 (en) Pressure sensor die attach
CN217901097U (zh) 一种应用新型平面粘接密封结构的半导体压力传感器
Morrissey et al. Selection of materials for reduced stress packaging of a microsystem
CN111103234A (zh) 一种微流控芯片键合强度的测试装置及其测试方法
CN202468239U (zh) 一种闭环压电薄膜泵
WO2024000417A1 (zh) 微流控芯片及其检测系统、检测方法、制备方法
Briand et al. Silicon liquid flow sensor encapsulation using metal to glass anodic bonding
Wissink et al. Novel hybrid µTAS using modular assembly technology (MATAS)
Ulien et al. P2. 1.22 The ubiquitous technology for prototype and disposable bio-chemical sensors packaging
KR20240007188A (ko) 유체를 제어하거나 측정하기 위한 디바이스
Fontana et al. MEMS pressure sensors–new LGA packagings
vandenBerg et al. MEMS Technology for Space Applications
BENAVIDES et al. Electro-Microfluidic Packaging
Sethu Plastic based microfluidic systems and their applications in biology
US20100028206A1 (en) Microchip and method of manufacturing microchip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: THERMO FISHER CO., LTD.

Free format text: FORMER OWNER: C2V B. V.

Effective date: 20131218

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20131218

Address after: Italy Luo Dan Europe

Patentee after: Thermofisher company

Address before: Enschede

Patentee before: C2v B. V.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

Termination date: 20210322