CN101402443A - 模态激励悬臂微梁及其模态形状电极的宽度确定方法 - Google Patents

模态激励悬臂微梁及其模态形状电极的宽度确定方法 Download PDF

Info

Publication number
CN101402443A
CN101402443A CNA2008102350485A CN200810235048A CN101402443A CN 101402443 A CN101402443 A CN 101402443A CN A2008102350485 A CNA2008102350485 A CN A2008102350485A CN 200810235048 A CN200810235048 A CN 200810235048A CN 101402443 A CN101402443 A CN 101402443A
Authority
CN
China
Prior art keywords
shape electrode
electrode
modality
condition shape
elasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102350485A
Other languages
English (en)
Other versions
CN101402443B (zh
Inventor
李普
方玉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2008102350485A priority Critical patent/CN101402443B/zh
Publication of CN101402443A publication Critical patent/CN101402443A/zh
Application granted granted Critical
Publication of CN101402443B publication Critical patent/CN101402443B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

本发明公布了一种模态激励悬臂微梁及其模态形状电极的宽度确定方法,属微机电系统MEMS领域。所述模态激励悬臂微梁,包括弹性微梁、悬臂支承模块、模态形状电极。所述模态形状电极的宽度确定方法包括:确定悬臂微梁的尺寸,通过悬臂支承模块在弹性微梁和驱动电极间加电压,采用模态函数曲线作为驱动电极的基本形状,得到模态形状电极宽度。本发明结构简单,模态阶数可以按需求选择,不会引起模态截断误差,测试精度高。

Description

模态激励悬臂微梁及其模态形状电极的宽度确定方法
技术领域
本发明涉及一种模态激励悬臂微梁及其模态形状电极的宽度确定方法,属于微机电系统(MEMS)领域。
背景技术
静电激励的悬臂微梁是许多微机电器件的核心部分,例如:微梁式谐振器及滤波器。这类微梁通常按某阶固有频率振动,最常见的是按第一阶固有频率振动。静电激励频率就是这阶固有频率。目前,这类微梁的驱动电极都被设计成固定宽度(驱动电极形状都为矩形,例如:M.I.Younis,E.M.Abdel-Rahman,AliNayfeh.A Reduced-Oder Model for Electrically Actuated Microbeam-Based MEMS,Journal of Microelectromechanical Systems,vol.12,no.5,pp.672-680,2003;E.M.Abdel-Rahman,M.I.Younis,Ali Nayfeh.Characterization of the mechanicalbehavior of an electrically actuated microbeam.J.Micromech.Microeng,12,759-766,2002.)。
振动力学的模态理论及实验表明,无论激励频率是多少,微梁的振动都是由许多阶模态叠加而成的。但当前对这类微梁进行仿真计算时,为简化计算,都直接假设微梁按第一阶模态振动(C.Zhang,G.Xu,Q.Jiang.Characterization ofthe squeeze film damping effect on the quality factor of a microbeam resonator,Journal of Micromechanics and Microengineering,2004,14:1302-1306;M.I.Younis,E.M.Abdel-Rahman,Ali Nayfeh.A Reduced-Oder Model for Electrically ActuatedMicrobeam-Based MEMS,Journal of MicroelectromechanicalSystems,vol.12,no.5,pp.672-680,2003;Y.J.Yang,M.A.Gretillat,S.D.Senturia.Effect of air damping on the dynamics of nonuniform deformations ofmicrostructures,International conference on Solid-State Sensors and Actuators,Chicago,IL,1997,June 16-19,1093-1096),即仿真计算时只取第一阶模态,其余模态的振动都视为截断误差。显然,这种误差是无法克服的,在一些工况下直接影响仿真的可信度。如果能使微梁只按第一阶模态振动,那么仿真的模态截断误差为零。但是,目前这类微梁的驱动电极都被设计成固定宽度的矩形。按振动模态理论,这种电极能激励起微梁的所有模态。
发明内容
本发明要解决的技术问题是针对现有技术存在的缺陷提出一种模态激励悬臂微梁及其模态形状电极的宽度确定方法。
本发明模态激励悬臂微梁,包括弹性微梁、悬臂支承模块、模态形状电极,其中弹性微梁的一端固定于悬臂支承模块的上表面,悬臂支承模块的下表面与基底固定,模态形状电极位于弹性微梁正下方,并且模态形状电极固定于基底上。
所述的模态激励悬臂微梁的模态形状电极的宽度确定方法,包括如下步骤:
a)确定悬臂微梁的长度沿x方向尺寸为l、宽度沿z方向尺寸为b、厚度沿y方向尺寸为hδ
b)通过悬臂支承模块在弹性微梁和模态形状电极间加电压V(t)=V0+v(t),其中V0是直流偏置分量,v(t)是交流分量,V0>>v(t);
c)采用模态函数曲线φi(x)作为驱动电极的基本形状,模态函数曲线φi(x)关于x轴对称,其表达式为:φi(x)=cosh(λix)-cos(λix)-γi[sinh(λix)-sin(λix)],0≤x≤l,其中 γ i = sinh ( λ i l ) - sin ( λ i l ) cosh ( λ i l ) + cos ( λ i l ) , λil是梁振动方程的第i个特征根,i为模态阶数,取值范围为:i=1,2,3,…∞,模态形状电极宽度为:
B ( x ) = 2 × b 4 φ i ( x ) = b φ i ( x ) 2 .
本发明模态激励悬臂微梁及其模态形状电极的宽度确定方法结构简单,模态阶数可以按需求选择,不会引起模态截断误差,测试精度高。
附图说明
图1:本发明结构图;
图2:图1的A-A截面图。图中不包括固定支承部分的投影,只有模态电极投影。图中细虚线所围区域为现有的矩形电极,粗实线所围区域为本发明的模态形状电极。
具体实施方法
如图1所示,本发明模态激励悬臂微梁,包括弹性微梁1、悬臂支承模块2、模态形状电极3,其中弹性微梁1的一端固定于悬臂支承模块2的上表面,悬臂支承模块2的下表面与基底固定,模态形状电极3位于弹性微梁1正下方,并且模态形状电极3固定于基底上。
如图2所示,以构建第一阶模态函数为例。所述的模态激励悬臂微梁的模态形状电极的宽度确定方法,包括如下步骤:
a)确定悬臂微梁的长度沿x方向尺寸为l、宽度沿z方向尺寸为b、厚度沿y方向尺寸为hδ,模态形状电极是由两根曲线围成,最宽处等于微梁的宽度,两根曲线关于x轴对称。该曲线就是微梁的第一阶模态函数;
b)通过悬臂支承模块2在弹性微梁1和模态形状电极间加电压V(t)=V0+v(t),其中V0是数值大的直流偏置分量,v(t)是数值小的交流分量,V0>>v(t);g0是驱动电压为零时梁下底面与驱动电极的间距,当弹性微梁变形小于g0/20时,悬臂微梁的振动方程和边界条件分别为:
ρb h δ ∂ 2 w ∂ t 2 + EI ∂ 4 w ∂ x 4 - ϵb V 0 2 g 0 3 w = ϵB ( x ) V 0 g 0 2 v ( t ) ;
w ( 0 , t ) = ∂ w ( 0 , t ) ∂ x = 0 , ∂ w 2 ( l , t ) ∂ x 2 = ∂ w 3 ( l , t ) ∂ x 3 = 0 , 其中w(x,t)是驱动电压引起的梁的动态变形曲线,是微梁加速度,
Figure A20081023504800055
是剪力项,
Figure A20081023504800056
则是剪力关于x的偏导数,E是梁材料的弹性模量,I是微梁横截面对中性轴的惯性矩,ρ是梁材料密度,ε是介电常数,B(x)是驱动电极宽度;
为了充分利用梁的宽度b,以获得尽可能大的驱动力,驱动电极的最宽处为b,采用模态函数曲线φ1(x)模拟模态形状电极,模态函数曲线φ1(x)关于x轴对称,其表达式为:φ1(x)=cosh(λ1x)-cos(λ1x)-γ1[sinh(λ1x)-sin(λ1x)],其中λ1l=1.875, γ 1 = sinh ( λ 1 l ) - sin ( λ 1 l ) cosh ( λ 1 l ) + cos ( λ 1 l ) ≈ 0.743 , λ1l是梁振动方程的第1个特征根,模态形状电极宽度为: B ( x ) = 2 × b 4 φ 1 ( x ) = b φ 1 ( x ) 2 .
按振动理论,微梁的动态变形可以表示为:
w ( x , t ) = Σ i = 1 ∞ φ i ( x ) q i ( t ) ;
式中,φi(x)是第i阶模态函数,qi(t)是第i阶模态坐标,i为模态阶数,取值范围为:i=1,2,3,…∞。则悬臂微梁的振动方程变为:
ρb h δ Σ i = 1 ∞ φ i ( x ) d 2 q i ( t ) d t 2 + EI Σ i = 1 ∞ ∂ 4 φ i ( x ) ∂ x 4 q i ( t ) - ϵb V 0 2 g 0 3 Σ i = 1 ∞ φ i ( x ) q i ( t ) = b φ 1 ( x ) 2 ϵ V 0 g 0 2 v ( t ) ;
按振动理论,模态函数具有如下正交性
∫ 0 l φ i ( x ) φ j ( x ) dx = 0 , i ≠ j ;
∫ 0 l φ i ( x ) φ j ( x ) dx = 1 , i = j ;
∫ 0 l φ i ( x ) ∂ 4 φ j ( x ) ∂ x 4 dx = 0 , i ≠ j ;
将上式即悬臂微梁的振动方程两边同时乘以φi(x),i=1,2,…∞,再在[0,]中积分,并利用模态函数正交性得:
ρb h δ d 2 q 1 ( t ) d t 2 + ( EI λ 1 4 - ϵb V 0 2 g 0 3 ) q 1 ( t ) = b 2 ϵ V 0 g 0 2 v ( t ) ;
qi(t)=0,i=2,3,…∞;
此时,微梁只有第一阶模态坐标q1(t)不为零,其余qi(t)都为零,即梁只按第一阶模态振动。

Claims (2)

1.一种模态激励悬臂微梁,其特征在于包括弹性微梁(1)、悬臂支承模块(2)、模态形状电极(3),其中弹性微梁(1)的一端固定于悬臂支承模块(2)的上表面,悬臂支承模块(2)的下表面与基底固定,模态形状电极(3)位于弹性微梁(1)正下方,并且模态形状电极(3)固定于基底上。
2.一种基于权利要求1所述的模态激励悬臂微梁的模态形状电极的宽度确定方法,其特征在于包括如下步骤:
a)确定弹性微梁(1)的长度沿x方向尺寸为l、宽度沿z方向尺寸为b、厚度沿y方向尺寸为hδ
b)通过悬臂支承模块(2)在弹性微梁(1)和模态形状电极间加电压V(t)=V0+v(t),其中V0是直流偏置分量,v(t)是交流分量,V0>>v(t);
c)采用模态函数曲线φi(x)作为驱动电极的基本形状,模态函数曲线φi(x)关于x轴对称,其表达式为:φi(x)=cosh(λix)-cos(λix)-γi[sinh(λix)-sin(λix)],0≤x≤l,其中 γ i = sinh ( λ i l ) - sin ( λ i l ) cosh ( λ i l ) + cos ( λ i l ) , λil是梁振动方程的第i个特征根,i为模态阶数,取值范围为:i=1,2,3,…∞,模态形状电极宽度为: B ( x ) = 2 × b 4 φ i ( x ) = b φ i ( x ) 2 .
CN2008102350485A 2008-11-07 2008-11-07 模态激励悬臂微梁及其模态形状电极的宽度确定方法 Expired - Fee Related CN101402443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102350485A CN101402443B (zh) 2008-11-07 2008-11-07 模态激励悬臂微梁及其模态形状电极的宽度确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102350485A CN101402443B (zh) 2008-11-07 2008-11-07 模态激励悬臂微梁及其模态形状电极的宽度确定方法

Publications (2)

Publication Number Publication Date
CN101402443A true CN101402443A (zh) 2009-04-08
CN101402443B CN101402443B (zh) 2011-04-27

Family

ID=40536628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102350485A Expired - Fee Related CN101402443B (zh) 2008-11-07 2008-11-07 模态激励悬臂微梁及其模态形状电极的宽度确定方法

Country Status (1)

Country Link
CN (1) CN101402443B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592089A (zh) * 2017-09-14 2018-01-16 东南大学 一种具有通孔结构的低热弹性阻尼悬臂微梁谐振器
CN110598366A (zh) * 2019-09-30 2019-12-20 清华大学 纵-扭复合振动式超声变幅杆基于频率耦合的设计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107592089A (zh) * 2017-09-14 2018-01-16 东南大学 一种具有通孔结构的低热弹性阻尼悬臂微梁谐振器
CN107592089B (zh) * 2017-09-14 2020-04-21 东南大学 一种具有通孔结构的低热弹性阻尼悬臂微梁谐振器
CN110598366A (zh) * 2019-09-30 2019-12-20 清华大学 纵-扭复合振动式超声变幅杆基于频率耦合的设计方法

Also Published As

Publication number Publication date
CN101402443B (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
Lin et al. Piezoelectric micro energy harvesters based on stainless-steel substrates
Matova et al. Effect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters
De Pasquale et al. Modelling and validation of air damping in perforated gold and silicon MEMS plates
Li et al. Micromachined piezoresistive accelerometers based on an asymmetrically gapped cantilever
Shahab et al. Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers
Riesch et al. A suspended plate viscosity sensor featuring in-plane vibration and piezoresistive readout
CN102193001A (zh) Saw-mems加速度传感器及制作方法
CN101567021A (zh) 用于振动发电的矩形悬臂梁压电振子优化设计有限元方法
Vysotskyi et al. Nonlinear electrostatic energy harvester using compensational springs in gravity field
CN101402443B (zh) 模态激励悬臂微梁及其模态形状电极的宽度确定方法
CN101402444B (zh) 模态激励两端固定微梁及其模态形状电极的宽度确定方法
Bellaredj et al. Anodic bonding using SOI wafer for fabrication of capacitive micromachined ultrasonic transducers
Tung et al. Estimating residual stress, curvature and boundary compliance of doubly clamped MEMS from their vibration response
Tian et al. Research on piezoelectric energy harvester based on coupled oscillator model for vehicle vibration utilizing a L-shaped cantilever beam
Zhang et al. Performance evaluation of a valveless micropump driven by a ring-type piezoelectric actuator
Li et al. Influence of vehicle body vibration induced by road excitation on the performance of a vehicle-mounted piezoelectric-electromagnetic hybrid energy harvester
Krakover et al. Micromechanical resonant cantilever sensors actuated by fringing electrostatic fields
Feng et al. Magnetic-repulsion-coupled piezoelectric-film-based stretchable and flexible acoustic emission sensor
Lee et al. Modeling of an IPMC actuator-driven zero-net-mass-flux pump for flow control
Qiu et al. Air damping of micro bridge resonator vibrating close to a surface with a moderate distance
US20160011040A1 (en) Analysis device and analysis method
Qiu et al. Hydrodynamic analysis of piezoelectric microcantilevers vibrating in viscous compressible gases
Gualdino et al. Pressure effects on the dynamic properties of hydrogenated amorphous silicon disk resonators
Wang et al. The performance of a piezoelectric cantilevered energy harvester with an imperfectly bonded interface
Chiou et al. CMOS-MEMS prestress vertical cantilever resonator with electrostatic driving and piezoresistive sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110427

Termination date: 20161107

CF01 Termination of patent right due to non-payment of annual fee