CN101395275A - 硝酸盐转运组分 - Google Patents

硝酸盐转运组分 Download PDF

Info

Publication number
CN101395275A
CN101395275A CNA2006800383549A CN200680038354A CN101395275A CN 101395275 A CN101395275 A CN 101395275A CN A2006800383549 A CNA2006800383549 A CN A2006800383549A CN 200680038354 A CN200680038354 A CN 200680038354A CN 101395275 A CN101395275 A CN 101395275A
Authority
CN
China
Prior art keywords
sequence
plant
seq
dna
recombinant dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800383549A
Other languages
English (en)
Inventor
S·M·艾伦
L·刘
V·拉卡
K·S·杜加
X·牛
K·芬格勒
D·卢塞尔特
H·P·赫尔希
H·王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
EIDP Inc
Original Assignee
Pioneer Hi Bred International Inc
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc, EI Du Pont de Nemours and Co filed Critical Pioneer Hi Bred International Inc
Publication of CN101395275A publication Critical patent/CN101395275A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及编码高亲和力硝酸盐转运组分的分离的核酸片段。本发明也涉及有义方向或反义方向的编码所有或部分硝酸盐转运组分的重组DNA构建体的构建,其中重组DNA构建体的表达可以改变转化宿主细胞中的硝酸盐转运组分的水平。

Description

硝酸盐转运组分
发明领域
本发明属于植物分子生物学领域。更特别地,本发明涉及编码植物和种子中的高亲和力硝酸盐转运蛋白的核酸片段。
发明背景
高等植物是自养生物,它们能够从获自当地环境的无机养料合成它们所有的分子成分。氮是植物细胞中存在的许多化合物的关键元素。其存在于分别构成核酸和蛋白质的结构单元的磷酸核苷和氨基酸中。对作物来说,氮的可利用性是农业生产中的重要限制因素,在高等植物细胞中只有氧、碳和氢比氮更为丰富,这一事实证明了氮的重要性。以铵或硝酸盐形式存在的氮很容易被高等植物吸收和同化。
硝酸盐是高等植物在正常田间条件下可利用的氮的主要来源。因此,硝酸盐同化途径是无机氮进入有机化合物的主要位置(Hewitt等人(1976)Plant Biochemistry,pp 633-6812,Bonner和Varner,eds.AcademicPress,NY)。尽管一些植物直接利用铵,但是在某些条件下,硝酸盐通常是植物可利用的氮的主要形式。
由根细胞摄取氮是高等植物中硝酸盐同化途径的第一步(Orsel等人(2002)Plant Physiology 129:886-896)。植物已经发展了两种不同的摄取系统来应付耕作土壤中各不相同的可利用的氮。当外部氮浓度很高时,优先使用低亲和力的硝酸盐转运系统,而在很低的外部浓度时就产生高亲和力转运系统(HATS)。
在高等植物中,已经鉴定了两个基因家族:分别是参与低亲和力转运系统和HAT的NRT1和NRT2家族。硝酸盐/亚硝酸盐转运的复杂性被精细的调节所增强,这种调节发生在转录水平:低亲和力和高亲和力系统都具有明显不同的组成型的和诱导型的组分。此外,硝酸盐转运蛋白的一些成员需要第二种基因产物,即NAR2型多肽来行使功能(Tong等人(2005)The Plant Journal 41:442-450)。
本申请的核苷酸序列以及使用它们的方法能够增加利用氮的效率。
发明概述
本发明包括编码高亲和力硝酸盐转运所需多肽的分离的多核苷酸,其中多肽的氨基酸序列与SEQ ID NO:36或49的氨基酸序列具有至少80%、85%、90%、95%、99%或100%的同一性,(b)核苷酸序列的互补序列,其中互补序列与核苷酸序列含有同样数量的核苷酸并且是100%互补的。多肽优选含有SEQ ID NO:36或49的氨基酸序列。核苷酸序列优选含有SEQ ID NO:35或48的核苷酸序列。
在第一实施方案中,本发明包括分离的多核苷酸,其含有:(a)编码高亲和力硝酸盐转运所需多肽的核苷酸序列,其中多肽的氨基酸序列基于Clustal V方法与多肽SEQ ID NO:36或49相比具有至少80%、85%、90%、95%、99%或100%序列同一性。
(b)核苷酸序列的互补序列,其中互补序列与核苷酸序列含有同样数量的核苷酸并且是100%互补的。
在第二实施方案中,本发明涉及这种分离的核苷酸序列或其互补序列,其含有至少两个基本上对应于SEQ ID NO:50、51或52所示氨基酸序列之任意一种的基序,其中所述基序基本上是保守的亚序列。除了可被鉴别的其它例子,这种基序的例子示于SEQ ID NO:50、51或52。也感兴趣的是这种片段或其部分在转化植物的反义抑制或共抑制中的用途。
在第三实施方案中,本发明涉及这种分离的核苷酸片段的互补序列,其中该片段或其部分在反义抑制或共抑制可改变转化植物的硝酸盐转运的蛋白质方面是有用的。
在第四实施方案中,本发明涉及含有启动子的分离的核酸片段,其中所述启动子基本上由SEQ ID NO:37、38、46、47、56、65、67、68、69、70、71、72、73、74、89或90所示的核苷酸序列所构成,或者所述启动子基本上由基本上相似于并在功能上等价于SEQ ID NO:37、38、46、47、56、65、67、68、69、70、71、72、73、74、89或90所示核苷酸序列的片段或亚片段所构成。
在第五实施方案中,本发明涉及重组DNA构建体,其含有可操作地连接到至少一种调节序列的任一前述核酸片段或其互补序列或者二者之一的一部分。也感兴趣的是在基因组中含有了这种重组DNA构建体的植物、获自这种植物的植物组织或细胞以及获自这些植物的种子。
在第六方面,本发明涉及改变植物硝酸盐转运的方法,包括:
(a)用重组DNA构建体转化植物,该构建体含有:
i)第一重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码HAT多肽的分离的多核苷酸;以及
ii)至少一种另外的重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码NAR多肽的分离的多核苷酸,
(b)在适于表达重组DNA构建体的条件下培养(a)的转化植物;选择具有改变了的硝酸盐转运的那些转化植物。含有这些重组构建体的谷类植物也是本发明的一部分。
在第七实施方案中,本发明涉及分离核酸片段的方法,该核酸片段编码与改变硝酸盐转运相关的多肽,包括:
(a)将SEQ ID NO:36、49、55或58与其它改变植物硝酸盐转运相关的多肽序列进行比较;
(b)鉴别步骤(a)中获得的4种或更多种氨基酸的保守序列;
(c)根据步骤(b)中鉴别的保守序列制备区域特异性核苷酸探针或寡聚体;以及
(d)使用步骤(c)的核苷酸探针或寡聚体通过序列依赖的方案来分离与改变硝酸盐转运相关的序列。
在第八实施方案中,本发明也涉及绘制与改变植物硝酸盐转运相关的遗传变异图谱的方法:
(a)将两种植物品种杂交;以及
(b)评估步骤(a)的杂交所产生的子代植株中的遗传变异,该评估是针对如下序列进行的:
(i)选自SEQ ID NO:35、48、54和57的核酸序列;或者
(ii)编码选自SEQ ID NO:36、49、55和58的多肽的核酸序列;
其中使用选自RFLP分析、SNP分析和基于PCR的分析的方法进行评估。
在第九实施方案中,本发明涉及用于获得改变了的植物硝酸盐转运的分子育种方法,包括:
(a)将两种植物品种杂交;以及
(b)评估步骤(a)的杂交所产生的子代植株中的遗传变异,该评估是针对如下序列进行的:
(i)选自SEQ ID NO:35、48、54和57的核酸序列;或者
(ii)编码选自SEQ ID NO:36、49、55和58的多肽的核酸序列;
其中使用选自RFLP分析、SNP分析和基于PCR的分析的方法进行评估。
在第十实施方案中,本发明涉及改变高亲和力硝酸盐转运蛋白多肽在宿主细胞中的表达水平的方法,包括:(a)用重组DNA构建体转化宿主细胞,该构建体含有:
(b)编码高亲和力硝酸盐转运蛋白多肽的核苷酸序列、其互补序列或者至少两个基本上对应于SEQ ID NO:50、51或52所示氨基酸序列之任意一种的基序,其中该多肽的氨基酸序列基于Clustal V比对方法与多肽SEQ ID NO:36或49相比具有至少80%序列同一性,并且该多肽改变硝酸盐转运,其中所述基序是可操作地连接到至少一种调节序列的基本上保守的序列;和
(c)在适于重组DNA构建体表达的条件下培养被转化的宿主细胞,其中重组DNA构建体的表达导致产生了被转化的宿主细胞中硝酸盐转运所需多肽的水平改变。
在第十一实施方案中,本发明涉及谷类植物,包括含有可操作地连接到至少一种调节序列上的分离的HAT多肽的第一DNA构建体;以及至少一种含有可操作地连接到至少一种调节序列上的编码NAR2多肽的分离的多核苷酸的另外的重组DNA构建体。
本发明另外的实施方案涉及改变植物氮转运的方法,包括:
(a)用重组DNA构建体转化植物,该构建体含有:
i)第一重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码HAT多肽的分离的多核苷酸;
ii)至少一种另外的重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码NAR多肽的分离的多核苷酸,
(b)在适于表达重组DNA构建体的条件下培养(a)的转化植物;以及
(c)选择具有改变了的硝酸盐转运的那些转化植物。
本发明更多的实施方案包括具有改善的动力学参数的改组HAT变体,含有编码这些变体的核苷酸序列的重组DNA构建体以及在基因组中含有这些重组DNA构建体的植物和转化细胞。本发明也包括含有第一重组DNA构建体和至少一种另外的重组DNA构建体的谷类植物,第一重组DNA构建体含有可操作地连接到至少一种调节序列的编码改组HAT变体的核苷酸序列,另外的重组DNA构建体含有可操作地连接到至少一种调节序列的编码NAR多肽的分离的多核苷酸。
本发明的另一实施方案提供了改变植物氮转运的方法,包括:a)用重组DNA构建体转化植物,该构建体含有第一重组DNA构建体和至少一种另外的重组DNA构建体,第一重组DNA构建体含有可操作地连接到至少一种调节序列的编码改组HAT变体的核苷酸序列,另外的重组DNA构建体含有可操作地连接到至少一种调节序列的编码NAR多肽的分离的多核苷酸;以及b)在适于表达重组DNA构建体的条件下培养(a)的转化植物;选择具有改变了的硝酸盐转运的那些转化植物。
生物学保藏
下述质粒已经被保藏在美国典型培养物保藏中心(ATCC),10801University Boulevard,Manassas,VA 20110-2209,并具有下述命名、保藏号和保藏日期。
质粒                   保藏号          保藏日期
PHP27621               ATCC
序列表简述
根据下述详细的说明书以及附图和序列表可更充分地理解发明,它们构成本申请的一部分。
图1是载体PHP27621的示意图。
图2是载体PHP27660的示意图。
图3是载体PHP27860的示意图。
图4是载体PHP27280的示意图。
图5是载体PHP27281的示意图。
图6是载体PHP27282的示意图。
图7是载体PHP27283的示意图。
SEQ ID NO:1是用于实施例3的正向引物。
SEQ ID NO:2是用于实施例3的反向引物。
SEQ ID NO:3是用于实施例3中进行确证性BAC末端测序的T7引物。
SEQ ID NO:4是用于实施例3中进行确证性BAC末端测序的SP6引物。
SEQ ID NO:5-33是用于覆盖含有HAT4基因的BAC克隆bacc.pk139.d24上的区域的测序引物。
SEQ ID NO:34表示玉米基因组的3924bp,其含有从BAC克隆bacc.pk139.d24分离到的编码高亲和力硝酸盐转运蛋白(HAT4)的基因的ORF(核苷酸2015-3583(终止密码))。
SEQ ID NO:35是SEQ ID NO:34的ORF核苷酸序列的1569bp。
SEQ ID NO:36是由SEQ ID NO:34的核苷酸2015-3580所编码的氨基酸序列。
SEQ ID NO:37是从SEQ ID NO:34所示的玉米高亲和力硝酸盐转运蛋白基因组序列的推定启动子的核苷酸1-2014延伸的2014bp。
SEQ ID NO:38是从SEQ ID NO:34所示的玉米高亲和力硝酸盐转运蛋白基因组序列的推定启动子的核苷酸1001-2014延伸的1014bp。
SEQ ID NO:39-42是实施例4中使用的正向和反向引物。
SEQ ID NO:43是实施例4中使用的T3引物。
SEQ ID NO:44是实施例4中使用的T7引物。
SEQ ID NO:45表示5812bp的玉米基因组,其含有编码高亲和力硝酸盐转运蛋白(HAT4)的基因的ORF(核苷酸2264-3450和5087-5357(终止密码))。
SEQ ID NO:46是从SEQ ID NO:45所示的玉米高亲和力硝酸盐转运蛋白基因组序列的推定启动子的核苷酸1-2263延伸的2263bp。
SEQ ID NO:47是从SEQ ID NO:45所示的玉米高亲和力硝酸盐转运蛋白基因组序列的推定启动子的核苷酸1001-2263延伸的1263bp。
SEQ ID NO:48是从SEQ ID NO:45的核苷酸2264-3450和5087-5354延伸的编码序列的1455bp。
SEQ ID NO:49是由SEQ ID NO:48所编码的氨基酸序列。
SEQ ID NO:50是在鉴别属于高亲和力硝酸盐转运蛋白基因的基因方面有用的保守序列基序。
SEQ ID NO:51是在鉴别属于高亲和力硝酸盐转运蛋白基因的基因方面有用的保守序列基序。
SEQ ID NO:52是在鉴别属于高亲和力硝酸盐转运蛋白基因的基因方面有用的保守序列基序。
SEQ ID NO:53是含有编码谷类NAR2型多肽(NAR2.1)的ORF(核苷酸757-1368(终止密码))的序列的1561bp。
SEQ ID NO:54是从SEQ ID NO:53的核苷酸758-1369(终止密码)延伸的编码序列的612bp。
SEQ ID NO:55是由SEQ ID NO:54的核苷酸758-1366所编码的氨基酸序列。
SEQ ID NO:56是从SEQ ID NO:53所示序列的推定启动子的核苷酸1-756bp延伸的756bp。
SEQ ID NO:57是编码NAR2型多肽(NAR2.2)的ORF(核苷酸1-594(终止密码))的594bp。
SEQ ID NO:58是由SEQ ID NO:57的ORF的核苷酸1-591所编码的氨基酸序列。
SEQ ID NO:59是实施例6中使用的NAR2.1特异性外侧引物。
SEQ ID NO:60是实施例6中使用的NAR2.1特异性内侧引物。
SEQ ID NO:61-64是用于测序NAR2.1启动子上游区域的测序引物。
SEQ ID NO:65显示了推定的NAR2.1启动子的额外2917bp。
SEQ ID NO:66显示了4498bp的完整NAR2.1基因,包括从核苷酸3655-3841延伸的内含子。
SEQ ID NO:67是从SEQ ID NO:66所示的NAR2.1基因组序列的推定启动子的核苷酸1-3506延伸的3506bp。
SEQ ID NO:68是从SEQ ID NO:66所示的NAR2.1基因组序列的推定启动子的核苷酸1001-2014延伸的1014bp。
SEQ ID NO:69是从SEQ ID NO:66所示的NAR2.1基因组序列的推定启动子的核苷酸2015-3506延伸的1492bp。
SEQ ID NO:70是实施例14中分离到的3621bp的基因组片段。
SEQ ID NO:71是从SEQ ID NO:70的核苷酸1-3236延伸的来自B73的推定Nar启动子的3236bp。
SEQ ID NO:72是从SEQ ID NO:70的核苷酸1-1000延伸的来自B73的推定Nar启动子的1000bp。
SEQ ID NO:73是从SEQ ID NO:70的核苷酸1001-3236延伸的来自B73的推定Nar启动子的2236bp。
SEQ ID NO:74是从SEQ ID NO:70的核苷酸2000-3236延伸的来自B73的推定Nar启动子的1237bp。
SEQ ID NO:75直到78是实施例14中描述的正向和反向引物。
SEQ ID NO:79-84是用于测序如实施例14所述的来自B73的Nar启动子的测序引物。
SEQ ID NO:85是实施例14中描述的载体pENTR-5的序列。
SEQ ID NO:86是实施例16中描述的载体PHP27621的序列。
SEQ ID NO:87是实施例17中描述的载体PHP27660的序列。
SEQ ID NO:88是实施例17中描述的载体PHP27860的序列。
SEQ ID NO:89是来自B73的推定Nar启动子的3324bp,含有SEQ IDNO:70的核苷酸1-1523和1821-3324。
SEQ ID NO:90是从SEQ ID NO:70的核苷酸2825-3325延伸的来自B73的推定Nar启动子的500bp。
SEQ ID NO:91表示玉米序列的2025bp,其含有编码分离自克隆cfp4n.pk008.p6:fis的高亲和力硝酸盐转运蛋白(HAT5)的基因的ORF(核苷酸250-1812(终止密码))。
SEQ ID NO:92是由SEQ ID NO:91的ORF所编码的氨基酸序列。
SEQ ID NO:93是实施例20中描述的载体PHP27280的序列。
SEQ ID NO:94是实施例20中描述的载体PHP27281的序列。
SEQ ID NO:95是实施例20中描述的载体PHP27282的序列。
SEQ ID NO:96是实施例20中描述的载体PHP27283的序列。
序列表含有的用于核苷酸序列符号的单字母代码以及用于氨基酸的三字母代码的定义符合Nucleic Acids Research 13:3021-3030(1985)和Biochemical Journal 219(No.2):345-373(1984)中所描述的IUPAC-IUBMB标准,通过引用将其引入本文。用于核苷酸和氨基酸序列数据的符号和格式遵守37C.F.R.§1.822中提出的规则。
发明详述
本文提到的每篇参考文献的公开内容都通过整体引用而引入本文。
术语“NAR”是指硝酸盐同化相关基因。这些类型的基因和由它们编码的NAR多肽是植物高亲和力硝酸盐吸收系统的组分。
术语“HAT”与高亲和力硝酸盐转运蛋白可交换使用。
如本文所使用的,“分离的核酸片段”与“分离的多核苷酸”可交换使用,它们是单链或双链RNA或DNA的聚合物,任选含有合成的、非天然的或者改变了的核苷酸碱基。DNA聚合物形式的分离的核酸片段可以包括一种或多种cDNA、基因组DNA或合成DNA片段。按它们如下的单字母命名来表示核酸(通常以它们的5’-单磷酸形式存在):“A”表示腺苷酸或脱氧腺苷酸(分别用于RNA或DNA),“C”表示胞苷酸或脱氧胞苷酸,“G”表示鸟苷酸或脱氧鸟苷酸,“U”表示尿苷酸,“T”表示脱氧胸苷酸,“R”表示嘌呤(A或者G),“Y”表示嘧啶(C或T),“K”表示G或T,“H”表示A或C或T,“I”表示次黄苷,“N”表示任意核苷酸。
术语“分离的”是指这样的物质,诸如核酸分子和/或蛋白质,它们是基本上游离的,或者以另外的方式除去了天然存在的环境中通常伴随或相互作用的成分。分离的多核苷酸可以从它们天然存在的宿主细胞中纯化。可以使用本领域技术人员已知的常规核酸纯化方法来获得分离的多核苷酸。该术语也包括重组多核苷酸和化学合成的多核苷酸。
术语“在功能上等价的亚片段”和“功能上等价的亚片段”在本文可交换使用。这些术语是指分离的核酸片段的一部分或亚序列,无论该部分或亚序列是否编码活性酶或功能蛋白(例如该部分或亚序列可以是编码区和/或非编码区的一部分,不需要编码活性酶或功能蛋白),都保持了改变基因表达或产生某种表型的能力。例如,可以将片段或亚片段用于设计重组DNA构建体以在转化植物中产生期望的表型。可以通过相对于植物启动子序列的合适定向来连接核酸片段或其亚片段而将重组DNA构建体设计用于共抑制或反义用途,无论它是否编码活性酶或功能蛋白。
术语“同源性”、“同源的”、“基本上相似的”和“基本对应于”在本文可交换使用。它们是指这样的核酸片段,其中一个或多个核苷酸碱基的改变并不影响核酸片段介导基因表达或产生某种表型的能力。这些术语也指本发明核酸片段的修饰,诸如缺失或插入一个或多个不会实质上改变所得核酸片段相对于初始未修饰片段的功能性质的核苷酸。因此如本领域技术人员所理解的那样,可以理解的是本发明不仅仅包括特定的例证性序列。
此外,本领域技术人员认可的是,本发明所包括的基本上相似的核酸序列也通过它们在中等严格条件(例如1×SSC,0.1% SDS,60℃)下与本文例举的序列杂交或者与本文报道的核苷酸序列的任意部分杂交的能力来限定,它们在功能上是与本发明的基因或启动子等价的。可调节严格条件来筛选中度相似片段直到高度相似片段,中度相似片段是诸如来自相关性较远的生物体的同源序列,高度相似片段是诸如完全相同于来自相关性较近的生物体的功能性酶的基因。杂交后的漂洗决定了严格条件。一组优选条件包括一系列漂洗,开始用6×SSC、0.5%SDS于室温漂洗15分钟,然后用2×SSC、0.5% SDS于45℃重复漂洗30分钟,然后用0.2×SSC、0.5% SDS于50℃重复漂洗30分钟两次。更优选的一组严格条件包括使用更高的温度,其中漂洗条件与上述一致,除了最后两次0.2×SSC、0.5% SDS中漂洗30分钟的温度增加到60℃。另一优选的一组高严格条件包括最后使用0.1×SSC、0.1% SDS于65℃漂洗两次。
对于靶(内源)mRNA和构建体中与靶mRNA具有同源性的RNA区域之间的显著相似性的程度而言,这种序列应该至少25个核苷酸的长度,优选至少50个核苷酸的长度,更优选至少100个核苷酸的长度,更优选至少200个核苷酸的长度,最优选至少300个核苷酸的长度;应该具有至少80%同一性,优选至少85%同一性,更优选至少90%同一性,最优选至少95%同一性。
可以通过对代表本发明核酸片段的亚片段或修饰的核酸片段进行筛选来选择基本上相似的核酸片段,其中一个或多个核苷酸被取代、缺失和/或插入,筛选的是它们影响由植物或植物细胞中未修饰核酸片段所编码多肽的水平的能力。例如,可构建代表源自该核酸片段的至少30个连续核苷酸、优选至少40个连续核苷酸、最优选至少60个连续核苷酸的基本上相似的核酸片段,并将其引入植物或植物细胞。然后可比较暴露于基本上相似核酸片段的植物或植物细胞中存在的未修饰核酸片段所编码的多肽的水平与未暴露于基本上相似核酸片段的植物或植物细胞中的多肽水平。
可以使用设计来检测同源序列的各种比较方法来确定序列比对和相似性百分比计算,包括但不限于LASARGENE生物信息学计算套件(DNASTAR Inc.,Madison,WI)的Megalign程序。使用Clustal V比对方法(Higgins和Sharp(1989)CABIOS.5:151-153)来进行序列的多重比对,采用默认参数(GAP PENALTY=10,GAP LENGTH PENALTY=10)。使用Clustal方法进行的用于蛋白质序列的成对比对和同一性百分比计算的默认参数是KTUPLE=1、GAP PENALTY=3、WINDOW=5和DIAGONALS SAVED=5。用于核酸的这些参数是KTUPLE=2、GAPPENALTY=5、WINDOW=4和DIAGONALS SAVED=4。
“基因”是指表达特定蛋白质的核酸片段,包括编码序列之前(5’非编码区)和之后(3’非编码区)的调节序列。“天然基因”是指天然发现的带有它自身的调节序列的基因。“重组DNA构建体”是指正常情况下并不在自然界中同时存在的核酸片段的组合。因此,重组DNA构建体可含有源自不同来源的调节序列和编码序列,或者含有源自同一来源,但是是以不同于正常情况下天然存在的方式排列的的调节序列和编码序列。“外来”基因是指正常情况下并不存在于宿主生物体中的基因,但是通过基因转移将它引入到了宿主生物体中。外来基因可含有插入非天然生物体中的天然基因,或者重组DNA构建体。“转基因”是已经通过转化过程被引入到基因组中的基因。
“编码序列”是指编码特定氨基酸序列的DNA序列。“调节序列”是指位于编码序列上游(5’非编码区)、内部、或者下游(3’非编码区)的核苷酸序列,它们影响相关编码序列的转录、RNA加工或稳定性、或者翻译。调节序列可包括但不限于启动子、翻译前导序列、内含子以及聚腺苷酸化识别序列。
“启动子”是指能够控制编码序列或功能RNA的表达的DNA序列。启动子序列由近端和更远端的上游元件组成,后者经常是指增强子。因此,“增强子”是能够促进启动子活性的DNA序列,可以是启动子的固有元件或者是插入的增强启动子的组织特异性水平的异源元件。启动子序列也可位于基因的转录部分内和/或转录序列的下游。启动子可全部来源于天然存在的不同启动子,乃至含有合成DNA片段。本领域技术人员可理解的是,不同启动子可指导不同组织或细胞类型中的、或处于不同发育阶段的、或者反应于不同环境条件的分离核酸片段的表达。在大多数细胞类型中、大多数时候都引起分离核酸片段表达的启动子通常被称为“组成型启动子”。在植物细胞中有用的各种类型的新启动子正在不断被发现;可以在Okamuro和Goldberg所编辑的(1989)Biochemistry of Plants 15:1-82中找到许多例子。
进一步公认的是,由于大多数情况下并没有完全限定调节序列的精确边界,因此具有一些变异的DNA片段可能具有同样的启动子活性。如本文使用的,“基本上相似的和在功能上等价的启动子亚片段”是指能够控制编码序列或功能RNA表达的启动子序列的一部分或亚序列。
在表达本发明的核酸片段中可能有用的启动子的特定例子包括但不限于本申请中公开的启动子(SEQ ID NO:37、38、46、47、56、65、67、68、69、70、71、72、73、74、89或90)。
“内含子”是基因中不编码蛋白质序列部分的间插序列。这样,这种序列被转录成RNA,但是随后就被切除,并不被翻译。该术语也用于被切除的RNA序列。
“外显子”是基因中被转录的并存在于源自该基因的成熟信使RNA中的序列部分,但是不一定是编码最终基因产物的序列部分。
术语“推定的核苷酸序列”是指根据与编码同一蛋白质的其它DNA序列的同源性将间插序列去除后的DNA序列。
术语“推定的氨基酸序列”是指根据与由编码同一蛋白质的DNA序列所编码的其它蛋白质的同源性将间插序列去除后的DNA序列所来源的多肽序列。
术语“翻译前导序列”是指位于基因启动子序列和编码序列之间的DNA序列。翻译前导序列存在于完全加工的mRNA中,位于翻译起始序列上游。翻译前导序列可影响初级转录物加工为mRNA、mRNA稳定性或者翻译效率。已经描述过翻译前导序列的例子(Turner,R.和Foster,G.D.(1995)Molecular Biotechnology 3:225)。
“3’非编码序列”是指位于编码序列下游的DNA序列,包括聚腺苷化识别序列以及编码能够影响mRNA加工或基因表达的调节信号的其它序列。聚腺苷化信号的特征通常是影响聚腺苷酸区域加入到mRNA前体的3’末端。不同3’非编码序列的使用由Ingelbrecht et al.,(1989)Plant Cell 1:671-680进行了举例说明。
“RNA转录物”是指RNA聚合酶催化DNA序列转录而得到的产物。当RNA转录物是DNA序列的完美互补拷贝时,称之为初级转录物,或者它可能是源自初级转录物的转录后加工的RNA序列,这被称为成熟RNA。“信使RNA(mRNA)”是指没有内含子的RNA,可被细胞翻译成蛋白质。“cDNA”是指使用酶逆转录酶从mRNA模板合成的并与mRNA模板互补的DNA。cDNA可以是单链的,或者使用DNA聚合酶I的Klenow片段将其转变为双链形式。“有义”RNA是指包括mRNA并能在细胞中或体外被翻译成蛋白质的RNA转录物。“反义RNA”是指互补于靶初级转录物或mRNA的全部或一部分的、并且阻止分离的靶核酸片段表达的RNA转录物(美国专利No.5,107,065)。反义RNA可以与特定基因转录物的任何部分互补,即5’非编码序列、3’非编码序列、内含子或者编码序列。“功能RNA”是指反义RNA、核酶RNA或者其它不可被翻译但是仍然对细胞过程有影响的RNA。术语“互补”和“反向互补”在本文中相对于mRNA转录物可交换使用,意味着定义信使RNA的反义RNA。
术语“内源RNA”是指由宿主基因组中存在的任何核酸序列所编码的任何RNA,无论是天然存在的或者是非天然存在的,即由重组方法、诱变等引入的。
术语“非天然存在的”意指人工的、与自然界中正常发现的所不一致的。
术语“可操作地连接”是指将核酸序列缔合在单个核酸片段上,以便一种序列的功能被其它序列调节。例如将启动子与编码序列可操作地连接,这时启动子就能够调节编码序列的表达(即编码序列由启动子的转录控制)。编码序列能够以有义或反义方向被可操作地连接到调节序列上。在另一实例中,本发明的互补RNA区域可直接或间接地被可操作地连接到靶mRNA的5’端或者靶mRNA的3’端或者靶mRNA的内部,或者第一互补区域是靶mRNA的5’端而它的互补序列在靶mRNA的3’端。
如本文使用的术语“表达”是指功能性终产物的产生。分离核酸片段的表达涉及分离核酸片段的转录和mRNA翻译成前体或成熟蛋白质。“反义抑制”是指能够抑制靶蛋白质表达的反义RNA转录物的产生。“共抑制”是指能够抑制相同的或基本上相似的外来或内源基因的表达的有义RNA转录物的产生(美国专利No.5,231,020)。
“成熟”蛋白质是指经过翻译后加工的多肽;也就是已经从中去除了初级翻译产物中存在的任何前肽。“前体”蛋白质是指mRNA的初级翻译产物;也就是仍然存在前肽和肽原。前肽和肽原可以是但不限于胞内定向信号。
“稳定转化”是指将核酸片段转移到宿主生物基因组中,包括核基因组和细胞器基因组两者,产生在遗传上稳定的遗传。与此相反,“瞬时转化”是指将核酸片段转移到宿主生物的细胞核或含有DNA的细胞器中,产生不整合或不稳定遗传的基因表达。含有转化的核酸片段的宿主生物被称为“转基因”生物。水稻、玉米和其它单子叶植物的细胞转化优选方法是使用粒子加速或者“基因枪”转化技术(Klein et al.,(1987)Nature(London)327:70-73;美国专利No.4,945,050),或者使用含有转基因的合适Ti质粒进行的农杆菌介导的方法(Ishida Y.et al.,1996,Nature Biotech.14:745-750)。本文使用的术语“转化”和“转化的”是指稳定转化和瞬时转化两者。
本文使用的标准重组DNA和分子克隆技术是现有技术中公知的,更全面地描述于Sambrook,J.,Fritsch,E.F.和Maniatis,T.MolecularCloning:A Laboratory Manual;Cold Spring Harbor Laboratory Press:Cold Spring Harbor,1989(下文称为“Sambrook”)。
术语“重组”是指例如通过化学合成或者通过遗传工程技术操作分离的核酸片段而将两种原本分开的序列片段进行的人工组合。
“PCR”或“聚合酶链式反应”是用于合成大量特定DNA片段的技术,包括一系列的重复循环(Perkin Elmer Cetus Instruments,Norwalk,CT)。典型地,将双链DNA热变性,在较低的温度下将互补于靶片段的3’边界的两种引物退火,然后在中间温度下进行延伸。一组这样的三个连续步骤被称为循环。
聚合酶链式反应(“PCR”)是用于成百万倍扩增DNA的强大技术,其通过在短期时间内对模板重复复制。(Mullis et al,Cold SpringHarbor Symp.Quant.Biol.51:263-273(1986);Erlich et al,的欧洲专利申请50,424;欧洲专利申请84,796;欧洲专利申请258,017,欧洲专利申请237,362;Mullis的欧洲专利申请201,184,Mullis et al的美国专利No.4,683,202;Erlich的美国专利No.4,582,788;以及Saiki et al的美国专利No.4,683,194)。该过程利用了几组特异的体外合成的寡核苷酸来启动DNA合成。引物的设计依赖于期望被分析的DNA的序列。该技术通过许多循环(通常为20-50)来进行,包括在较高温度下使模板解链、使引物与模板中的互补序列退火、然后用DNA聚合酶复制模板。
PCR反应产物的分析通过在琼脂糖凝胶中分离,然后经溴乙啶染色并用UV透射进行观察。或者,可将放射性dNTP加入PCR中以便将标记掺入产物中。在这种情况下,通过将凝胶曝光于x-射线胶片来观察PCR产物。放射性标记的PCR产物的更多优点在于可以定量每种扩增产物的水平。
术语“重组构建体”、“表达构建体”和“重组表达构建体”在本文可交换使用。这些术语是指可使用本领域技术人员公知的标准方法插入到细胞基因组中的遗传物质的功能单元。这些构建体可以就是它本身或者连同载体一起使用。如果使用载体,那么载体的选择取决于将用来转化宿主植物的如本领域技术人员所公知的方法。例如,可以使用质粒载体。技术人员将很清楚地知道,载体上必须存在遗传元件以便成功转化、选择和扩增含有任何本发明的分离的核酸片段的宿主细胞。技术人员也将认可的是,不同的独立转化事件将产生不同的表达水平和模式(Jones et al.,(1985)EMBO J.4:2411-2418;De Almeida et al.,(1989)Mol.Gen.Genetics 218:78-86),因此必须筛选多个事件以便获得显示出所期望的表达水平和模式的品种。这些筛选可通过DNA的Southern分析、mRNA表达的Northern分析、蛋白质表达的Western分析或者表型分析来实现。
以前已通过集中于在有义方向过量表达与内源mRNA具有同源性的核酸序列而设计了植物中的共抑制构建体,这导致了与过量表达序列具有同源性的所有RNA的减少(参见Vaucheret et al.(1998)Plant J16:651-659;和Gura(2000)Nature 404:804-808)。这种现象的整体效率是较低的,RNA减少的程度是普遍不同的。最近的研究工作已经描述了“发夹”结构的使用,它以互补方向掺入所有或部分的mRNA编码序列中,导致所表达RNA可能的“茎-环”结构(PCT出版物WO 99/53050,1999年10月21日公开)。这增加了所回收的转基因植物中共抑制的频率。另一种变异描述了植物病毒序列的使用,它指导邻近的mRNA编码序列的抑制或者“沉默”(PCT出版物WO98/36083,1998年8月20日公开)。这两种共抑制现象还没有从机制上被阐明,尽管最近的遗传学证据已经开始解决这种复杂情形(Elmayan et al.(1998)Plant Cell10:1747-1757)。
一方面,本发明包括含有编码高亲和力硝酸盐转运所需多肽的核苷酸序列的分离多核苷酸,其中多肽的氨基酸序列基于Clustal V比对方法与多肽SEQ ID NO:36或49相比具有至少80%、85%、90%、95%、99%或100%序列同一性。多肽也可以含有SEQ ID NO:36或49,核苷酸序列可以含有SEQ ID NO:35或48。
本发明也包括任何前述核苷酸序列的互补序列,其中互补序列和核苷酸序列由同样数量的核苷酸组成,并且是100%互补的。
另一方面,本发明包括本文所描述的分离的多核苷酸(或互补序列),其中核苷酸序列含有选自SEQ ID NO:50、51和52的至少两种、三种、四种或五种基序,其中所述基序是基本上保守的亚序列。
“基序”或“亚序列”是指含有更长序列的一部分的核酸或氨基酸保守序列的短区域。例如,预期这样的保守亚序列(例如SEQ ID NO:50、51和52)对于功能来说将是重要的,并能够用于鉴别植物高亲和力硝酸盐转运蛋白同源物的新同源物。预期可以在高亲和力硝酸盐转运蛋白同源物中发现一些或所有元件。也预期任意特定基序中的保守氨基酸的至少一种或两种可以在实际的高亲和力硝酸盐转运蛋白同源物中是不同的。
另一方面,本发明的多核苷酸或其功能上等价的亚片段在编码高亲和力硝酸盐转运蛋白所需蛋白质的核酸序列表达的反义抑制或共抑制方面是有用的,最优选内源高亲和力硝酸盐转运蛋白或外来高亲和力硝酸盐转运蛋白基因的反义抑制或共抑制。
反义抑制或共抑制的方案是本领域技术人员所公知的并在上文描述。
在进一步的方面,本发明包括分离的核酸片段,其含有(a)基本上由SEQ ID NO:37、38、46、47、56、65、67、68、69、70、71、72、73、74、89或90所构成的启动子,或者(b)所述启动子的基本上相似的并在功能上等价的亚片段。
也感兴趣的是重组DNA构建体,其含有可操作地连接到至少一种调节序列的任何上述鉴别的分离的核酸片段或分离的多核苷酸或其互补序列或者这些片段或互补序列的部分。
在基因组中含有这些重组DNA构建体的植物、植物组织也在本发明的范围内。转化方法是本领域技术人员所公知的,这在上文描述。任何植物、双子叶植物或单子叶植物都可用这些重组DNA构建体转化。
单子叶植物的例子包括但不限于玉米、小麦、水稻、高粱、小米、大麦、棕榈、百合、六出花属(Alstroemeria)、黑麦和燕麦。双子叶植物的例子包括但不限于大豆、油菜、向日葵、卡诺拉(canola)、葡萄、银胶菊、耧斗菜、棉花、烟草、豌豆、菜豆、亚麻、红花、苜蓿。
植物组织包括分化的和未分化的组织或植株,包括但不限于根、茎、芽、叶、花粉、种子、肿瘤组织,以及各种形式的细胞和培养物诸如单细胞、原生质、胚和愈伤组织。植物组织可以在植物或器官、组织或细胞培养物中。
另一方面,本发明包括改变植物硝酸盐转运的方法,包括:
(a)用重组DNA构建体转化植物,该构建体含有:
i)重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码HAT多肽的分离的多核苷酸,以及
ii)至少一种另外的重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码NAR多肽的分离的多核苷酸。
(b)在适于表达重组DNA构建体的条件下培养(a)的转化植物,并且选择具有改变的硝酸盐转运的那些转化植物。
如本文所使用的,改变植物硝酸盐转运可以引起增加的或减少的变化。
来自单个的植物原生质体转化体或者来自各种转化外植体的植物的再生、发育和栽培是现有技术中所公知的(Weissbach和Weissbach于Methods for Plant Molecular Biology,(Eds.),Academic Press,Inc.SanDiego,CA,(1988))。这种再生和生长过程典型地包括选择转化细胞、培养这些个体化细胞通过胚发育的通常阶段直到生根的小植株阶段的步骤。转基因胚和种子相似地再生。然后将所得到的转基因生根小芽种植在合适的植物生长培养基诸如土壤中。
含有外来的、外源的编码所感兴趣蛋白质的分离核酸片段的植物的发育或再生是现有技术中公知的。优选地,使再生植物自花授粉以提供纯合的转基因植物。否则,将获自再生植物的花粉与农业上重要品种的种子长成的植物进行杂交。相反地,将来自这些重要品种的花粉用于授粉再生植物。使用本领域技术人员公知的方法来栽培含有期望多肽的本发明的转基因植物。
有各种方法来从植物组织再生植物。
特定再生方法将取决于起始植物组织和待再生的特定植物种。
主要通过使用根癌农杆菌转化双子叶植物并获得转基因植物的方法已经公开了用于棉花(美国专利No.5,004,863,美国专利No.5,159,135,美国专利No.5,518,908);大豆(美国专利No.5,569,834,美国专利No.5,416,011,McCabe et.al.,BiolTechnology 6:923(1988),Christou et al.,Plant Physiol.87:671-674(1988));芸苔(美国专利No.5,463,174);花生(Cheng et al.,Plant Cell Rep.15:653-657(1996),McKently et al.,Plant Cell Rep.14:699-703(1995));木瓜;以及豌豆(Grant et al.,Plant Cell Rep.15:254-258,(1995))。
也已经报道了使用电穿孔,特别是粒子轰击,和农杆菌来转化单子叶植物。已经在芦笋(Bytebier et al.,Proc.Natl.Acad.Sci.(USA)84:5354,(1987));大麦(Wan和Lemaux,Plant Physiol 104:37(1994));玉米(Rhodeset al.,Science 240:204(1988),Gordon-Kamm et al.,Plant Cell 2:603-618(1990),Fromm et al.,BiolTechnology 8:833(1990),Koziel et al.,BiolTechnology 11:194,(1993),Armstrong et al.,Crop Science 35:550-557(1995));燕麦(Somers et al.,BiolTechnology 10:15 89(1992));野茅(Horn et al.,Plant Cell Rep.7:469(1988));水稻(Toriyama et al.,TheorAppl.Genet.205:34,(1986);Part et al.,Plant Mol.Biol.32:1135-1148,(1996);Abedinia et al.,Aust.J.Plant Physiol.24:133-141(1997);Zhang和Wu,Theor.Appl.Genet.76:835(1988);Zhang et al.PlantCell Rep.7:379,(1988);Battraw和Hall,Plant Sci.86:191-202(1992);Christou et al.,Bio/Technology 9:957(1991));黑麦(De la Pena et al.,Nature 325:274(1987));甘蔗(Bower和Birch,Plant J.2:409(1992));牛尾覃(Wang et al.,BiolTechnology 10:691(1992));以及小麦(Vasil etal.,Bio/Technology 10:667(1992);美国专利No.5,631,152)中实现了转化和植物再生。
通过聚乙二醇处理、电穿孔或者粒子轰击将核酸分子引入植物细胞中,已经开发了根据瞬时表达克隆的核酸构建体对基因表达进行分析的方法((Marcotte et al.,Nature 335:454-457(1988);Marcotte et al.,PlantCell 1:523-532(1989);McCarty et al.,Cell 66:895-905(1991);Hattori et al.,Genes Dev.6:609-618(1992);Goffet al.,EMBO J.9:2517-2522(1990)。
瞬时表达系统可用于功能性解析分离的核酸片段构建体(一般地参见Maliga et al.,Methods in Plant Molecular Biology,Cold Spring HarborPress(1995))。可以明白的是,本发明的任何核酸分子都能够与其它遗传元件诸如载体、启动子、增强子等一起以永久的或瞬时的方式引入植物细胞中。
除了上述讨论过的方法,专业人员熟悉那些描述了用于大分子(例如DNA分子、质粒等)构建、操作和分离,重组生物的产生,克隆的筛选和分离的特定条件和方法的标准资源材料,(参见例如Sambrook etal.,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Press(1989);Maliga et al.,Methods in Plant Molecular Biology,Cold SpringHarbor Press(1995);Birren et al.,Genome Analysis:Detecting Genes,1,Cold Spring Harbor,New York(1998);Birren et al.,Genome Analysis:Analyzing DNA,2,Cold Spring Harbor,New York(1998);Plant MolecularBiology:A Laboratory Manual,eds.Clark,Springer,New York(1997)。
在进一步的方面,本发明包括分离核酸片段的方法,该核酸片段编码与改变植物硝酸盐转运相关的多肽,包括:
(a)将SEQ ID NO:36或49与其它改变植物硝酸盐转运相关的多肽序列进行比较;
(b)鉴别步骤(a)中获得的4种或更多种氨基酸的保守序列;
(c)根据步骤(b)中鉴别的保守序列制备区域特异性核苷酸探针或寡聚体;以及
(d)使用步骤(c)的核苷酸探针或寡聚体通过序列依赖的方案来分离与改变植物硝酸盐转运相关的序列。
在鉴别与改变植物硝酸盐转运相关的其它植物序列方面有用的保守序列元件的例子可以在含有但不限于编码SEQ ID NO:50、51和52多肽的核苷酸中找到。
另一方面,本发明也包括绘制与改变植物硝酸盐转运相关的遗传变异图谱的方法:
(a)将两种植物品种杂交;以及
(b)评估步骤(a)的杂交所产生的子代植株中的遗传变异,该评估是针对如下序列进行的:
(i)选自SEQ ID NO:35或48的核酸序列;或者
(ii)编码选自SEQ ID NO:36和49的多肽的核酸序列;
其中使用选自RFLP分析、SNP分析和基于PCR的分析的方法进行评估。
另一方面,本发明包括用于获得改变了的植物硝酸盐转运的分子育种方法,包括:
(a)将两种植物品种杂交;以及
(b)评估步骤(a)的杂交所产生的子代植株中的遗传变异,该评估是针对如下序列进行的:
(i)选自SEQ ID NO:35和48的核酸序列;或者
(ii)编码选自SEQ ID NO:36和49的多肽的核酸序列
其中使用选自RFLP分析、SNP分析和基于PCR的分析的方法进行评估。
术语“绘制遗传变异图谱”或“绘制遗传变异性图谱”可交换使用,定义了鉴别不同植物品系、栽培种、品种、科或者种之间分化了的遗传区域中的DNA序列改变的过程,不管是来自天然的或诱导的原因。即使非常小的碱基改变而在特定基因座(基因)处产生的遗传变异也能够改变所能够产生的限制酶消化片段的模式。基因型的病原性改变可能是由于所分析基因中的缺失或插入或者甚至是单个核苷酸的取代,这可能产生或消除限制酶识别位点。RFLP(限制性片段长度多态性)分析就利用了这一点并利用了使用相应于感兴趣的分离核酸片段的探针进行的Southern印迹。
因此,如果多态性(也就是基因或DNA片段中通常发生的变异;也可以是同一物种中几种基因形式(等位基因)的存在)产生或破坏了限制性内切酶切割位点,或者如果它导致了DNA的丢失或插入(例如可变核苷酸串联重复(VNTR)多态性),它将改变由那种限制性内切酶消化所产生的DNA片段的大小或者图谱。因此,具有变异序列的个体能够通过限制性片段分析与具有原始序列的那些个体相区别。能够以这种方式进行鉴别的多态性被称为RFLP。RFLP已经广泛用于人和植物的遗传分析(Glassberg,英国专利申请2135774;Skolnick et al,Cytogen.CellGenet.32:58-67(1982);Botstein et al,Ann.J.Hum.Genet.32:314-331(1980);Fischer et al(PCT申请WO 90/13668;Uhlen,PCT申请WO90/11369)。
“单核苷酸多态性”或“SNP”的主要特征在于多态性的位点是在单个核苷酸上。SNP具有某些报道过的优于RFLP或VNTR的优点。首先,SNP比其它类型的多态性更稳定。它们的自发突变率是大约10-9(Kornberg,DNA Replication,W.H.Freeman & Co.,San Francisco,1980),比VNTR的突变频率低大约1000倍(美国专利5,679,524)。第二,SNP以比RFLP和VNTR更高的频率发生并具有更好的一致性。由于SNP由序列变异引起,对随机基因组或cDNA分子测序就能够鉴别新的多态性。SNP也可由缺失、点突变和插入引起。无论何种原因,任何的单碱基改变都可以是SNP。SNP更高的发生频率意味着它们能够比其它类型的多态性更容易被鉴别。
SNP可以使用各种方法的任何一种进行表征。这些方法包括位点的直接或间接测序,在该位点的各自的等位基因产生或破坏限制性位点时使用限制酶,使用等位基因特异性杂交探针,使用特异于由多态性的不同等位基因编码或者由其它生化译码方式编码的蛋白质的抗体。SNP可通过许多方法进行测序。两种基本方法可以用于DNA测序,Sanger et al,Proc.Natl.Acad.Sci.(U.S.A.)74:5463-5467(1977)的链终止方法以及Maxam和Gilbert,Proc.Natl.Acad.Sci.(U.S.A.)74:560-564(1977)的化学降解方法。
此外,单个点突变可以通过修改的PCR技术进行检测,诸如连接酶链式反应(“LCR”)以及PCR-单链构象多态性(“PCR-SSCP”)分析。PCR技术也可用于鉴别相当少量的材料样品中的基因表达水平,例如来自身体的组织或细胞。该技术被称为反转录-PCR(“RT-PCR”)。
术语“分子育种”定义了育种过程期间追踪分子标记的过程。通常将分子标记与所期望的表型性状相联系。在分离分子标记或遗传性状之后,不评价表型,而是可通过培养更少的植物并排除表型变异的分析或肉眼观察来加速育种过程。在这种过程中有用的分子标记包括但不限于前面提到的在鉴别可绘制图谱的遗传变异方面有用的任何标记,以及任何显示跨植物种的同线性的紧密连锁基因。术语“同线性”是指不同生物之间染色体上的基因位置/顺序的保守性。这表示在不同物种之间的同一染色体上发现的两种或更多种遗传基因座,它们可以是紧密连锁的或者可以不是。同线性的另一术语是“基因组共线性”。
本发明的核酸片段可用于产生转基因植物,其中存在比正常情况下更高或更低水平的已公开多肽,或者在通常未发现所述多肽的细胞类型或发育阶段中存在了所述多肽。这将具有改变氮转运水平并在那些细胞中进行累积的效应。植物中缺乏氮将导致矮化生长,并常常导致纤细的和经常是木质的茎。在许多植物中,氮缺乏的第一信号就是缺绿症(叶子变黄)。
本发明蛋白质的超量表达的实现可通过首先制备重组DNA构建体,其中编码区可操作地连接到能够指导基因在期望的组织中、在期望的发育阶段进行表达的启动子上。为方便起见,重组DNA构建体可含有源自同一基因的启动子序列和翻译前导序列。也可提供编码转录终止信号的3’-非编码序列。该重组DNA构建体也可含有一个或多个内含子以辅助基因表达。
然后可制备含有该重组DNA构建体的质粒载体。质粒载体的选择取决于将用于转化宿主植物的方法。技术人员很清楚地知道,为了成功转化、选择和增殖含有重组DNA构建体的宿主细胞,质粒载体上必须存在的遗传元件。技术人员也将认可的是,不同的独立转化事件将产生不同的表达水平和模式(Jones等人(1985)EMBO J.4:2411-2418;DeAlmeida等人(1989)Mol.Gen.Genetics 218:78-86),因此必须筛选多个事件以便获得显示出期望表达水平和模式的品系。这种筛选可通过DNA的Southern分析、mRNA的Northern分析、蛋白质表达的Western分析或表型分析来实现。
对于一些应用来说,将本发明的多肽导入不同细胞区室或者促进它从细胞中分泌出来可能是有用的。因此可以预见,上述重组DNA构建体可通过改变编码序列而补充,使其编码本发明的多肽以及合适的胞内靶向序列,诸如增加的转运序列(Keegstra(1989)Cell 56:247-253)、信号序列或编码内质网定位的序列(Chrispeels(1991)Ann.Rev.Plant Phys.Plant Mol.Biol.42:21-53)、或者核定位信号(Raikhel(1992)PlantPhys.100:1627-1632),和/或去除目前已经存在的靶向序列。尽管引用的参考文献给出了每一种这些序列的例子,但是这个列表不是穷举的,更多有用的靶向信号可能在将来被发现。
也可以期望的是,为了一些应用而在植物中减少或消除编码本发明的多肽的基因的表达。为实现这一点,可通过将编码那种多肽的基因或基因片段连接到植物启动子序列上来构建重组DNA构建体,其设计来共抑制本发明的多肽。或者,可通过将基因或基因片段反向连接到启动子序列上来构建重组DNA构建体,其设计来表达全部或一部分本发明的核酸片段的反义RNA。可通过转化将共抑制或反义重组DNA构建体引入植物中,其中相应内源基因的表达就被减少或消除。
产生带有改变的基因表达的植物的这种分子遗传学解决办法具有胜过传统植物育种方法的明显优势。可通过反义抑制或共抑制而特异性抑制一种或多种基因的表达,从而产生植物表型的变化(美国专利No.5,190,931,5,107,065和5,283,323)。反义或共抑制构建体将作为基因活性的显性失活调节基因。而常规突变能够产生基因活性的负调节,这些效应很可能是隐性的。从育种前景来看,用转基因方法提供的显性失活调节可能是有优势的。此外,通过使用组织特异性启动子将特定表型的表达限制在植物繁殖组织中的能力可以赋予相对于常规突变的农业上的优势,常规突变可能在通常表达突变基因的所有组织中都具有影响。
本领域技术人员将知道,要特别考虑到与反义或共抑制技术的使用相关的事项,以便减少特定基因的表达。例如,有义或反义基因表达的适当水平可能需要使用不同的重组DNA构建体,它们利用技术人员已知的不同调节元件。一旦通过上述方法之一获得了转基因植物,就必须要筛选那些最有效地显示出期望表型的个体转基因。因此,技术人员将开发筛选大量转化体的方法。这些筛选的性质将通常根据实际原因来选择,并不是本发明的固有部分。例如,我们可以使用特异于被抑制基因所编码的蛋白质的抗体通过寻找基因表达的变化来进行筛选,或者我们可以建立特异性测定酶活性的分析方法。优选方法将是能够迅速处理大量样品的方法,因为大量转化体没有预期表型将是期望的。
本发明的多肽(或其部分)可以在异源宿主细胞中生产,特别是在微生物宿主细胞中,可通过本领域技术人员公知的方法将其用于制备这些蛋白质的抗体。抗体对于在细胞中原位检测或者在细胞提取物中体外检测本发明的多肽来说是有用的。用于生产本发明的多肽的优选异源宿主细胞是微生物宿主。含有指导外来蛋白高水平表达的调节序列的微生物表达系统和表达载体是本领域技术人员公知的。任意之一都可用于构建生产本发明的多肽的重组DNA构建体。然后将该重组DNA构建体经转化而引入到适当的微生物中以提供所编码的铵转运蛋白的高水平表达。提供了在细菌宿主中高水平表达本发明的多肽的载体的例子(实施例7)。
另外,本发明的多肽可用作靶以促进设计和/或识别可以用作除草剂的那些酶的抑制剂。这是理想的,因为本文描述的多肽催化氮摄取的各个步骤。因此,本文描述的一种或多种酶活性的抑制可能导致植物生长的抑制。这样,本发明的多肽对于新除草剂的发现和设计来说可能是合适的。
本发明核酸片段的全部或者主要部分也可用作探针来绘制基因的遗传图谱和物理图谱,这些探针是基因的一部分,或者用作这些基因所连锁的性状的标记。为开发带有期望表型的品系,这些信息在植物育种中可能是有用的。例如,本发明的核酸片段可用作限制性片段长度多态性(RFLP)标记。限制性消化的植物基因组DNA的Southern印迹(Maniatis)可以用本发明的核酸片段探查。然后使用计算机程序诸如MapMaker(Lander等人(1987)Genomics1:174-181)将所得到的带图样进行遗传分析以便构建遗传图谱。此外,本发明的核酸片段也可用于探查含有限制性内切酶处理的基因组DNA的Southern印迹,这些基因组DNA是代表所定义的遗传杂交的亲本和子代的一系列个体的基因组DNA。记录DNA多态性的分离并用于计算本发明核酸序列在此前使用该群体获得的遗传图谱中的位置(Botstein等人(1980)Am.J.Hum.Genet.32:314-331)。
源自植物基因的探针的生产和使用在遗传图谱中的用途描述于Bernatzky and Tanksley(1986)Plant Mol.Biol.Reporter 4(1):37-41。许多出版物描述了使用上面概述的方法或其修改方法获得的特定cDNA克隆的遗传图谱。例如,F2互交群体、回交群体、随机配对群体、近等基因系以及其它系列的个体可用于绘制图谱。这些方法是本领域技术人员公知的。
源自本发明核酸序列的核酸探针也可用于绘制物理图谱(也就是序列在物理图谱上的位置;参见Hoheisel等人In:Nonmammalian GenomicAnalysis:A Practical Guide,Academic press 1996,pp.319-346以及本文引用的参考文献)。
在另一实施方案中,源自本发明核酸序列的核酸探针可用于绘制直接荧光原位杂交(FISH)图谱(Trask(1991)Trends Genet.7:149-154)。尽管目前绘制FISH图谱的方法喜欢使用较大的克隆(几KB到几百KB;参见Laan等人(1995)Genome Research 5:13-20),但是灵敏度的改善可以使得能够使用更短的探针进行FISH图谱绘制。
可以使用本发明的核酸序列进行各种基于核酸扩增的遗传图谱和物理图谱绘制方法。例子包括等位基因特异性扩增(Kazazian(1989)J.Lab.Clin.Med.11:95-96)、PCR扩增片段多态性(CAPS;Sheffield等人(1993)Genomics 16:325-332)、等位基因特异性连接(Landegren等人(1988)Science 241:1077-1080)、核苷酸延伸反应(Sokolov(1990)Nucleic AcidRes.18:3671)、放射性杂交图谱绘制(Walter等人(1997)Nature Genetics7:22-28)以及Happy Mapping图谱绘制(Dear and Cook(1989)NucleicAcid Res.17:6795-6807)。对于这些方法来说,核酸片段序列是用来设计和产生用于扩增反应或引物延伸反应中的引物对。这些引物的设计是本领域技术人员公知的。在采用基于PCR的遗传图谱绘制方法中,鉴别绘图杂交的亲本在相应于本发明核酸序列的区域之间的DNA序列差异可能是必要的。然而,对于绘图方法来说这通常是不必要的。
可以鉴别本发明cDNA克隆功能突变表型的丢失,其通过靶基因破坏程序或者通过鉴别包含在带有所有可能基因的突变的玉米群体中的这些基因的特定突变体(Ballinger and Benzer(1989)Proc.Natl.Acad.SciUSA 86:9402-9406;Koes等人(1995)Proc.Natl.Acad.Sci USA92:8149-8153;Bensen等人(1995)Plant Cell 7:75-84)。后一种方法可以按两种方式实现。第一,可将本发明核酸片段的短片段,连同由植物群体制备的DNA上的突变标记序列引物一起用于聚合酶链式反应程序中,所述植物群体中已经引入了突变体转座子或者一些其它的引起突变的DNA元件(参见Bensen,同上)。带有这些引物的特定cDNA片段的扩增表明了编码本发明多肽的植物基因之中或其附近插入了突变标记元件。或者,可将本发明的核酸片段用作针对突变群体所产生的PCR扩增产物的杂交探针,其中使用突变标记引物连同任意基因组位点引物,诸如锚定在限制酶位点的合成衔接子。用两种方法之一,都可鉴别和获得含有编码本发明多肽的内源基因的突变的植物。然后可将该突变植物用于确定或证实本文公开的所述多肽的天然功能。
可使用TUSC突变群体来证实高亲和力硝酸盐转运蛋白和高亲和力硝酸盐转运所需多肽的功能。用于玉米的性状实用系统(TUSC)是采用遗传和分子技术来促进玉米中的基因功能研究的方法。研究基因功能就意味着基因序列是已知的,因此该方法是反过来起作用的:从序列到表型。这种类型的应用被称为“反向遗传学”,与“正向”方法(诸如转座子标记)形成对比,后者是设计来鉴别和分离负责特定性状(表型)的基因。
Pioneer Hi-Bred International,Inc.有来自大约42,000种单株F1植物的玉米基因组DNA的专门收藏(玉米的反向遗传学(Reverese geneticsfor maize);Meeley,R and Briggs,S,1995,Maize Genet.Coop.Newslett.69:67,82)。
每种这些个体的基因组都含有转座元件家族,即增变基因(Mu)的多个拷贝。Mu家族是高度诱变的;在活性元件Mu-DR存在下,这些元件在整个基因组中转座,插入到基因区域,经常破坏基因功能。通过收集来自大量个体(42,000)的基因组DNA,Pioneer已经组装了诱变玉米基因组的文库。Mu插入事件主要是杂合的;考虑大多数插入突变的隐性性质,F1植物看起来是野生型的。将每个植物自花授精产生F2种子,采集种子。产生F2子代的过程中,插入的突变以孟德尔模式分离,因此对于研究突变等位基因对表型的影响是有用的。许多实验室已经成功运用TUSC系统鉴别了各种基因的功能(玉米An1基因的克隆和表征(Cloning and characterization of the maize An1 gene),Bensen,RJ等人,1995,Plant Cell7:75-84;C-功能活性在玉米花发育中的多样性(Diversification of C-function activity in maize flower development),Mena,M等人,1996,Science274:1537-1540;禾本科中的化学性植物防御机制的分析(Analysis of a chemical plant defense mechanism ingrasses),Frey,M等人,1997,Science277:696-699;通过APETALA2样基因总状小穗1控制玉米小穗分生组织的命运(The control of maizespikelet meristemfate by the APETALA2-like gene Indeterminate spikelet1),Chuck,G,Meeley,RB,和Hake,S,1998,Genes & Development12:1145-1154;叶绿体类囊体膜的形成和正常的叶绿体基因表达都需要SecY同源物(A SecY homologue is required for the elaboration of thechloroplast thylakoid membrane and for normal chloroplast geneexpression),Roy,LM和Barkan,A.,1998,J.Cell Biol.141:1-11)。
由多样性产生方法或循环序列重组(“RSR”)方法(诸如DNA改组(DNA shuffling))产生的多核苷酸序列是本发明的特征。使用本文描述的核酸进行的突变和重组方法是本发明的特征。例如,本发明的一种方法包括用一种或多种另外的核苷酸如上和如下所述循环重组一种或多种核苷酸序列。重组步骤任选在体内(in vivo)、离体(ex vivo)、用计算机(in silico)或者在体外(in vitro)进行。该多样性产生或循环顺序重组产生了至少一个重组修饰的HAT多核苷酸的文库。由该文库成员编码的多肽包括在本发明中。
各种多样性产生程序的描述可以在下面的出版物和本文引用的参考文献中找到,包括多基因改组和用于产生编码多种酶结构域的修饰核酸序列的方法:Soong,N.等人(2000)“病毒的分子增殖”Nat Genet25(4):436-39;Stemmer,等人(1999)“用于靶向和其它临床性质的病毒的分子增殖”Tumor Targeting 4:1-4;Ness等人(1999)“枯草杆菌蛋白酶亚基因组序列的DNA改组”Nature Biotechnology 17:893-896;Chang等人(1999)“使用DNA家族改组进行的细胞因子进化”NatureBiotechnology 17:793-797;Minshull和Stemmer(1999)“通过分子增殖进行的蛋白质进化”Current Opinion in Chemical Biology 3:284-290;Christians等人(1999)“使用DNA家族改组进行的用于AZT磷酸化的胸苷激酶的定向进化”Nature Biotechnology 17:259-264;Crameri等人(1998)“来自不同物种基因家族的DNA改组加速了定向进化”Nature391:288-291;Crameri等人(1997)“通过DNA改组进行的砷酸盐解毒途径的分子进化”Nature Biotechnology 15:436-438;Zhang等人(1997)“通过DNA改组和筛选进行的来自半乳糖苷酶的有效岩藻糖苷酶的定向进化”Proc.Natl.Acad.Sci.USA94:4504-4509;Patten等人(1997)“DNA改组在药物和疫苗中的应用”Current Opinion in Biotechnology8:724-733;Crameri等人(1996)“通过DNA改组进行的抗体-噬菌体文库的构建和进化”Nature Medicine 2:100-103;Crameri等人(1996)“通过使用DNA改组的分子进化改进绿色荧光蛋白”Nature Biotechnology14:315-319;Gates等人(1996)“通过在lac阻遏物‘头段二聚体’上的展示从肽文库中亲和性选择分离配体”Journal of Molecular Biology255:373-386;Stemmer(1996)“有性PCR和组装PCR”于:分子生物学百科全书,VCH Publishers,New York.pp.447-457;Crameri和Stemmer(1995)“组合式多重盒式诱变产生了突变体和野生型盒的全部排列”Bio Techniques 18:194-195;Stemmer等人,(1995)“来自大量寡脱氧核糖-核糖核苷酸的基因和完整质粒的一步组装”Gene,164:49-53;Stemmer(1995)“分子计算进化”Science 270:1510;Stemmer(1995)“寻找序列空间”Bio/Technology 13:549-553;Stemmer(1994)“通过DNA改组进行的体外蛋白质快速进化”Nature 370:389-391;以及Stemmer(1994)“通过随机断裂和重组装进行的DNA改组:用于分子进化的体外重组”Proc.Natl.Acad.Sci.USA 91:10747-10751。关于各种多样性产生方法的补充细节可以在以下美国专利、PCT公开物和EPO公开物中找到:美国专利No.5,605,793,授予Stemmer(1997年2月15日),“体外重组方法”;美国专利No.5,811,238,授予Stemmer等人(1998年9月22日),“用于通过反复选择和重组来产生具有期望特征的多核苷酸的方法”;美国专利No.5,830,721,授予Stemmer等人(1998年11月3日),“通过随机断裂和重组装进行的DNA诱变”;美国专利No.5,834,252,授予Stemmer等人(1998年11月10日),“末端互补聚合酶反应”;美国专利No.5,837,458,授予Minshull等人(1998年11月17日),“用于细胞代谢工程的方法和组合物”;Stemmer和Crameri的WO 95/22625,“通过随机断裂和重组装进行的诱变”;Stemmer和Lipschutz的WO96/33207,“末端互补聚合酶链式反应”;Stemmer和Crameri的WO97/20078,“用于通过反复选择和重组来产生具有期望特征的多核苷酸的方法”;Minshull和Stemmer的WO 97/35966,“用于细胞代谢工程的方法和组合物”;Punnonen等人的WO 99/41402,“遗传学疫苗载体的靶向”;Punnonen等人的WO 99/41383,“抗原库免疫”;Punnonen等人的WO 99/41369,“遗传学疫苗载体工程”;Punnonen等人的WO99/41368,“遗传学疫苗免疫调节性的优化”;Stemmer和Crameri的EP 752008,“通过随机断裂和重组装进行的DNA诱变”;Stemmer的EP 0932670,“通过循环顺序重组来进化细胞DNA摄取”;Stemmer等人的WO 99/23107,“通过病毒基因组改组修饰病毒向性和宿主范围”;Apt等人的WO 99/21979“人类乳头瘤病毒载体”;del Cardayre等人的WO 98/31837,“通过循环顺序重组进行的完整细胞和生物的进化”;Patten和Stemmer的WO 98/27230,“用于多肽工程的方法和组合物”;Stemmer等人的WO 98/13487,“用于通过循环顺序改组和选择来优化基因治疗的方法”;WO 00/00632,“用于产生高度多样文库的方法”;WO 00/09679,“用于获得体外重组多核苷酸序列库和所得序列的方法”;Arnold等人的WO 98/42832,“使用随机或规定引物重组多核苷酸序列”;Arnold等人的WO 99/29902,“用于产生多核苷酸和多肽序列的方法”;Vind的WO 98/41653,“用于构建DNA文库的体外方法”;Borchert等人的WO 98/41622,“用于使用DNA改组构建文库的方法”;Pati和Zarling的WO 98/42727,“使用同源重组进行的序列改变”;Patten等人的WO00/18906,“密码子改变的基因的改组”;del Cardayre等人的WO 00/04190,“通过循环重组进行的完整细胞和生物的进化”;Crameri等人的WO 00/42561,“寡核苷酸介导的核酸重组”;Selifonov和Stemmer的WO 00/42559,“用于进化模拟的提供数据结构的方法”;Selifonov等人的WO 00/42560,“用于制备具有期望特征的字符串、多核苷酸和多肽的方法”;Welch等人的WO01/23401,“将改变密码子的寡核苷酸合成用于合成性改组”以及Affholter的WO 01/64864,“单链核酸模板介导的重组和核酸片段分离”。
某些美国申请提供了关于各种多样性产生方法的补充细节,包括Patten等人于1999年9月28日提出申请的“密码子改变基因的改组”(USSN 09/407,800);del Cardayre等人于1998年7月15日(USSN09/166,188)和1999年7月15日(美国专利No.6,379,964)提出申请的“通过循环顺序重组进行的完整细胞和生物的进化”;Crameri等人于1999年9月28日提出申请的“寡核苷酸介导的核酸重组”(美国专利No.6,376,246);Crameri等人于2000年1月18日提出申请的“寡核苷酸介导的核酸重组”(WO 00/42561);Welch等人于1999年9月28日提出申请的“用于合成性改组的基于密码子的寡核苷酸合成的用途”(美国专利No.6,436,675);Selifonov等人于2000年1月18日提出申请的“用于制备具有期望特征的字符串、多核苷酸和多肽的方法”(WO 00/42560);Selifonov等人于2000年7月18日提出申请的“用于制备具有期望特征的字符串、多核苷酸和多肽的方法”(USSN 09/618,579);Selifonov和Stemmer于2000年1月18日提出申请的“用于进化模拟的提供数据结构的方法”(WO 00/42559);以及Affholter的“单链核酸模板介导的重组和核酸片段分离”(USSN 60/186,482,2000年3月2日提出申请)。
也可使用合成重组方法,其中在PCR或连接反应中合成并重组装相应于感兴趣的靶的寡核苷酸,其包括相应于多于一种的亲本核酸的寡核苷酸,从而产生新的重组核酸。可通过标准核苷酸添加方法制备寡核苷酸或者可通过例如三核苷酸合成方法制备。有关这些方法的细节可在上文提到的参考文献中找到,包括例如Crameri等人的WO 00/42561,“寡核苷酸介导的核酸重组”;Welch等人的WO 01/23401,“用于合成性改组的密码子改变的寡核苷酸合成的用途”;Selifonov等人的WO00/42560,“用于制备具有期望特征的字符串、多核苷酸和多肽的方法”;以及Selifonov和Stemmer的WO 00/42559,“用于进化模拟的提供数据结构的方法”。
可以实施计算机(in silico)重组方法,其中在计算机中使用遗传算法来重组相应于同源(乃至非同源的)核酸的序列串。任选将所得重组序列串通过核酸合成转化成核酸,其相应于例如与寡核苷酸合成基因重组装技术一致的重组序列。该方法能够产生随机的、部分随机的或者设计的变体。关于计算机(in silico)重组的许多细节,包括遗传算法的使用、计算机系统中的遗传运算符等等、结合相应核酸(和/或蛋白质)的产生、以及设计的核酸和/或蛋白质的组合(例如根据跨接部位选择)以及设计的、伪随机的或随机的重组方法,描述于Selifonov等人的WO 00/42560,“用于制备具有期望特征的字符串、多核苷酸和多肽的方法”以及Selifonov和Stemmer的WO 00/42559,“用于进化模拟的提供数据结构的方法”。关于计算机(in silico)重组方法的详尽细节可在这些申请中找到。该方法通常适用于本发明来提供计算机中(in silico)核酸序列的重组和/或编码各种代谢途径(诸如,例如类胡萝卜素生物合成途径、ectoine生物合成途径、多羟基链烷酸酯生物合成途径、芳香聚酮生物合成途径等等)中涉及的蛋白质的基因融合构建体和/或相应核酸或蛋白质的产生。
用于产生修饰多核苷酸的许多上述方法产生了亲本序列的大量不同变体。在本发明的一些优选实施方案中,使用修饰技术(例如一些改组形式)来产生变体库,然后筛选编码一些期望功能属性诸如改善的HAT活性的修饰多核苷酸或修饰多核苷酸合并物。可被筛选的示范性酶学活性包括但不限于催化速率(通常用动力学常数例如kcat和KM来表征)、底物特异性以及对底物、产物或其它分子(例如抑制剂或活化剂)的活化或抑制敏感性以及当结合位点被底物饱和时的酶反应最大速度(Vmax)。
实施例
在下面的实施例中进一步限定本发明,其中所有的部分和百分比都是以重量计,温度是摄氏度,除非特别声明。应该明白这些实施例仅仅是作为例证给出的,尽管它们指示了发明的优选实施方案。根据上述探讨和这些实施例,本领域技术人员能够确定本发明的必要特征,在不脱离其精神和范围时能够作出发明的各种改变和修改以使它适应不同用途和条件。
实施例1
cDNA文库的组成;cDNA克隆的分离和测序
制备了代表来自各种玉米组织的mRNA的cDNA文库。文库的特征描述于表1中。
可通过许多现有方法的任一种来制备cDNA文库。例如,可首先根据厂商说明书(Stratagene Cloning Systems,La Jolla,CA)在Uni-ZAPTMXR载体中制备cDNA文库,以便将cDNA引入到质粒载体中。根据Stratagene提供的说明书将Uni-ZAPTM XR文库转变为质粒文库。一旦转变,cDNA插入物就将被包含在质粒载体pBluescript中。此外,使用T4DNA连接酶(New England Biolabs)、接着根据厂商说明书(GIBCO BRLProducts)转染到DH10B细胞中,可将cDNA直接引入到预先切割的Bluescript II SK(+)载体(Stratagene)中。一旦cDNA插入物在质粒载体中,就可从含有重组pBluescript质粒的随机挑选的细菌菌落中制备质粒DNA,或者使用特异于所插入cDNA序列侧翼的载体序列的引物经由聚合酶链式反应扩增插入的cDNA序列。在染料-引物测序反应中对扩增的插入DNA或质粒DNA进行测序以产生部分的cDNA序列(表达序列标志或“EST”;参见Adams等人,(1991)Science 252:1651-1656)。使用Perkin Elmer Model 377荧光测序仪分析所得EST。
表1
含有NAR2样序列的来自玉米的cDNA文库和克隆
Figure A200680038354D00371
实施例2
cDNA克隆的鉴别
通过实施BLAST(基本局部比对检索工具;Altschul等人(1993)J.Mol.Biol.215:403-410)来鉴别编码与硝酸盐转运相关的组分的cDNA克隆;示于表1中。
通过实施BLAST(基本局部比对检索工具;Altschul等人(1993)J.Mol.Biol.215:403-410)可鉴别编码转运蛋白或与硝酸盐转运相关的组分的cDNA克隆;搜索与BLAST“nr”数据库中含有的序列的相似性(包括所有非冗余GenBank CDS翻译,源自三维结构Brookhaven蛋白质数据库的序列,SWISS-PROT蛋白质序列数据库、EMBL和DDBJ数据库的最后的主要释放结果)。可使用国立生物技术信息中心(NCBI)提供的BLASTN算法分析所获得的cDNA序列与“nr”数据库中所含有的所有可公开获得DNA序列的相似性。可将DNA序列全部符合读码框地翻译,使用NCBI提供的BLASTX算法(Gish和States(1993)NatureGenetics 3:266-272)比较它与“nr”数据库中所含有的所有可公开获得蛋白质序列的相似性。为方便起见,将仅仅通过BLAST计算概率而观察到的cDNA序列与所搜索数据库中所含序列的匹配的P-值(概率)在本文中报道为“pLog”值,它代表所报道P-值的负对数。因此,pLog值越大,cDNA序列与BLAST“命中结果”代表同源蛋白质的可能性就越大。
实施例3
玉米高亲和力硝酸盐转运蛋白(HAT4和HAT5)的鉴别和测序
为鉴别HAT同源物,使用公开的HAT基因(GenBank登录号AY129953)来筛选Iowa州立大学MAGI2.31版玉米基因组集合。使用BLAST在ISU MAGI集合中鉴别到了部分克隆,即MAGI 17514,它在核苷酸水平显示了85%的同一性,似乎是以前未鉴别的HAT。将该序列用来筛选Genbank GSS数据集,鉴别到了一些另外的MAGI序列同源物;这些同源物在序列上添加了大约0.5kb。GSS数据集由通用识别编号33941728、34245424、32105143、34245411、34082540和33992813所示序列组成。该集合的翻译产物覆盖基因的大约二分之一,其位于3’末端。它完全缺少基因的5’端那一半。
为分离到全长HAT4序列,使用PCR筛选来自两种BAC文库的BAC克隆,该BAC文库源自玉米B73自交系。以前已经通过部分消化基因组DNA构建了文库,插入pCUGI(Tomkins,J.P.,et al.2002,玉米的高覆盖率细菌人工染色体文库的构建和表征,Crop Science 42:928-933)和pTARBAC(pTARBAC2.1文库,Osoegawa,K.,et al,新的玉米、牛、马和斑马Bac文库的构建,植物和动物基因组会议录,2001)的BamHI和EcoRI位点中。为促进基于PCR的筛选,从Amplicon Express(AmpliconExpress,1610NE Eastgate Blvd Pullman,WA 99163)那里要求了一组36个四维超级库。每个超级库都是在独立培养、分离和合并4608个克隆后得到的,总共超过165,000个排成阵列的BAC克隆。将超级库进行PCR反应,然后在琼脂糖凝胶电泳中进行片段加减确定。设计PCR引物扩增位于Tigr集合ID AZM4_32787上的HAT同源物终止密码子下游289bp处的495-bp的片段,其与从上述MAGI和GSS数据库组装的序列相同。用5ng模板DNA在包括5μL Hotstar Taq聚合酶混合物(Qiagen)和5pmol正向和反向引物(分别是SEQ ID NO:1和SEQ ID NO:2)的10μL反应液中进行PCR反应。循环条件是初始变性步骤95℃ 15分钟,接着是35个循环的95℃ 30秒、60℃ 30秒和72℃ 1分钟。在由更低复杂性的组合库所构成的基质平板上进行第二轮PCR,该组合库源自代表阳性库的克隆。这减少了特定克隆的阳性。鉴别到两种克隆,即bacc.pk139.d24和bacc.pk142.b21并经PCR分析证实。将克隆bacc.pk139.d24用于随后的工作。
使用修改的碱裂解方法从过夜的250ml 2xYT+氯霉素(cloramphenicol)培养物中分离来自克隆bacc.pk139.d24的BAC DNA。通过离心收集细胞,重悬浮于20ml的10mM EDTA,然后通过轻柔加入40ml的0.2N NaOH/1% SDS进行裂解,用30ml冷的3M乙酸钾(pH4.8)中和。通过在4℃下15000×g离心15分钟去除细胞碎片,接着通过Miracloth过滤。用0.7体积异丙醇沉淀上清液中的DNA,重悬浮在9ml的50mM Tris/50mM EDTA中,与4.5ml的7.5M乙酸钾混合,置于-70℃,解冻,3500×g下离心20分钟。倒出上清液,用乙醇沉淀,重悬浮在0.7ml的50mM Tris/50mM EDTA中。加入不含DNA酶的RNA酶A至终浓度150μg/ml,37℃温育1小时,接着进行苯酚:氯仿萃取和乙醇沉淀。将最终得到的DNA重悬浮在总共400μl的不含核酸酶的无菌水中。使用CHEF-Mapper III(Bio-Rad)经脉冲场凝胶电泳估计DNA插入片段大小、数量和质量。为证实BAC和测序,使用T7(SEQ IDNO:3)和SP6(SEQ ID NO:4)引物,使用下面描述的测序条件。
获得双链的、沿HAT4基因的连续序列信息的总体策略是通过从已知的由PCR鉴别引物限定的“开始”序列进行步移,这在以前已经描述过。使用BAC bacc.pk 139.d24 DNA作为模板。根据厂商说明书在ABI3730毛细管测序仪中进行测序。测序反应液由2μL的BigDye V3.1终止子混合物(Applied Biosystems)、2μL的稀释缓冲液(600mM TrisHCl pH 9.0,15mM MgCl2)、20pmol引物和大约1μg模板DNA组成,反应液终体积20μL。循环条件是初始变性步骤95℃ 5分钟,接着是99个循环的95℃ 30秒、58℃ 30秒和64℃ 4分钟。一些很难读取的区域必须使用特殊的循环和反应条件进行重新测序。通过乙醇沉淀去除过量的终止子。根据Phred/Phrap软件(Ewing等人(1998)Genome Res.8:186-194;Ewing等人(1998)Genome Res.8:175-185)进行跟踪评估、碱基调用(base calling)和组装。使用Consed(Gordon等人(1998)GenomeRes.8:195-202)进行组装分析。在每次测序步移步骤之后,在末端设计引物,避免与其它基因和DNA重复区具有高同源性的区域。使用BLAST程序(基本局部比对检索工具;Altschul等人(1993)J.Mol.Biol.215:403-410)对gss、TIGR 4.0、非冗余序列、EST和蛋白质数据库(Altschul等人1990)进行同源性检索。使用载体NTI进行引物设计,引物由MWG Biotech商业合成。设计、测试并使用引物(SEQ ID NO:5直到SEQ ID NO:33)来覆盖包括HAT基因在内的区域。SEQ ID NO:34描述了含有HAT4基因的基因组序列。SEQ ID NO:35和SEQ ID NO:36分别描述了玉米HAT4的编码核苷酸和氨基酸序列。
SEQ ID NO:37和38显示了HAT4基因的2014bp和1014bp的推定启动子序列。
通过对公开HAT的同源性blast检索鉴别到了HAT-5家族。一种3’克隆ccoln.pk072.i13与MAGI_56254具有同源性,看起来代表了完整序列。TIGR组装AZM4_2103与MAGI克隆相当一致。使用该克隆重新对含有氮诱导文库的数据库进行blast检索,鉴别到了克隆cfp4n.pk008.p6。对该克隆测序,其含有完整的HAT5基因序列(SEQ ID NO:91和92)。
实施例4
另外的玉米高亲和力硝酸盐转运蛋白(HAT7)的鉴别和测序
使用公开的HAT基因(HAT1,Genbank登录号AY129953)经Blast检索Genbank玉米基因组调查序列(GSS)和玉米基因组组装(Iowa州立大学MAGI和Tigr)以设法鉴别AY129953的旁系同源物(paralog)。与HAT4基因(实施例3)一起,还有其它更远的同源物,包括相应于AZM4_79242的MAGI_65216,AZM4_79242含有比MAGI_65216稍微更多的序列信息。这两种克隆都不含起始甲硫氨酸。当与AY129953相比时,AZM4_79246的另一个命中结果显示了相似的同一性百分比。AZM4_79246编码核苷酸2264-2266处的起始甲硫氨酸,和大约110个氨基酸的编码序列。进一步的鉴定显示出这两个组装具有共同的克隆匹配,即来自Tigr甲基化筛选文库的OGUKX93和OGUCS47。因此可以假定AZM4_79242和AZM4_79246编码同样的基因但是没有序列重叠。
为恢复全长序列,进行PCR时使用两种不同的正向引物和两种不同的反向引物(分别是SEQ ID NO:39、40和41、42),分别在5’末端和3’末端带有T3(SEQ ID NO:43)和T7延伸(SEQ ID NO:44)。使用来自八种玉米自交系(B73、Co159、GT119、Mo17、T218、Oh43和W23)的DNA作为模板进行HotStart PCR,退火温度58℃。将所有32种PCR反应产物在琼脂糖1×TBE凝胶上电泳、切下并净化,使用本领域技术人员已知的方法在ABI毛细管测序仪上测序。比对序列,恢复丢失的序列信息。完整的HAT基因核苷酸序列示于SEQ ID NO:45。SEQ IDNO:46和47描述了HAT7基因2263bp和1263bp的推定启动子序列,SEQ ID NO:48和49分别描述了玉米HAT7的编码核苷酸和氨基酸序列。
实施例5
编码高亲和力硝酸盐转运蛋白的多肽的表征
表2数据表示示于SEQ ID NO:36和49的氨基酸序列与水稻序列(NCBI通用识别号No.34913806和50904699)的同一性百分比计算结果。
表2
由编码高亲和力硝酸盐转运蛋白(HAT)的同源多肽的cDNA克隆的核苷酸序列所推定的氨基酸序列的同一性百分比
Figure A200680038354D00411
使用LASERGENE生物信息学计算套件(DNASTAR Inc.,Madison,WI)的Megalign程序进行序列比对和同一性百分比计算。使用Clustal比对方法(Higgins和Sharp(1989)CABIOS.5:151-153)进行序列的多重比对,其中采用默认参数(GAP PENALTY=10、GAP LENGTHPENALTY=10)。使用Clustal方法进行的成对比对的默认参数是KTUPLE=1、GAP PENALTY=3、WINDOW=5和DIAGONALS SAVED=5。序列比对和BLAST得分以及概率表明含有本发明cDNA克隆的核酸片段编码玉米高亲和力氮转运蛋白。
实施例6
玉米氮转运相关基因(NAR2-1&NAR2-2)的鉴别和测序
研究了来自实施例1和表2所描述的玉米根文库cnrlc的blast命中结果,显示了许多氮转运相关基因。用关键词诸如硝酸盐、氮和转运蛋白来检索blast命中结果。其中的少数几个与NCBI登录号CAC36942即高亲和力硝酸盐转运蛋白的推定组分(NAR2基因)具有同源性。使用CAC36942序列作为查询序列,玉米EST的TblastN检索产生了许多来自不同玉米文库的重要命中结果。通过比对全长查询序列和blast命中结果鉴别到了最5’的克隆。来自cnrlc文库(cnrlc.pk003.m9.f)的克隆显示了位于CAC36942起始甲硫氨酸相同区域的甲硫氨酸。该克隆也显示了甲硫氨酸上游的符合读码框的终止密码子。将该克隆进行标准的全长插入片段测序(FIS),含有NAR2.1的971bp,跨越SEQ ID NO:53的核苷酸591到1561。SEQ ID NO:53显示了NAR2.1基因的1561bp序列,这是由获自克隆cnrlc.pk003.m9.f:fis的序列信息和Tigr序列AZM4_81138组装的。SEQ ID NO:54和55分别显示NAR2.1基因的编码核苷酸和氨基酸序列。SEQ ID NO:56显示NAR2.1的756bp的推定启动子。使用CAC36942作为查询序列也显示了不同的NAR2同源物cbn2.pk0042.g4。该克隆也具有起始甲硫氨酸,但是由于EST序列的质量,与CAC36942的同源性较短。通过使用cbn2.pk0042.g4作为查询序列来检索Tigr玉米基因组组装,鉴别到了该家族成员的完全版本(Tigr克隆AZM4_1475)。SEQ ID NO:57和58分别显示NAR2.2(Tigr克隆AZM4_1475)的编码核苷酸和氨基酸序列。
NAR2.1启动子分离
通过进行Genome WalkerTM DNA步移(BD BioSciences)将NAR2.1启动子的序列信息进一步延伸到上游。该方法采用PCR来促进克隆已知序列相邻的未知基因组DNA序列。首先,用留下平端的不同的限制酶消化未知基因组DNA库。将每个库连接到衔接子上以建立GenomeWalkerTM文库。获得了八个不同的玉米HG11文库。用不同的限制酶StuI、EcoRV、PmlI、PvuII、ScaI、DraI、SmaI和PmeI消化这些文库。
然后每个文库进行两轮嵌套式PCR扩增。第一轮使用内侧接头引物(AP1,试剂盒自带)和NAR2.1特异性外侧引物(SEQ ID NO:59)。
使用基因组聚合酶混合物(BD Biosciences)在50μL反应液中进行PCR,其中含有1μL 1文库DNA、0.5μL的每种引物(10μM)、4μL dNTP(2.5mM)、2.2μL Mg(OAc)2、10μL 15×GC基因组PCR反应缓冲液、10μL GC-Melt(5M)、20.8μL ddH2O和1μLAdvantage-GC基因组聚合酶。循环条件如下:7个循环的94℃变性25秒和72℃退火/延伸6分钟,接着是32个循环的94℃变性25秒和67℃退火/延伸6分钟,通过67℃退火/延伸7分钟终止。
然后将初级PCR产物1:50稀释,将1μL用作第二轮PCR的模板,其使用与第一轮相同的PCR设置。第二轮引物是内侧衔接子引物(AP2,试剂盒自带)和NAR2.1特异性内侧引物(SEQ ID NO:60)。第二轮的循环条件如下:5个循环的94℃变性25秒和72℃退火/延伸6分钟,接着是25个循环的94℃变性25秒和67℃退火/延伸6分钟,通过67℃退火/延伸7分钟终止。
在StuI文库中观察到了主要的PCR产物(大约3kb)。从凝胶上切下这个条带,使用Qiaquick凝胶提取试剂盒(Qiagen)纯化,连接到
Figure A200680038354D00431
-T Easy载体(Promega)上。20μL的连接反应液如下:10μL的2×快速连接缓冲液、1μL的
Figure A200680038354D00432
-T Easy载体(50ng)、1μL的T4 DNA连接酶(3Weiss单位/μL)和8μL的插入DNA(13ng/μL)。将反应液在4℃温育过夜。
将连接产物转化到Max Efficiency DH10B(Invitrogen)感受态细胞中。将1μL的连接物加入到20μL细胞中,置于冰上30分钟。42℃热激细胞45秒,然后再次置于冰上2分钟。将细胞加入到1mL的SOC中,置于振荡器上于250rpm、37℃振荡1小时。然后将100μL细胞铺板到含有氨苄青霉素、IPTG和X-Gal的LB培养基上供蓝/白选择之用。只获得一个白色菌落。
使用Plasmid Mini试剂盒(Qiagen)纯化质粒DNA。使用标准引物(SP6和T7)和自定义引物(SEQ ID NO:61、62、63和64)测序代表NAR2上游启动子区域的质粒插入片段。SEQ ID NO:65显示了另外的2917bp的推定NAR2.1启动子的序列。
完整NAR2.1基因的序列示于SEQ ID NO:66。
实施例7
本申请多肽的表达模式
经由Lynx MPSS Brenner et al(2000)Proc Natl Acad Sci U S A97:1665-70)的方法分析了高亲和力硝酸盐转运蛋白(HAT)和高亲和力硝酸盐转运所需其它多肽(NAR)的表达模式。
如经由Lynx MPSS(Brenner et al(2000)Proc Natl Acad Sci U S A97:1665-70)研究的,NAR2.1和HAT1基因的表达模式在超过200个文库之间都是相似的。它们都仅仅在根组织的皮层套(cortical cylinder)中表达并相似地是由硝酸盐诱导的,表明这两种基因的多肽产物形成了玉米根中硝酸盐转运的功能复合物。
玉米中NAR2.1和HAT-1的组织特异性表达:在来自包括整个玉米植株的不同组织的210个文库中,NAR2.1和HAT-1都只在根文库中表达。这表明每种这些基因的根特异性的功能。
玉米组织中NAR2.1和HAT-1的表达分析。对不同组织文库的MPSS标志丰度求平均值。每种组织文库的数量是:花药为3;穗为15;仁为44;叶为39;花粉为1;根为36;须为9;茎为19;以及雄穗为14。
硝酸盐摄取的诱导和在玉米根中的定位:在源自自交系A63的根文库中,NAR2.1和HAT-1两者的表达都相似地由硝酸盐诱导。
玉米在水中的纸卷中生长7天后,采集所获得的黄化幼苗的根,平行进行不同处理。将新鲜采集的根保持在冰上作为对照。在含有不同养分的通气溶液中培养根不同长短的时间,然后或者快速在液氮中冰冻并贮藏在-80℃直到用于表达分析,或者保存在冰中的两层湿纸巾之间用于进一步操作。将已经在硝酸盐中处理过四小时的一批根手工解剖成皮层套和中柱。
NAR2.1和HAT-1表达对不同养分处理的反应。将根在含有1mM硝酸盐(0.5mM KNO3和0.25mM Ca(NO3)2)或者1mM氯化物(0.5mMKCl和0.25mM CaCl2)的培养基中处理半小时或者四小时。将已经用硝酸盐处理4小时的一批根分离成皮层套和中柱并进行MPSS。
当与在氯化物溶液中温育的平行对照根相比,来自玉米的NAR2.1和HAT-1基因两者在温育培养基中都显示出相似的对硝酸盐(N)的反应,随时间逐渐增加。这两种基因也都几乎全部位于皮层套中而不在中柱中。它们对硝酸盐的相似反应和它们的定位强有力地表明这些基因的蛋白质产物在玉米根中产生了功能性硝酸盐转运复合物。
NAR2.1在伊利诺斯高蛋白(IHP)和伊利诺斯低蛋白(ILP)玉米 品系中表达的相反调节:IHP和ILP是源自玉米群体的两组品系,是对谷物蛋白在高和低谷物蛋白方向进行约100年趋异选择之后获得的(Uribelarrea等人,2004)。IHP谷物含有>20%的蛋白质,而ILP谷物含有<5%。在各种处理之后对这两种品系的根进行Lynx MPSS。
或者将根始终保留在硝酸盐溶液中硝酸盐饥饿两小时,或者在两小时饥饿之后放在硝酸盐溶液中。IHP中的NAR2.1象A63一样反应硝酸盐处理,而ILP显示了相反的反应。考虑到ILP中的这种基因在硝酸盐饥饿的根中的表达水平是与保留在硝酸盐中的IHP根相似的,这些结果就暗示在两种方向上反应硝酸盐的机制在玉米中是确实存在的。然而,如IHP和具有约10%正常谷物蛋白的自交系A63之间的相似反应所显示的,看起来已经选择了阳性反应机制。
只有IHP含有HAT1序列标志并显示与NAR2.1相似的表达模式,进一步支持了上述暗示,即NAR2.1和HAT1形成了玉米根中的功能复合物。
A63中的其它HAT基因的表达:HAT 4G只在四种均源自根组织的文库中以>10ppm表达。因此,该基因看起来是根特异性的。HAT7在冷处理幼苗和三种叶文库中表达,暗示该基因可能编码从木质部质外体摄取硝酸盐到叶细胞中的蛋白质。预期本申请的HAT序列与NAR序列形成功能性硝酸盐转运复合物。
实施例8
使用TUSC突变群体证实高亲和力硝酸盐转运蛋白和 高亲和力硝酸盐转运所需多肽的功能
高亲和力硝酸盐转运蛋白基因座的全长基因组序列可用来设计引物,用于筛选TUSC群体中的Mu插入突变体(美国专利No.5,962,764,1999年10月5日出版)。可用基因特异性引物筛选合并的TUSC群体。可从该筛选中回收并表征玉米高亲和力硝酸盐转运蛋白和高亲和力硝酸盐转运所需多肽的等位基因。而且,本申请序列的功能可通过补充研究来证实。
实施例9
单子叶植物细胞中重组DNA构建体的表达
可构建含有编码本发明多肽的cDNA,其相对于位于cDNA片段5’的玉米27kD玉米醇溶蛋白启动子和位于cDNA片段3’的10kD玉米醇溶蛋白3’末端来说是有义方向的。通过使用合适的寡核苷酸引物对cDNA克隆进行聚合酶链式反应(PCR)可产生该基因的cDNA片段。可将克隆位点(NcoI或SmaI)引入到寡核苷酸中以提供DNA片段插入如下所述的已消化载体pML 103时的合适方向。然后在标准PCR中进行扩增。然后用限制酶NcoI和SmaI消化扩增的DNA,在琼脂糖凝胶上分级分离。可从凝胶上分离合适条带,与质粒pML 103的4.9kbNcoI-SmaI片段连接。质粒pML 103已根据布达佩斯条约保藏在ATCC(美国典型培养物保藏中心,10801 University Blvd.,Manassas,VA20110-2209),具有保藏号ATCC 97366。PML 103的DNA片段含有玉米27kD玉米醇溶蛋白基因的1.05kb SalI-NcoI启动子片段和来自载体pGem9Zf(+)(Promega)中10kD玉米醇溶蛋白基因3’末端的0.96kbSmaI-SalI片段。载体和插入DNA可在15℃连接过夜,基本上按照Maniatis中所述。然后可将已连接的DNA用来转化大肠杆菌XL1-Blue(Epicurian Coli XL-1 BlueTM;Stratagene)。可通过质粒DNA的限制酶消化和使用双脱氧链终止方法(SequenaseTM DNA测序试剂盒;U.S.Biochemical)的有限核苷酸序列分析来筛选细菌转化子。所得质粒构建体将含有重组DNA构建体,其按5’到3’方向编码27kD玉米醇溶蛋白启动子、编码本发明多肽的cDNA片段以及10kD的玉米醇溶蛋白3’区域。
然后可将上述重组DNA构建体通过下面的方法引入到玉米细胞中。可将未成熟玉米胚从源自自交玉米系H99和LH132的杂交的发育中的颖果切开。在授粉后10到11天当胚1.0到1.5mm长时分离胚。然后将胚轴侧向下进行放置,与琼脂糖固化的N6培养基(Chu等人(1975)Sci.Sin.Peking 18:659-668)接触。将胚于27℃保持在暗处。从这些未成熟胚的盾片增殖由未分化细胞团构成的脆性成胚愈伤组织,在胚柄结构上生有体细胞原胚状体和胚状体。可将分离自初代外植体的成胚愈伤组织培养在N6培养基上,每2到3周在该培养基上继代培养。
可将质粒p35S/Ac(获自Dr.Peter Eckes,Hoechst Ag,Frankfurt,Germany)用于转化实验以提供选择标记。该质粒含有Pat基因(参见欧洲专利公开0242236),其编码膦丝菌素乙酰转移酶(PAT)。酶PAT赋予对除草剂谷氨酰胺合成酶抑制剂诸如膦丝菌素的抗性。p35S/Ac中的pat基因受控于来自花椰菜花叶病毒的35S启动子(Odell等人(1985)Nature 313:810-812)和来自根癌农杆菌的Ti质粒T-DNA的胭脂碱合酶基因的3’区域。
粒子轰击方法(Klein等人(1987)Nature 327:70-73)可用于将基因转移到愈伤组织培养细胞中。根据该方法,使用下面的技术以DNA包被金粒子(直径1μm)。将10μg质粒DNA加入到50μL金粒子悬浮液中(每mL60mg)。将氯化钙(2.5M溶液50μL)和亚精胺游离碱(1.0M溶液20μL)加入到粒子上。在加入这些溶液期间涡旋悬浮液。10分钟后,短暂离心管子(15,000rpm,5秒),去除上清液。将粒子重悬浮在200μL无水乙醇中,再次离心并去除上清液。再次进行乙醇漂洗,将粒子重悬浮在终体积30μL的乙醇中。可将DNA包被的金粒子等分试样(5μL)放在KaptonTM飞盘(Bio-Rad Labs)中心。然后用BiolisticTM PDS-1000/He(Bio-Rad Instruments,Hercules CA)将粒子加速进入到玉米组织中,其中使用1000psi的氦压力、0.5cm的间隙距离和1.0cm的飞行距离。
对于轰击而言,将成胚组织放在琼脂固化的N6培养基上的滤纸上。将组织布置成薄菌苔,覆盖直径约5cm的圆形区域。可将含有组织的培养皿置于距离停止屏大约8cm的PDS-1000/He室内。然后将室内空气抽真空到28英寸汞柱的真空度。使用爆破膜以氦冲击波加速宏观载体(macrocarrier),当激波管内的He压力达到1000psi时该爆破膜发生爆破。
轰击七天之后,可将组织转移到含有草铵膦(每升2mg)且不含酪蛋白或脯氨酸的N6培养基中。组织在该培养基上继续缓慢生长。再过2周之后,可将组织转移到含有草铵膦的新鲜N6培养基中。6周后,在含有补加草铵膦的培养基的一些平板上可鉴别到活跃生长愈伤组织的大约直径1cm的区域。这些愈伤组织在选择培养基上继代培养时可以继续生长。
可从转基因愈伤组织再生植物,其通过首先将组织团转移到补充了每升0.2mg 2,4-D的N6培养基中。两周之后,可将组织转移到再生培养基(Fromm等人(1990)Bio/Technology 8:833-839)中。
实施例10
双子叶植物细胞中重组DNA构建体的表达
包含启动子和来自编码菜豆(Phaseolus vulgaris)(Doyle等人(1986)J.Biol.Chem.261:9228-9238)的种子贮存蛋白,即菜豆球蛋白α亚基的基因的转录终止子的种子特异性表达盒可用来在转基因大豆中表达本发明的多肽。菜豆球蛋白盒包括菜豆球蛋白翻译起始密码子上游(5’)的大约500核苷酸和翻译终止密码子下游(3’)的大约1650核苷酸。在5’和3’区域之间的是独特的限制性内切酶位点NcoI(包括ATG翻译起始密码子)、SmaI、KpnI和XbaI。整个盒的两侧是HindIII位点。
可通过使用合适的寡核苷酸引物用cDNA克隆的聚合酶链式反应(PCR)来产生该基因的cDNA片段。可将克隆位点引入寡核苷酸以提供DNA片段插入表达载体时的合适方向。然后如上所述进行扩增,将分离到的片段插入携带有种子表达盒的pUC18载体中。
然后可用含有编码本发明多肽的序列的表达载体转化大豆胚。为诱导体细胞胚,可将从大豆栽培种A2872的表面消毒的未成熟种子上切下的长3-5mm的子叶于26℃的光照或黑暗条件下培养在合适的琼脂培养基上6-10周。然后切下可产生次生胚的体细胞胚,置于合适的液体培养基中。在对繁殖了早期球形期胚的体细胞胚进行重复选择后,如下所述维持悬浮液。
可将大豆成胚悬浮培养物维持在旋转振荡器上的35mL液体培养基中,150rpm、于26℃按照16:8小时的昼/夜时间表使用荧光灯。每两周对培养物进行继代培养,其是通过将大约35mg的组织接种到35mL的液体培养基中。
然后可通过基因枪轰击方法(Klein等人(1987)Nature(London)327:70-73,美国专利No.4,945,050)转化大豆成胚悬浮培养物。可使用DuPont BiolisticTM PDS1000/HE设备(氦气改型)进行这些转化。
可用于促进大豆转化的可选择标记基因是包括花椰菜花叶病毒35S启动子(Odell等人(1985)Nature 313:810-812)、质粒pJR225的潮霉素磷酸转移酶(来自大肠杆菌;Gritz等人(1983)Gene 25:179-188)和根癌农杆菌的Ti质粒T-DNA的胭脂碱合酶基因3’区的重组DNA构建体。含有菜豆球蛋白5’区、编码本发明多肽的片段和菜豆球蛋白3’区的种子表达盒可作为限制性片段分离。然后将该片段插入到携带有标记基因的载体的独特限制性位点中。
向60mg/mL的1μm金粒子悬浮液50μL中加入(按顺序):5μL DNA(1μg/μL)、20μL亚精胺(0.1M)和50μL CaCl2(2.5M)。然后搅拌粒子制剂三分钟,在微量离心机中旋转10秒,去除上清液。然后在400μL 70%乙醇中漂洗DNA包被的粒子一次,重悬浮在40μL的无水乙醇中。可将DNA/粒子悬浮液超声处理三次,每次一秒。然后将5μL的DNA包被的金粒子加样到每个宏观载体盘上。
将大约300-400mg的两周时间的悬浮培养物置于空的60×15mm的培养皿中,用移液管去除组织上的残余液体。对于每次转化实验,通常轰击5-10个平板的组织。膜爆破压设定在1100psi,将室内抽真空到28英寸汞柱的真空度。将组织放在距离阻滞屏大约3.5英寸之处,轰击三次。轰击之后,可将组织分成两半,放回液体中如上所述进行培养。
轰击后五到七天,可将液体培养基用新鲜培养基交换,轰击后十一到十二天,用含有50mg/mL潮霉素的新鲜培养基更换。该选择培养基可每周更换。轰击后七到八周,可观察到绿色的转化组织从未转化的坏死成胚团中长出。切下分离到的绿色组织,接种到单独的烧瓶中以产生新的、无性繁殖的、转化的成胚悬浮培养物。每种新品系可作为独立的转化品系进行处理。然后将这些悬浮液继代培养,作为未成熟胚团培养,或者通过各个体细胞胚的成熟和萌发而再生为完整植株。
实施例11
微生物细胞中重组DNA构建体的表达
可将编码本发明多肽的cDNA插入到T7大肠杆菌表达载体pBT430中。该载体是采用噬菌体T7 RNA聚合酶/T7启动子系统的pET-3a(Rosenberg等人(1987)Gene 56:125-135)的衍生物。质粒pBT430的构建通过首先在其原始位置破坏pET-3a中的EcoR I和Hind III位点。将含有EcoR I和Hind III位点的寡核苷酸衔接子插入到pET-3a的BamH I位点。这样就产生了带有额外独特克隆位点以将基因插入表达载体的pET-3aM。然后,使用寡核苷酸指导的诱变将翻译起始位置处的Nde I位点转变成Nco I位点。将这个区域中的pET-3aM的DNA序列5′-CATATGG转变成pBT430中的5′-CCCATGG。
可将含有cDNA的质粒DNA进行适当消化以释放编码蛋白质的核酸片段。然后可在1% NuSieve GTGTM低熔点琼脂糖凝胶(FMC)上纯化该片段。缓冲液和琼脂糖含有10μg/ml溴乙锭以使DNA片段显色。然后根据厂商说明用GELaseTM(Epicentre Technologies)消化可从琼脂糖凝胶上纯化片段,乙醇沉淀,干燥并重悬浮在20μL水中。可使用T4DNA连接酶(New England Biolabs,Beverly,MA)将合适的寡核苷酸衔接子连接到片段上。如上所述使用低熔点琼脂糖可从过量接头中纯化到含有已连接的衔接子的片段。如上所述消化载体pBT430,用碱性磷酸酶(NEB)脱磷酸,用苯酚/氯仿脱蛋白。然后可将制备好的载体pBT430和片段在16℃下连接15小时,接着转化到DH5电感受态细胞(GIBCOBRL)中。可在含有LB培养基和100μg/mL氨苄青霉素的琼脂平板上选择转化子。然后通过限制酶分析对含有编码本发明多肽的基因的转化子进行相对于T7启动子正确定向的筛选。
为了高水平表达,可将带有相对于T7启动子正确定向的cDNA插入片段的质粒克隆转化到大肠杆菌株BL21(DE3)(Studier et al.(1986)J.Mol.Biol.189:113-130)中。将培养物在含有氨苄青霉素(100mg/L)的LB培养基中于25℃下生长。在600nm处的光密度大约为1时,可将IPTG(异丙基-β-硫代半乳糖苷,即诱导剂)加入到终浓度0.4mM,可在25℃继续培养3小时。然后通过离心收集细胞,重悬浮在50μL含有0.1mMDTT和0.2mM苯甲基磺酰氟的50mM Tris-HCl(pH 8.0)中。可加入少量1mm玻璃珠,然后将混合物用微探针超声波仪超声处理3次,每次大约5秒。离心混合物,确定上清液中的蛋白质浓度。可将来自培养物可溶部分的1μg蛋白质经SDS-聚丙烯酰胺凝胶电泳进行分离。可观察到凝胶上在预期分子量处迁移的蛋白质条带。
实施例12
根癌农杆菌LBA4404的电穿孔
将电穿孔感受态细胞(40μL)诸如根癌农杆菌LBA440(含有PHP1052)在冰上解冻(20-30分钟)。PHP10523含有用于T-DNA转移的VIR基因、农杆菌低拷贝数质粒复制起点、四环素抗性基因和用于体内DNA双分子重组的Cos位点。PHP10523进一步描述于实施例17中。同时将电穿孔比色皿在冰上冷却。将电穿孔仪的设定值调节到2.1kV。将DNA试样(在低盐缓冲液或双蒸水中的0.5μL亲本DNA,浓度0.2μg-1.0μg)与解冻的根癌农杆菌LBA4404细胞混合,同时在冰上静置。将混合物转移到电穿孔比色皿底部,静置在冰上1-2分钟。通过按压“脉冲”按钮两次(理想地可达到4.0毫秒的脉冲)将细胞进行电穿孔(Eppendorf电穿孔仪2510)。随后将0.5mL的室温2×YT培养基(或SOC培养基)加入到培养皿中,转移到15mL的带保护帽的管子(例如FalconTM管)中。将细胞在28-30℃、200-250rpm温育3小时。
将250μL的等分试样涂布在含有YM培养基和50μg/mL壮观霉素的平板上,在28-30℃温育三天。为增加转化子的数量,可进行两个任选的步骤之一:
选择1:用30μL的15mg/mL利福平覆盖平板。LBA4404具有对利福平的染色体抗性基因。这种附加的选择排除了使用LBA4404感受态细胞的更差制剂所观察到的一些污染克隆。
选择2:进行两次平行电穿孔以补偿较差的电感受态细胞。
转化子的鉴别:
挑选四个独立克隆,在含有AB基本培养基和50μg/mL壮观霉素的平板上划线培养以分离单个克隆。平板在28℃培养两到三天。挑选每个推定的共整合物的单个克隆,用4mL的10g/L细菌蛋白胨、10g/L酵母提取物、5g/L氯化钠和50mg/L壮观霉素进行接种。将混合物在28℃振荡温育24小时。使用Qiagen Miniprep和任选的缓冲液PB漂洗从4mL培养物中分离质粒DNA。以30μL洗脱DNA。如上所述使用2μL的等分试样来电穿孔20μL的DH10b+20μL双蒸水。可任选使用15μL等分的试样来转化75-100μL的Invitrogen Library Efficiency DH5α。将细胞涂布在含有LB培养基和50μg/mL壮观霉素的平板上,在37℃温育过夜。
对每种推定的共整合物挑选三到四个独立克隆,接种4mL的2×YT培养基(10g/L细菌蛋白胨,10g/L酵母提取物,5g/L氯化钠),其中含有50μg/mL壮观霉素。将细胞在37℃振荡温育过夜。接着,使用
Figure A200680038354D0051160503QIETU
 Miniprep,任选使用缓冲液PB漂洗,从4mL培养物中分离质粒DNA(以50μL洗脱)。使用8μL用于SalI消化(使用亲本DNA和PHP10523作为对照)。对带有正确SalI消化模式的代表了2个推定的共整合物的4个质粒进行三种另外的消化,其使用限制酶BamHI、EcoRI和HindIII进行(使用亲本DNA和PHP10523作为对照)。推荐电子凝胶用于比较。
实施例13
使用农杆菌转化玉米
基本上按照Zhao等人在Meth.Mol.Biol.318:315-323(2006)中所述进行农杆菌介导的玉米转化(也参见Zhao等人,Mol.Breed.8:323-333(2001)和1999年11月9日授权的美国专利No.5,981,840,通过引用引入本文)。转化过程涉及细菌接种、共培养、休眠、选择和植物再生。
1.未成熟胚制备:
从颖果上切下未成熟玉米胚,放在含有2mL PHI-A培养基的2mL微型管中。
2.农杆菌感染和未成熟胚的共培养:
2.1感染步骤
用1mL微量移液管去除(1)的PHI-A培养基,加入1mL农杆菌悬浮液(包括但不限于实施例7中描述的农杆菌)。轻轻倒转管子进行混合。混合物在室温温育5分钟。
2.2共培养步骤
用1mL微量移液管从感染步骤中去除农杆菌悬浮液。使用无菌刮刀将胚从管中刮下,转移到100×15mm培养皿中的PHI-B培养基平板上。在培养基表面上将胚轴朝下来定向胚。带有胚的平板在20℃下于暗处培养三天。在共培养阶段中可使用L-半胱氨酸。使用标准二元载体,补充100-400mg/L L-半胱氨酸的共培养培养基对于回收稳定转基因品系来说是关键性的。
3.推定的转基因事件的选择:
转移10个胚到100×15mm培养皿中的每个PHI-D培养基平板上,保持方向,用石蜡膜(parafilm)密封培养皿。平板在28℃下于暗处进行培养。象浅黄色胚组织一样,活跃生长的推定事件预期在六到八周后可见。不产生事件的胚可能是褐色的和坏死的,明显没有什么脆性组织生长。将推定的转基因胚组织以两到三周的间隔继代培养到新鲜的PHI-D平板上,这取决于生长速度。对事件进行记录。
4.T0植物的再生
将PHI-D培养基上繁殖的胚组织继代培养到100×25mm培养皿中的PHI-E培养基(体细胞胚成熟培养基)上,28℃于暗处温育大约十到十八天,直到体细胞胚成熟。将带有明确盾片和胚芽鞘的单株成熟体细胞胚转移到PHI-F胚萌芽培养基上,28℃于光照(大约80μE,来自冷白荧光灯或等效荧光灯)下培养。七到十天后,使用标准园艺学方法将大约10cm高的再生植物盆栽在园艺混合料中并炼苗。
植物转化培养基:
1.PHI-A:4g/L CHU基础盐,1.0mL/L 1000×Eriksson维生素混合物,0.5mg/L维生素B1·HCl,1.5mg/L2,4-D,0.69g/L L-脯氨酸,68.5g/L蔗糖,36g/L葡萄糖,pH 5.2。加入100μM乙酰丁香酮(过滤消毒)。
2.PHI-B:不含葡萄糖的PHI-A,增加2,4-D到2mg/L,减少蔗糖到30g/L,补充0.85mg/L硝酸银(过滤消毒),3.0g/L 100μM乙酰丁香酮(过滤消毒),pH 5.8。
3.PHI-C:不含
Figure A200680038354D00532
和乙酰丁香酮的PHI-B,减少2,4-D到1.5mg/L,补充8.0g/L琼脂、0.5g/L 2-[N-吗啉代]乙烷-磺酸(MES)缓冲液、100mg/L羧苄青霉素(过滤消毒)。
4.PHI-D:PHI-C补充3mg/L双丙氨膦(过滤消毒)。
5.PHI-E:4.3g/L的Murashige和Skoog(MS)盐(Gibco,BRL11117-074),0.5mg/L烟酸,0.1mg/L维生素B1·HCl,0.5mg/L维生素B6·HCl,2.0mg/L甘氨酸,0.1g/L肌醇,0.5mg/L玉米素(Sigma,Cat.No.Z-0164),1mg/L吲哚乙酸(IAA),26.4μg/L脱落酸(ABA),60g/L蔗糖,3mg/L双丙氨膦9过滤消毒),100mg/L羧苄青霉素(过滤消毒),8g/L琼脂,pH 5.6。
6.PHI-F:不含玉米素、IAA、ABA的PHI-E;减少蔗糖到40g/L;用1.5g/L 
Figure A200680038354D00533
替换琼脂;pH 5.6。
可从转基因愈伤组织中再生植物,其通过首先将组织团转移到补充了每升0.2mg 2,4-D的N6培养基中。两周之后可将组织转移到再生培养基(Fromm等人,Bio/Technology 8:833-839(1990))中。
转基因T0植物可被再生,确定它们的表型。可采集到T1种子。
此外,可将含有已证实的拟南芥基因的重组DNA构建体引入到精选的玉米自交系中,或者通过直接转化,或者通过从分离的转化品系中渐渗。
可对自交或杂交的转基因植物进行更有力的田地实验以研究在氮限制的和氮不限制条件下的产量提高和/或稳定性。
随后可进行产量分析以确定含有已证实的拟南芥前导基因的植物在与不含已证实的拟南芥前导基因的对照(或参照)植物相比之时,是否具有产量性能方面的改善(在氮限制的或氮不限制的条件下)。含有已证实的拟南芥前导基因的植物在氮限制的条件下将具有相对于对照植物更少的产量损失,优选少50%的产量损失,或者在氮不限制的条件下将具有相对于对照植物增加的产量。
实施例14
对化合物抑制硝酸盐转运蛋白活性的能力进行评估
可使用本领域技术人员已知的许多方法生产本文描述的多肽。这些方法包括但不限于如实施例11中所述的在细菌中表达,或者在真核细胞培养物中在植物中(in planta)表达,以及使用在合适感染的生物或细胞系中的病毒表达载体。本发明的多肽可表达为蛋白质的如体内观察到的成熟形式,或者表达为共价连接到各种酶、蛋白质或亲和标志上的融合蛋白。常见的融合蛋白配偶体包括谷胱甘肽S-转移酶(”GST”)、硫氧还蛋白(“Trx”)、麦芽糖结合蛋白以及C末端和/或N末端六组氨酸多肽(“(His)6”)。可在融合位点用蛋白酶识别位点修饰融合蛋白以便能够通过蛋白酶消化分开融合配偶体以产生完整的成熟酶。这些蛋白酶的例子包括凝血酶、肠激酶和因子Xa。然而,特异性切割连接融合蛋白和酶的肽的任何蛋白酶都能够使用。
如果需要,可采用蛋白质纯化领域技术人员所熟悉的许多分离技术纯化本发明的多肽。这些方法的例子包括但不限于匀浆、过滤、离心、热变性、硫酸铵沉淀、脱盐、pH沉淀、离子交换层析、疏水作用层析和亲和层析,其中亲和配体代表底物、底物类似物或抑制剂。当本发明多肽表达为融合蛋白时,纯化方案可包括使用特异于结合到所表达的酶上的融合蛋白标志的亲和树脂,或者使用含有特异于酶的配体的亲和树脂。例如,本发明多肽可表达为偶联到硫氧还蛋白C末端的融合蛋白。此外,可将(His)6肽设计到融合硫氧还蛋白部分的N末端上以提供亲和纯化的额外可能。其它合适的亲和树脂可以通过将合适的配体连接到任何合适树脂诸如Sepharose-4B上来合成。在备选技术方案中,可使用二硫苏糖醇洗脱硫氧还蛋白融合蛋白;然而,洗脱可以使用其它相互作用以取代树脂中的硫氧还蛋白的试剂来完成。这些试剂包括β-巯基乙醇或其它还原巯基。如果需要,可通过如上所述的传统方法对洗脱的融合蛋白进行进一步纯化。硫氧还蛋白融合蛋白和酶的蛋白水解切割的完成可在纯化融合蛋白之后进行,或者在蛋白质仍然结合在ThioBondTM亲和树脂或其它树脂上之时进行。
粗酶、部分纯化的或者纯化的酶,单独或者作为融合蛋白,都可用在分析方法中来评估化合物抑制本文公开的本发明多肽的酶促激活的能力。分析方法可在提供最佳酶学活性的公知实验条件下进行。
文献中已经描述了能够快速筛选硝酸盐转运活性的分析方法,包括但不限于测定富含15N的硝酸盐摄取到表达蛋白质的非洲爪蟾卵母细胞中的分析方法(Tong等人,The Plant J.(2005)41:442-450)。
实施例15
通过基因改组扩大高等植物HAT的线性硝酸盐摄取范围
已知HAT具有低的Km(在10到100μM范围)和低的Vmax(Doddema等人,Kinetics.Physiol.Plant.(1979)45:332-338,Meharg等人,(1995)J.Membr.Biol.145:49-66,Touraine等人,Plant Physiol.(1997)114:137-144,Liu等人,Plant Cell.(1999)11(5):865-874)。因此,一旦硝酸盐浓度达到高于HAT的Km大约2到3倍的水平时,HAT的摄取速度就保持不变。
最相关的田间硝酸盐浓度在典型的现代玉米农田上是大约2到5mM。在这个浓度范围内,HAT的摄取速度是充分饱和的。HAT的硝酸盐摄取从很低到相关田间浓度的延伸将使得玉米作物能够充分利用可利用的硝酸盐来更好的生长和生产。这种转运蛋白也将使得作物植物能够保持较低硝酸盐输入情况下的正常摄取效率,这是通过它在相对较低硝酸盐浓度下快速摄取能力的增强而实现的。
可使用各种基因改组方法(Stemmet WP,PNAS(1994)91:10747-10751,Crameri等人,Nature(1998)391:288-291,Ness等人,NatureBiotech.(1999)17:893-896)来产生不同类型的改组HAT文库。例如,可通过单基因和家族基因改组来产生文库。附加的多样性可通过携带氨基酸突变的掺入的寡聚体来引入。
改组HAT文库可在异源宿主诸如酵母、大肠杆菌和绿藻之一中功能性表达。优选地,宿主缺少除内源性或被引入的硝酸盐还原酶之外的硝酸盐同化途径。功能性表达的改组体的硝酸盐摄取速度可通过HPLC或其它分析手段直接测定分析培养基中的硝酸盐消耗或者通过测定同一细胞中硝酸盐还原酶产生的亚硝酸盐来分析。亚硝酸盐浓度可通过比色分析(诸如使用Greiss试剂)或者前肽分析手段(HPLC)很容易地确定。从各种改组文库中筛选的推定命中结果的进一步表征可通过对不同浓度硝酸盐的摄取速度测定来获得。这种分析将提供摄取动力学参数Km和Vmax。
然后可将已证实具有改善性质的命中结果进行再改组以产生第二轮改组文库,可使用上述筛选流程来鉴别第二轮命中结果。这个过程可一直重复,直到鉴别到满足期望动力学性质的几种改组变体。
实施例16
来自玉米B73自交系的Nar启动子的分离、克隆和测序 携带Nar基因的BAC克隆的鉴别
通过PCR筛选源自玉米B71自交系的BAC文库,其中分别使用SEQID NO:75和76所述正向和反向引物。循环条件是95℃的初始活化步骤15分钟,接着是35个循环的94℃ 1分钟、60℃ 1分钟和72℃ 1分钟。最后的延伸是72℃ 10分钟。
获得377bp的产物。BAC克隆ZMMBBb0521a1被确定携带了Nar基因。
从玉米B73自交系克隆Nar启动子
通过PCR克隆Nar启动子,其中分别使用SEQ ID NO:77和78所述的带有BamHI和HindIII限制酶位点的正向和反向引物。
将浓度各自为10μM的1μl引物混合物、浓度为2.5mM的4μl DNTP、10μl 5×HF缓冲液和33.5μl H2O以及0.5μl Phusion高保真DNA聚合酶(Finnzymes)加入到来自BAC克隆ZMMBBb0521a1的1μl稀释(1:100)的BAC DNA中。循环条件是98℃的初始活化步骤30秒,接着是35个循环的98℃ 10秒、63℃ 30秒和72℃ 1分钟。最后的延伸是72℃ 10分钟。
获得3621bp的产物。
使用QiaquickTM凝胶提取试剂盒(Qiagen)凝胶纯化3621bp产物,用88μl洗脱缓冲液洗脱。
将10μl的缓冲液E(Promega)以及限制酶BamHI和Hind III各1μl(每种10U/μl)加入到纯化的条带中。分析混合物在37℃温育3小时,用QiaquickTMPCR纯化试剂盒(Qiagen)提纯。
用BamHI和HindIII消化pENTR-5’载体(SEQ ID NO:85),脱磷酸化。使用Epicentre快速连接试剂盒将纯化的PCR条带插入到制备好的pENTR-5’载体中。连接反应混合物含有1.5μL缓冲液(10×)、1.5μL ATP(10×)、1μL连接酶、1μL pENTR-5’载体(约10ng/μL BamHI/HindIII/脱磷酸化的载体)、1μL启动子插入片段(约30ng)和9μL H2O。使连接反应在室温进行15分钟,通过将混合物在70℃温育15分钟终止反应。
转化到细菌中并对插入片段进行PCR筛选
将1μL连接混合物加入到20μL电感受态细胞(DH10BElectroMax-Invitrogen)中,用Gibco BRL细胞穿孔仪将混合物电穿孔,然后加入1mL SOC培养基,混合物在37℃于振荡器中培养1小时。将150μL细胞在带有卡那霉素选择的LB平板上铺板,于37℃培养过夜。
挑选12个克隆,加入30μL LB培养基。使用PCR筛选克隆。将5μL HotTaq 2×主混合物(Qiagen)、1μL(10mM引物混合物,SEQ ID NO:77和78)和3μL dH2O加入到1μL菌落DNA(克隆/30μL LB)中。循环条件是95℃初始活化15分钟,接着是35个循环的95℃ 50秒、55℃ 50秒和72℃ 4分钟。
最后的延伸是72℃ 10分钟。
插入片段测序
使用SEQ ID NO:79-84中所述的测序引物对携带插入片段的DNA进行测序。插入片段的序列示于SEQ ID NO:70。携带3621bp插入片段的载体构建体被命名为PHP2762,其示于SEQ ID NO:86和图1中。
实施例17
测试转基因玉米和拟南芥中的NAR启动子
使用InvitrogenTM的gateway LR克隆酶技术进行MultiSite 
Figure A200680038354D00571
LR重组反应以产生玉米NAR启动子::GUS::PINII、UBI::MO-PAT::PINII和LTP2::DS-RED PINII JT二元载体(PHP27660,SEQ ID NO:87和图2)。载体PHP27660含有以下表达盒:
1.泛素启动子::MO-PAT::PINII终止子盒,表达用于转化过程期间的选择的PAT除草剂抗性基因。
2.LTP2启动子::DS-RED2::PinII LTP2终止子盒,表达用于种子分选的DS-RED颜色标记基因。
3.NAR启动子::GUS::PINII NAR终止子盒,表达由玉米NAR启动子控制的GUS基因。
使用实施例16中所述的方案将载体PHP27660电穿孔到含有PHP10523的LBA4404农杆菌细胞中,通过电穿孔产生了最终的共整合载体PHP27860(SEQ ID NO:88和图3),然后将其用于实施例17所述的基于农杆菌的玉米转化。对T0转基因植物取样检测GUS表达。
独立地,根据标准花序浸渍方法将同一载体(PHP27860)也用于拟南芥转化。通过在T1幼苗上喷洒除草剂草铵膦来筛选转基因品系。对除草剂抗性的T1植物取样检测GUS表达。
在不同时间点包括出苗期和成熟期从转基因植物上采集叶和根组织样品。将新鲜采集的组织样品切成小片以辅助GUS染色液的渗透。根据标准方案(Jefferson RA,Kavanagh TA,Bevan MW.1987 GUS融合:β-葡糖醛酸糖苷酶作为高等植物中敏感的和通用的基因融合标记,EMBO J.6(13):3901-3907)进行GUS组织化学染色,在37℃温育过夜。
在转基因玉米和拟南芥组织中未观察到显著的启动子活性。
实施例18
测试外源连接序列对转基因玉米和拟南芥中NAR启动子的影响
Gateway克隆系统在组分之间留下了“足印”序列的短片段,特别是NAR启动子和GUS编码区之间的21-bp ATT-B1片段。已经表明在某些情况下这将削弱乃至消除启动子活性。这可能与基本启动子元件和起始密码子之间的物理距离有关。为确定引入ATT-B1位点是否不利地影响NAR启动子,用常规克隆方法也就是不用Gateway系统构建了含有玉米NAR启动子::GUS::PINII盒的构建体。经基于农杆菌的转化产生转基因玉米植株,按照实施例17中所述采集不同组织样品进行GUS表达研究。
实施例19
测试缺失系列中的玉米NAR启动子
NAR基因具有硝酸盐可诱导的以及根特异性的表达模式。为确定决定NAR启动子活性和特异性的片段,构建了一系列含有连接到GUS和PINII末端序列上的截短的NAR启动子片段的构建体,如实施例17和18中对全长启动子所进行的测试那样进行测试。
使用BLASTN(基本局部比对检索工具;Altschul等人(1993)J.Mol.Biol.215:403-410),可鉴别到NAR启动子内可能对增强或抑制启动子活性来说很重要的序列。NAR启动子大约1.5到1.9kb的序列显示了与另一种基因和转座子元件的同源性。因此如SEQ ID NO:89所示的该片段的缺失将预期增加关于NAR启动子活性的信息。
此外,如SEQ ID NO:71、72、73、74和90所示的减少启动子长度的截短也可以如实施例17和18中对全长启动子所进行的测试同样的方式进行测试。可通过使用源自PCR中3.6kb NAR启动子序列的引物来制备另外的启动子亚片段。
实施例20
使用HAT和NAR序列及其组合来评估玉米中的硝酸盐摄取
制备如下玉米表达构建体来评估玉米中的硝酸盐转运:PHP27280(SEQ ID NO:93和图4)、PHP27281(SEQ ID NO:94和图5)、PHP27282(SEQ ID NO:95和图6)和PHP27283(SEQ ID NO:96和图7)。
将制备含有HAT序列以及HAT和Nar序列的组合的另外的构建体,并测试它们改变硝酸盐转运的能力。
将评估T0、T1和后代在1mM硝酸盐条件下的改变的生物量和总穗重。
序列表
<110>E.I.du Pont de Nemours and Company
<120>硝酸盐转运组分
<130>BB1555
<150>60/708318
<151>2005-08-15
<150>60/784618
<151>2006-03-22
<150>60/785143
<151>2006-03-23
<160>96
<170>PatentIn version 3.3
<210>1
<211>25
<212>DNA
<213>引物
<400>1
Figure A200680038354Q00601
<210>2
<211>21
<212>DNA
<213>引物
<400>2
Figure A200680038354Q00602
<210>3
<211>20
<212>DNA
<213>引物
<400>3
<210>4
<211>19
<212>DNA
<213>引物
<400>4
Figure A200680038354Q00604
<210>5
<211>20
<212>DNA
<213>引物
<400>5
Figure A200680038354Q00611
<210>6
<211>18
<212>DNA
<213>引物
<400>6
Figure A200680038354Q00612
<210>7
<211>25
<212>DNA
<213>引物
<400>7
Figure A200680038354Q00613
<210>8
<211>25
<212>DNA
<213>引物
<400>8
Figure A200680038354Q00614
<210>9
<211>27
<212>DNA
<213>引物
<400>9
Figure A200680038354Q00615
<210>10
<211>22
<212>DNA
<213>引物
<400>10
Figure A200680038354Q00616
<210>11
<211>25
<212>DNA
<213>引物
<400>11
Figure A200680038354Q00617
<210>12
<211>28
<212>DNA
<213>引物
<400>12
Figure A200680038354Q00618
<210>13
<211>25
<212>DNA
<213>引物
<400>13
<210>14
<211>23
<212>DNA
<213>引物
<400>14
Figure A200680038354Q00622
<210>15
<211>20
<212>DNA
<213>引物
<400>15
Figure A200680038354Q00623
<210>16
<211>17
<212>DNA
<213>引物
<400>16
Figure A200680038354Q00624
<210>17
<211>17
<212>DNA
<213>引物
<400>17
Figure A200680038354Q00625
<210>18
<211>17
<212>DNA
<213>引物
<400>18
Figure A200680038354Q00626
<210>19
<211>17
<212>DNA
<213>引物
<400>19
Figure A200680038354Q00627
<210>20
<211>21
<212>DNA
<213>引物
<400>20
Figure A200680038354Q00631
<210>21
<211>18
<212>DNA
<213>引物
<400>21
Figure A200680038354Q00632
<210>22
<211>21
<212>DNA
<213>引物
<400>22
Figure A200680038354Q00633
<210>23
<211>21
<212>DNA
<213>引物
<400>23
Figure A200680038354Q00634
<210>24
<211>18
<212>DNA
<213>引物
<400>24
Figure A200680038354Q00635
<210>25
<211>18
<212>DNA
<213>引物
<400>25
Figure A200680038354Q00636
<210>26
<211>18
<212>DNA
<213>引物
<400>26
Figure A200680038354Q00637
<210>27
<211>18
<212>DNA
<213>引物
<400>27
Figure A200680038354Q00641
<210>28
<211>25
<212>DNA
<213>引物
<400>28
Figure A200680038354Q00642
<210>29
<211>22
<212>DNA
<213>引物
<400>29
<210>30
<211>25
<212>DNA
<213>引物
<400>30
Figure A200680038354Q00644
<210>31
<211>26
<212>DNA
<213>引物
<400>31
Figure A200680038354Q00645
<210>32
<211>25
<212>DNA
<213>引物
<400>32
<210>33
<211>26
<212>DNA
<213>引物
<400>33
Figure A200680038354Q00647
<210>34
<211>3924
<212>DNA
<213>玉米
<400>34
Figure A200680038354Q00651
Figure A200680038354Q00661
<210>35
<211>1569
<212>DNA
<213>玉米
<400>35
Figure A200680038354Q00662
<210>36
<211>522
<212>PRT
<213>玉米
<400>36
Figure A200680038354Q00663
Figure A200680038354Q00671
Figure A200680038354Q00681
<210>37
<211>2014
<212>DNA
<213>玉米
<400>37
Figure A200680038354Q00682
Figure A200680038354Q00691
<210>38
<211>1014
<212>DNA
<213>玉米
<400>38
Figure A200680038354Q00692
<210>39
<211>18
<212>DNA
<213>引物
<400>39
Figure A200680038354Q00693
<210>40
<211>17
<212>DNA
<213>引物
<400>40
Figure A200680038354Q00694
<210>41
<211>18
<212>DNA
<213>引物
<400>41
<210>42
<211>18
<212>DNA
<213>引物
<400>42
Figure A200680038354Q00702
<210>43
<211>20
<212>DNA
<213>引物
<400>43
Figure A200680038354Q00703
<210>44
<211>22
<212>DNA
<213>引物
<400>44
Figure A200680038354Q00704
<210>45
<211>5812
<212>DNA
<213>玉米
<400>45
Figure A200680038354Q00705
Figure A200680038354Q00711
Figure A200680038354Q00721
<210>46
<211>2263
<212>DNA
<213>玉米
<400>46
Figure A200680038354Q00722
Figure A200680038354Q00731
<210>47
<211>1263
<212>DNA
<213>玉米
<400>47
Figure A200680038354Q00732
<210>48
<211>1455
<212>DNA
<213>玉米
<400>48
Figure A200680038354Q00733
Figure A200680038354Q00741
<210>49
<211>485
<212>PRT
<213>玉米
<400>49
Figure A200680038354Q00742
Figure A200680038354Q00751
<210>50
<211>14
<212>PRT
<213>玉米
<220>
<221>结构域
<222>(1)..(14)
<223>Xaa=任意氨基酸
<220>
<221>综合特征
<222>(6)..(6)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(7)..(7)
<223>XaaXaa可以是任意的天然存在的氨基酸
<400>50
Figure A200680038354Q00761
<210>51
<211>28
<212>PRT
<213>玉米
<220>
<221>结构域
<222>(1)..(28)
<223>Xaa=任意氨基酸
<220>
<221>综合特征
<222>(4)..(4)
<223>XaaXaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(5)..(5)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(10)..(10)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(16)..(16)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(19)..(19)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(21)..(21)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(22)..(22)
<223>Xaa可以是任意的天然存在的氨基酸
<220>
<221>综合特征
<222>(25)..(25)
<223>Xaa可以是任意的天然存在的氨基酸
<400>51
Figure A200680038354Q00771
<210>52
<211>11
<212>PRT
<213>玉米
<220>
<221>结构域
<222>(1)..(14)
<223>Xaa=任意氨基酸
<220>
<221>综合特征
<222>(6)..(6)
<223>Xaa可以是任意的天然存在的氨基酸
<400>52
Figure A200680038354Q00772
<210>53
<211>1561
<212>DNA
<213>玉米
<400>53
Figure A200680038354Q00773
Figure A200680038354Q00781
<210>54
<211>612
<212>DNA
<213>玉米
<400>54
Figure A200680038354Q00782
<210>55
<211>203
<212>PRT
<213>玉米
<400>55
Figure A200680038354Q00783
Figure A200680038354Q00791
<210>56
<211>756
<212>DNA
<213>玉米
<400>56
Figure A200680038354Q00792
<210>57
<211>594
<212>DNA
<213>玉米
<400>57
<210>58
<211>197
<212>PRT
<213>玉米
<400>58
<210>59
<211>30
<212>DNA
<213>引物
<400>59
Figure A200680038354Q00802
<210>60
<211>27
<212>DNA
<213>引物
<400>60
Figure A200680038354Q00803
<210>61
<211>18
<212>DNA
<213>引物
<400>61
Figure A200680038354Q00811
<210>62
<211>20
<212>DNA
<213>引物
<400>62
Figure A200680038354Q00812
<210>63
<211>20
<212>DNA
<213>引物
<400>63
Figure A200680038354Q00813
<210>64
<211>22
<212>DNA
<213>引物
<400>64
Figure A200680038354Q00814
<210>65
<211>2917
<212>DNA
<213>玉米
<220>
<221>综合特征
<222>(517)..(517)
<223>n是a,c,g或t
<220>
<221>综合特征
<222>(590)..(590)
<223>n是a,c,g或t
<400>65
Figure A200680038354Q00815
Figure A200680038354Q00821
<210>66
<211>4498
<212>DNA
<213>玉米
<220>
<221>综合特征
<222>(517)..(517)
<223>n是a,c,g或t
<220>
<221>综合特征
<222>(590)..(590)
<223>n是a,c,g或t
<400>66
Figure A200680038354Q00822
Figure A200680038354Q00831
Figure A200680038354Q00841
<210>67
<211>3506
<212>DNA
<213>玉米
<220>
<221>综合特征
<222>(517)..(517)
<223>n是a,c,g或t
<220>
<221>综合特征
<222>(590)..(590)
<223>n是a,c,g或t
<400>67
Figure A200680038354Q00842
Figure A200680038354Q00851
<210>68
<211>1014
<212>DNA
<213>玉米
<400>68
Figure A200680038354Q00852
<210>69
<211>1492
<212>DNA
<213>玉米
<400>69
Figure A200680038354Q00861
<210>70
<211>3621
<212>DNA
<213>玉米
<400>70
Figure A200680038354Q00871
<210>71
<211>3236
<212>DNA
<213>玉米
<400>71
Figure A200680038354Q00872
Figure A200680038354Q00881
<210>72
<211>1000
<212>DNA
<213>玉米
<400>72
Figure A200680038354Q00882
Figure A200680038354Q00891
<210>73
<211>2236
<212>DNA
<213>玉米
<400>73
Figure A200680038354Q00892
<210>74
<211>1237
<212>DNA
<213>玉米
<400>74
Figure A200680038354Q00901
<210>75
<211>21
<212>DNA
<213>引物
<400>75
Figure A200680038354Q00902
<210>76
<211>24
<212>DNA
<213>引物
<400>76
Figure A200680038354Q00903
<210>77
<211>32
<212>DNA
<213>引物
<400>77
Figure A200680038354Q00904
<210>78
<211>27
<212>DNA
<213>引物
<400>78
Figure A200680038354Q00905
<210>79
<211>18
<212>DNA
<213>引物
<400>79
Figure A200680038354Q00911
<210>80
<211>19
<212>DNA
<213>引物
<400>80
Figure A200680038354Q00912
<210>81
<211>24
<212>DNA
<213>引物
<400>81
Figure A200680038354Q00913
<210>82
<211>20
<212>DNA
<213>引物
<400>82
Figure A200680038354Q00914
<210>83
<211>18
<212>DNA
<213>引物
<400>83
Figure A200680038354Q00915
<210>84
<211>24
<212>DNA
<213>引物
<400>84
Figure A200680038354Q00916
<210>85
<211>2777
<212>DNA
<213>载体
<400>85
Figure A200680038354Q00917
<210>86
<211>6377
<212>DNA
<213>载体
<400>86
Figure A200680038354Q00922
Figure A200680038354Q00931
Figure A200680038354Q00941
<210>87
<211>17777
<212>DNA
<213>载体
<400>87
Figure A200680038354Q00942
Figure A200680038354Q00951
Figure A200680038354Q00961
Figure A200680038354Q00971
Figure A200680038354Q00981
Figure A200680038354Q00991
<210>88
<211>54686
<212>DNA
<213>载体
<400>88
Figure A200680038354Q01001
Figure A200680038354Q01021
Figure A200680038354Q01031
Figure A200680038354Q01051
Figure A200680038354Q01061
Figure A200680038354Q01071
Figure A200680038354Q01081
Figure A200680038354Q01091
Figure A200680038354Q01111
Figure A200680038354Q01131
Figure A200680038354Q01141
<210>89
<211>3324
<212>DNA
<213>玉米
<400>89
Figure A200680038354Q01152
Figure A200680038354Q01161
<210>90
<211>500
<212>DNA
<213>玉米
<400>90
<210>91
<211>2025
<212>DNA
<213>玉米
<400>91
Figure A200680038354Q01172
<210>92
<211>520
<212>PRT
<213>玉米
<400>92
Figure A200680038354Q01191
<210>93
<211>49597
<212>DNA
<213>载体
<400>93
Figure A200680038354Q01192
Figure A200680038354Q01201
Figure A200680038354Q01211
Figure A200680038354Q01221
Figure A200680038354Q01231
Figure A200680038354Q01241
Figure A200680038354Q01251
Figure A200680038354Q01261
Figure A200680038354Q01281
Figure A200680038354Q01291
Figure A200680038354Q01301
Figure A200680038354Q01311
Figure A200680038354Q01321
Figure A200680038354Q01341
<210>94
<211>49579
<212>DNA
<213>载体
<400>94
Figure A200680038354Q01342
Figure A200680038354Q01351
Figure A200680038354Q01361
Figure A200680038354Q01381
Figure A200680038354Q01391
Figure A200680038354Q01411
Figure A200680038354Q01421
Figure A200680038354Q01431
Figure A200680038354Q01441
Figure A200680038354Q01451
Figure A200680038354Q01461
Figure A200680038354Q01471
Figure A200680038354Q01481
<210>95
<211>49015
<212>DNA
<213>载体
<400>95
Figure A200680038354Q01482
Figure A200680038354Q01491
Figure A200680038354Q01501
Figure A200680038354Q01521
Figure A200680038354Q01541
Figure A200680038354Q01551
Figure A200680038354Q01561
Figure A200680038354Q01571
Figure A200680038354Q01591
Figure A200680038354Q01601
<210>96
<211>48997
<212>DNA
<213>载体
<400>96
Figure A200680038354Q01631
Figure A200680038354Q01641
Figure A200680038354Q01651
Figure A200680038354Q01661
Figure A200680038354Q01681
Figure A200680038354Q01711
Figure A200680038354Q01731
Figure A200680038354Q01741
Figure A200680038354Q01751

Claims (34)

1.分离的多核苷酸,其含有:
(a)编码高亲和力硝酸盐转运蛋白多肽的核苷酸序列,其中多肽的氨基酸序列基于Clustal V比对方法与SEQ ID NO:36或49相比具有至少80%序列同一性;或者
(b)核苷酸序列的互补序列,其中互补序列与核苷酸序列由同样数量的核苷酸组成并且是100%互补的。
2.权利要求1的多核苷酸,其中多肽的氨基酸序列基于Clustal V比对方法与SEQ ID NO:36、49或92相比具有至少85%的序列同一性。
3.权利要求1的多核苷酸,其中多肽的氨基酸序列基于Clustal V比对方法与SEQ ID NO:36、49或92相比具有至少90%的序列同一性。
4.权利要求1的多核苷酸,其中多肽的氨基酸序列基于Clustal V比对方法与SEQ ID NO:36、49或92相比具有至少95%的序列同一性。
5.权利要求1的多核苷酸,其中多肽的氨基酸序列基于Clustal V比对方法与SEQ ID NO:36、49或92相比具有至少99%的序列同一性。
6.权利要求1的多核苷酸,其中多肽的氨基酸序列含有SEQ IDNO:36、49或92之一。
7.权利要求1的多核苷酸,其中核苷酸序列含有SEQ ID NO:35或48之一。
8.权利要求1的分离的多核苷酸,其中核苷酸序列含有至少两个选自SEQ ID NO:50、51和52的基序。
9.分离的核酸片段,其含有基本上由SEQ ID NO:37、38、46、47、56、65、67、68、69、70、71、72、73、74、89或90组成的启动子或者含有所述启动子的基本上相似的且功能上等价的亚片段。
10.重组DNA构建体,其含有权利要求1的编码HAT变体的分离的多核苷酸或其功能上等价的亚片段,可操作地连接到至少一种调节序列上。
11.权利要求10的重组DNA构建体,其中所述调节序列含有权利要求9的启动子。
12.在基因组中含有权利要求10的重组DNA构建体的植物。
13.从权利要求12的植物获得的种子。
14.权利要求12的植物,其中所述植物选自水稻、玉米、高粱、小米、黑麦、大豆、卡诺拉、小麦、大麦、燕麦、菜豆和坚果。
15.在基因组中含有权利要求10的重组DNA构建体的植物细胞。
16.含有权利要求15的植物细胞的植物组织。
17.分离编码改变植物硝酸盐转运的多肽的核酸片段的方法,其包括:
(a)将SEQ ID NO:36、49、55或58与其它改变植物硝酸盐转运的多肽序列进行比较;
(b)鉴别步骤(a)中获得的4种或更多种氨基酸的保守序列;
(c)根据步骤(b)中鉴别的保守序列制备区域特异性核苷酸探针或寡聚体;以及
(d)使用步骤(c)的核苷酸探针或寡聚体通过序列依赖的方案来分离改变植物硝酸盐转运的序列。
18.绘制与改变植物硝酸盐转运相关的遗传变异图谱的方法,其包括:
(a)将两种植物品种杂交;以及
(b)评估步骤(a)的杂交所产生的子代植株中的遗传变异,该评估是针对如下序列进行的:
(i)选自SEQ ID NO:35、48、54或57的核酸序列;或者
(ii)编码选自SEQ ID NO:36、49、55或58的多肽的核酸序列;
其中使用选自RFLP分析、SNP分析和基于PCR的分析的方法进行评估。
19.改变植物硝酸盐转运的分子育种方法,其包括:
(a)将两种植物品种杂交;以及
(b)评估步骤(a)的杂交所产生的子代植株中的遗传变异,该评估是针对如下序列进行的:
(i)选自SEQ ID NO:35、48、54或57的核酸序列;或者
(ii)编码选自SEQ ID NO:36、49、55或58的多肽的核酸序列;
其中使用选自RFLP分析、SNP分析和基于PCR的分析的方法进行评估。
20.玉米植株,其含有:
(a)第一重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码HAT多肽的分离的多核苷酸;以及
(b)至少一种另外的重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码NAR多肽的分离的多核苷酸。
21.改变植物氮转运的方法,其包括:
(a)用重组DNA构建体转化植物,该构建体含有:
(i)第一重组DNA构建体,其含有可操作地连接到至少一种调
节序列上的编码HAT多肽的分离的多核苷酸;以及
ii)至少一种另外的重组DNA构建体,其含有可操作地连接到
至少一种调节序列上的编码NAR多肽的分离的多核苷酸,
(b)在适于表达重组DNA构建体的条件下培养(a)的转化植物;以及
(c)选择具有改变了的硝酸盐转运的那些转化植物。
22.植物改组的HAT变体,与野生型HAT相比具有改变了的硝酸盐摄取动力学性质。
23.权利要求22的HAT变体,其中变体具有0.5到2mM硝酸盐的Km范围。
24.权利要求22的HAT变体,其中变体具有相比于野生型HAT至少高2到10倍的Vmax。
25.权利要求22的HAT变体,其中变体具有0.5到2mM硝酸盐的Km范围,并具有相比于野生型HAT至少高2到10倍的Vmax。
26.重组DNA构建体,其含有编码权利要求22、23、24或25任一项的HAT变体的分离的多核苷酸,所述多核苷酸可操作地连接到至少一种调节序列上。
27.重组DNA构建体,其含有编码权利要求22、23、24或25任一项的HAT变体的分离的多核苷酸,所述多核苷酸可操作地连接到至少一种调节序列上,其中所述调节序列含有权利要求9的启动子。
28.在基因组中含有权利要求26或27的重组DNA构建体的植物。
29.从权利要求28的植物获得的种子。
30.权利要求28的植物,其中所述植物选自水稻、玉米、高粱、小米、黑麦、大豆、卡诺拉、小麦、大麦、燕麦、菜豆和坚果。
31.在基因组中含有权利要求26或27的重组DNA构建体的植物细胞。
32.含有权利要求31的植物细胞的植物组织。
33.玉米植株,其含有:
(a)第一重组DNA构建体,其含有权利要求25或26的重组DNA构建体;以及
(b)至少一种另外的重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码NAR多肽的分离的多核苷酸。
34.改变植物氮转运的方法,其包括:
a)用重组DNA构建体转化植物,该构建体含有:
i)第一重组DNA构建体,其含有权利要求26或27的重组DNA构建体;以及
ii)至少一种另外的重组DNA构建体,其含有可操作地连接到至少一种调节序列上的编码NAR多肽的分离的多核苷酸,
(b)在适于表达重组DNA构建体的条件下培养步骤(a)的转化植物;以及
(c)选择具有改变了的硝酸盐转运的那些转化植物。
CNA2006800383549A 2005-08-15 2006-08-15 硝酸盐转运组分 Pending CN101395275A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70831805P 2005-08-15 2005-08-15
US60/708,318 2005-08-15
US60/784,618 2006-03-22
US60/785,143 2006-03-23

Publications (1)

Publication Number Publication Date
CN101395275A true CN101395275A (zh) 2009-03-25

Family

ID=40494822

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800383549A Pending CN101395275A (zh) 2005-08-15 2006-08-15 硝酸盐转运组分

Country Status (1)

Country Link
CN (1) CN101395275A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549009A (zh) * 2009-08-20 2012-07-04 先锋国际良种公司 在玉蜀黍中功能性表达改组酵母硝酸盐转运蛋白(ynt1)以改善低硝酸盐环境下的硝酸盐吸收
CN103403021A (zh) * 2010-09-22 2013-11-20 英美烟草(投资)有限公司 转基因植物
CN113924367A (zh) * 2019-05-23 2022-01-11 南京农业大学 提高水稻籽粒产量的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549009A (zh) * 2009-08-20 2012-07-04 先锋国际良种公司 在玉蜀黍中功能性表达改组酵母硝酸盐转运蛋白(ynt1)以改善低硝酸盐环境下的硝酸盐吸收
CN103403021A (zh) * 2010-09-22 2013-11-20 英美烟草(投资)有限公司 转基因植物
US9322029B2 (en) 2010-09-22 2016-04-26 British American Tobacco (Investments) Limited Transgenic plants with reduced nitrate content
CN113924367A (zh) * 2019-05-23 2022-01-11 南京农业大学 提高水稻籽粒产量的方法

Similar Documents

Publication Publication Date Title
US7692064B2 (en) Nitrogen transport metabolism
US8143479B2 (en) Plastidic phosphoglucomutase genes
US8389705B2 (en) Nitrate transport components
US20100017909A1 (en) Nitrate transport components
US7943753B2 (en) Auxin transport proteins
US20060008820A1 (en) Cell cycle genes in plants
CN101395275A (zh) 硝酸盐转运组分
US7271318B2 (en) Plant genes encoding pantothenate synthetase
WO2000075340A2 (en) Magnesium chelatase
EP1098963A2 (en) Chorismate synthase from plants
US20020142390A1 (en) Nitrogen transport metabolism
WO2000006756A1 (en) Sulfur metabolism enzymes
US7087813B2 (en) Plant lipoxygenases
WO2000028006A2 (en) Plant nadp-specific glutamate dehydrogenase
WO2003014373A2 (en) Metal-binding proteins
US6852910B1 (en) Plant recombination proteins
WO2000078965A2 (en) Plant auxin proteins
WO2000068390A2 (en) Plant recombination proteins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1132295

Country of ref document: HK

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20090325