CN101369468A - 核反应堆鲁棒灰控制棒 - Google Patents

核反应堆鲁棒灰控制棒 Download PDF

Info

Publication number
CN101369468A
CN101369468A CNA2008101456675A CN200810145667A CN101369468A CN 101369468 A CN101369468 A CN 101369468A CN A2008101456675 A CNA2008101456675 A CN A2008101456675A CN 200810145667 A CN200810145667 A CN 200810145667A CN 101369468 A CN101369468 A CN 101369468A
Authority
CN
China
Prior art keywords
control rod
involucrum
absorbing material
elongated tubular
tubular product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101456675A
Other languages
English (en)
Other versions
CN101369468B (zh
Inventor
R·O·波默莱亚努
M·J·霍恩
小卡罗·J·龙
M·C·米斯韦尔
D·L·斯图克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of CN101369468A publication Critical patent/CN101369468A/zh
Application granted granted Critical
Publication of CN101369468B publication Critical patent/CN101369468B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明涉及一种核反应堆鲁棒灰控制棒。一种具有下顶部吸收材料的控制棒,该吸收材料表现出比在下顶部吸收材料上方延伸的第二吸收材料低得多的辐射诱导膨胀。当控制棒完全插入导向套管时,具有比第二吸收材料低得多的反应性当量的下顶部吸收材料从控制棒下端塞延伸到在核燃料组件的导向套管中的缓冲器正上方的断面。

Description

核反应堆鲁棒灰控制棒
技术领域
[0001]本发明一般地涉及用于核反应堆的灰控制棒(gray controlrod)组件,且更具体地涉及对减小在灰控制棒完全插入核反应堆堆芯时燃料组件导向套管的缓冲区中的中子吸收材料的膨胀和加热进行的改进。
背景技术
[0002]在典型的核反应堆中,反应堆堆芯包括大量燃料组件,每个燃料组件都包括顶喷嘴和底喷嘴,其中多个横向间隔开的细长导向套管在喷嘴之间纵向延伸,并且多个横向支承栅格沿导向套管轴向间隔开且附接到导向套管。而且,每个燃料组件包括多个细长燃料元件或棒且由顶喷嘴和底喷嘴之间的横向栅格支承,这些燃料元件或棒彼此横向间隔开且与导向套管横向间隔开。每个燃料棒包含可裂变材料,且成阵列组合在一起,该阵列组织成在堆芯中提供足以支持高核裂变率的中子通量,从而以热的形式释放大量能量。为了吸取在堆芯中生成的部分热以产生有用功,液体冷却剂被向上泵送通过堆芯。
[0003]由于反应堆堆芯中的发热率与核裂变率成比例,而核裂变率又由堆芯中的中子通量决定,所以在反应堆启动时、运行期间和关闭时的发热控制是通过改变中子通量实现的。一般地,这通过使用包含中子吸收材料的控制棒吸收多余的中子来实现。除了作为燃料组件的结构元件之外,导向套管还提供用于将中子吸收控制棒插入反应堆堆芯中的通道。中子通量的水平以及由此导致的堆芯热输出通常通过控制棒进出导向套管的运动来调节。
[0004]利用与燃料组件有关的控制棒的一种普通布置可参见授予Hill并转让给本发明受让人的美国专利No.4,326,919。该专利示出在上端处由多脚架(spider)组件支承的控制棒阵列,该多脚架组件又连接到控制棒驱动机构,该控制棒驱动机构竖直提升和降低(称为步进作用)控制棒而使其在燃料组件的中空导向套管中进出。用在该布置中的控制棒的典型构造为细长金属包壳管的形式,在该包壳管中布置有中子吸收材料且在该管的相反两端处具有用于密封管中吸收材料的端塞。一般地,中子吸收材料的形式为紧密填装的陶瓷或金属芯块堆,在B4C吸收材料的情况下,其仅部分填充包壳管,而在芯块顶部和上端塞之间留下空隙空间或轴向间隙,以形成用于接收在控制操作中产生的气体的充气室。卷簧设置在该充气室中,且在上端塞和顶部芯块之间保持在压缩状态,以在控制棒步进过程中将芯块堆保持在紧密填装状态。
[0005]因此,控制棒通过改变直接中子吸收而影响反应。控制棒用于快速反应控制。例如硼酸的化学补偿剂(chemical shim)溶于冷却剂中以控制长期反应变化。在更均匀分布于整个堆芯中的情况下,该硼溶液导致比控制棒所产生的更均匀的能量分布和燃料损耗。硼的浓度通常随堆芯老化而降低以补偿燃料损耗和裂变产物堆积。
[0006]裂变产物(例如氙-135)的堆积通过寄生吸收中子来降低反应性,因此降低热利用。氙-135(下文仅称为“氙”)通过中子吸收或衰变移除。在堆芯功率降低时(例如在负载跟随过程中,负载跟随是响应于功率需求降低的反应堆功率降低),较少的热中子可用于移除氙。因此,堆芯中氙的浓度增加。
[0007]这种伴随堆芯反应降低的氙浓度增加通常通过降低溶于堆芯冷却剂中的硼浓度或者通过从堆芯抽出控制棒来补偿。但是,这两种方法都有缺点。改变硼浓度需要冷却剂(即水)的处理,该冷却剂处理很困难且在实用中是不期望的,特别是在邻近堆芯寿命结束时。控制棒的移除意味着堆芯的恢复功率能力降低和峰值因子增加。
[0008]该问题的一般解决方法是在全功率堆芯中设置若干组降低反应性当量(reactivity worth)棒(称为灰棒),这些棒可用于在功率降低时被移除以补偿氙增多。在由本发明受让人设计的称为AP1000反应堆的先进被动核电站(passive nuclear plant)中,具有相对低反应性当量的灰棒将用于在稳定状态和负载跟随操作中补偿堆芯反应性的总体变化。在全功率稳定状态和降低功率过渡状态下,该操作策略将导致灰控制棒一直在堆芯中循环进出。在该操作中,一个或更多灰棒组可以完全插入一段延长的时间,其中控制棒顶部位于导向套管缓冲区域中。该缓冲区域是导向套管的下部中的内径减小段,其在控制棒落入堆芯中时减慢控制棒的下降以减小多脚架在燃料组件的顶喷嘴上的冲击。每个导向套管底部处的缓冲区域大约有两英尺(0.61米)长。当控制棒插入时,缓冲区域中的冷却剂流速和冷却剂横截面面积稍小于导向套管的其余部分。
[0009]与该控制策略相关的预期技术挑战可包括:
·由于对功率的长期棒操作导致的一些灰棒中的吸收材料的辐射诱导膨胀,使得在缓冲区域中的导向套管和灰控制棒顶部之间可能出现机械干涉或接合;
·当灰棒完全插入时缓冲区域中冷却剂的沸腾,这导致可能增加导向套管腐蚀率和降低从控制棒内部的热传递;和
·当灰控制棒最终抽出时,由于短期局部功率变化导致的燃料完整性挑战。
发明内容
[0010]因此,本发明的一个目的是克服由于当控制棒完全插入时遇到缓冲区的控制棒包壳的区域中的控制棒内的中子吸收材料的辐射诱导膨胀而引起的控制棒包壳直径的扩大。
[0011]本发明的另一目的是降低当控制棒完全插入时缓冲区域中控制棒顶部的加热。
[0012]本发明的另一目的是降低当灰控制棒缓慢移除时发生在堆芯中的反应性的快速变化。
[0013]这些和其他目的通过在灰控制棒顶部使用具有极好辐射诱导膨胀特性的较低当量吸收材料的本发明而实现。该优选顶部材料是已知在极高中子影响条件下表现出最小膨胀(大大小于例如Ag-In-Cd的典型吸收材料)的若干种商业镍结构合金中的任一种。这将显著降低灰控制棒与缓冲区域机械干涉或者随着反应堆事故停堆而出现无法完全插入的风险。灰棒的镍合金下段的反应性当量是位于该下段上方的主吸收材料结构的大约50-60%,该下段在吸收区域和灰控制棒的最下端之间提供低吸收的过渡区域。另外,该镍合金具有主吸收材料结构的平均原子量的大约一半,且具有明显更高的熔化温度。由于更低的中子吸收和更低的伽玛加热,在镍合金顶部区域中内部加热速率将显著降低。结果,如果使用镍合金顶部,缓冲区域中冷却剂的沸腾和吸收材料的中心线熔化的风险将显著降低。最后,当灰棒以慢速抽出时(这对全功率稳定状态条件下的大多数操作是典型的),在顶部中包括低当量吸收区域将导致局部功率水平更平缓地增加。局部功率的更平缓增加将显著降低由于过大或过快的局部功率变化导致的燃料损伤的可能性。
[0014]优选地,当灰控制棒完全插入时,镍合金顶部在高度上伸出而稍稍高于缓冲区,使得灰控制棒包壳的任何可能膨胀将不会延伸至缓冲区。
附图说明
[0015]从以下结合附图阅读的优选实施例的描述,可以得到对本发明的进一步理解,附图中:
[0016]图1是以竖直缩短形式示出的燃料组件以及用于其的控制组件(部分以虚线示出)的正视图;
[0017]图2A是已经从燃料组件移除的图1控制组件的局部剖视图;
[0018]图2B是用于图2A的控制组件的控制棒多脚架组件的俯视图;
[0019]图3A是灰棒控制组件的剖视图,示出插入导向套管的缓冲区域内的小棒的下部;和
[0020]图3B是图3A所示上缓冲区域的放大剖视图。
具体实施方式
[0021]为简单起见,本发明将参考商业上公知的命名为AP1000的压水反应堆堆芯设计来描述。AP1000反应堆是一种WestinghouseElectric Company LLC的设计。Westinghouse Electric Company LLC在宾夕法尼亚州大匹兹堡设有公司办事处。对AP1000反应堆设计的参考仅用于示例性例子,且不意味着对本发明范围的限定。因此,可以认识到本发明的该优选实施例的示例性灰棒控制组件设计能应用到广泛的各种其他反应堆设计中。
[0022]这里使用的方向术语,例如上、下、顶部、底部、左、右、及其用于大部分部件的派生词,涉及图中所示元件的方向,且除非在此明确地叙述,其不意味着对权利要求的限定。
[0023]如这里所用的,两个或更多部件“联接”在一起的叙述将意味着这些部件直接或通过一个或更多中间部件接合在一起。
[0024]如这里所用的,术语“数量”将指一个或多于一个(即多个)。
燃料组件
[0025]现在参见附图,且特别地参见图1,其示出以竖直缩短形式表示且以附图标记10总体指示的核反应堆燃料组件的正视图。燃料组件10是用在压水反应堆中的类型,且具有结构骨架,该结构骨架包括在其下端处将燃料组件10支承在核反应堆(未示出)堆芯区域中的下堆芯支承板14上的底喷嘴12、在其上端处的顶喷嘴16、以及在底喷嘴12和顶喷嘴16之间纵向延伸且在相反两端处刚性联接到底喷嘴12和顶喷嘴16的多个导管或套管18。
[0026]燃料组件10还包括沿导向套管18轴向间隔开且安装到导向套管18上的多个横向栅格20、以及横向间隔开且由栅格20支承的有组织阵列的细长燃料棒22。组件10还具有位于其中央的仪器管24,该仪器管24在底喷嘴12和顶喷嘴16之间延伸且安装到这两个喷嘴。由于部件的前述设置,应该理解到燃料组件10形成为能不损坏部件装配而方便操纵的整体单元。
[0027]如前所述,燃料组件10中的成阵列的燃料棒22由沿燃料组件长度间隔开的栅格20保持彼此间隔的关系。每个燃料棒22包括核燃料芯块26且在其相反两端处由上端塞28和下端塞30封闭。芯块26由设置在上端塞28和芯块堆叠顶部之间的充气弹簧32保持成堆叠。由可裂变材料组成的燃料芯块26用于产生反应堆的反应功率。液体慢化剂/冷却剂(例如水或含硼水)被向上泵送通过下堆芯板14中的多个流动开口而送至燃料组件。燃料组件10的底喷嘴12使冷却剂向上沿着组件的燃料棒22通过导管18,以吸收其中所产生的热量来产生有用功。为控制裂变过程,多个控制棒34可在位于燃料组件10中的预定位置处的导向管套18中往复运动。位于顶喷嘴16上方的多脚架组件39支承控制棒34。
[0028]图2A和2B示出已经从图1的燃料组件10移除的灰控制棒组件36。一般地,灰控制棒组件36具有筒状元件37,该筒状元件具有包括多脚架组件39的多个径向延伸锚爪或臂38,在图2B中最优示出。每个臂38与灰控制棒34相互连接,这样灰控制棒组件36可操作以使灰控制棒34在导向套管18(图1)中竖直移动,从而控制燃料组件10(图1)中的裂变过程,这些都是以已知方式进行的。除了包括将在下面讨论的先进灰控制棒设计的示例性灰控制棒之外,前述的全部都是本领域已有的或大致公知的。本发明下面的优选实施例将示为应用到灰棒控制组件,除了灰控制棒组件的整体反应性当量大大小于关闭所依赖的普通控制棒组件之外,其基本上所有方面都与普通控制棒组件相同。
先进灰棒控制组件
[0029]提出了一种核控制棒组件,其能够更好地:(a)降低由于吸收剂顶部膨胀而与核燃料组件缓冲区域发生干涉的可能性;(b)增大相对于缓冲区沸腾和吸收剂熔化相关的热设计容限;和(c)降低控制棒抽出时燃料棒包壳中的热-机械负载。该概念如果用在其中燃料组件具有导向套管的内径减小部(称为缓冲区域)的反应堆中,将提供上面所述全部好处。当控制棒落入堆芯中时,控制棒使导向套管中的水移动而减慢其下降。在导向套管的下端处的直径减小部进一步降低控制棒的下降速度,使得控制棒以与底部套管端塞轴向间隔开的软着陆而实现停止。这减小了多脚架在顶喷嘴16上的冲击。在AP1000反应堆中,具有相对低反应性当量的灰控制棒34将用于补偿在稳定状态和负载跟随操作过程中的堆芯反应性的整体变化。该操作策略将导致在全功率稳定状态和降低功率过渡条件两种情况下,灰控制棒都一直循环进出堆芯。在该操作中,一个或更多灰控制棒组可完全插入一段延长的时间,其中控制棒顶部位于导向套管18的缓冲区域中。位于每个导向套管底部处的缓冲区域为大约两英尺(0.61米),且具有减小的内径。当控制棒插入时,缓冲区域中的冷却剂流速和冷却剂横截面面积明显低于导向套管的其余部分。如先前所述,这可预期地带来很多技术挑战。通常的Ag-In-Cd吸收材料已知在延长的辐射下膨胀且对控制棒34的包壳施加压力,而使包壳膨胀一定程度。对功率的长期棒操作可预料地在直径减小的缓冲区和控制棒包壳之间产生某种机械干涉,这可能会阻止棒完全插入或抽出。其次,当灰棒完全插入时,由于Ag-In-Cd材料的加热速率和较低的冷却剂流速,可能发生缓冲区域中的冷却剂沸腾。这能导致导向套管18腐蚀速率增加和从控制棒34内部的热传递降低的可能性。最后,当灰棒被最终抽出时,需要考虑由于短期局部功率变化导致的燃料棒完整性。
[0030]本发明的概念通过用具有比上述部分更低中子吸收特性且在辐射下不明显膨胀的材料替换灰控制棒34的下段,来克服这些顾虑。该类型材料的示例是合金600[UNS N06600]、合金625[UNSN06625]、合金690[UNS N06690]或合金718[UNS N07718]。下段的长度期望足够长,以使得上段材料不与燃料组件导向套管的内径减小区域(称为缓冲区域)重叠。下段材料的形状可以是一个棒、多个棒或芯块。
[0031]参考图2A和2B,示出总体控制棒构造。为了利用由低反应性当量灰棒提供的机械补偿反应控制能力,与需要改变反应堆冷却剂中可溶硼浓度的化学补偿剂不同,例如现有的用于AP1000反应堆的控制棒组件36的公知控制棒组件使用灰棒控制组件。但是,虽然用于AP1000反应堆设计的灰棒控制组件设计具有一般如图2B所示构造的24个棒,24个棒中的某些棒(如果有的话)可为不锈钢(例如但不限于SS-304)水移位棒,而其余的棒是中子吸收棒。因此,基本上所有的中子吸收材料局限且隔离在没有水移位棒的灰棒组件位置中。
[0032]此外,在AP1000设计的一个实施例中,吸收材料包括由大约80%的银、大约15%的铟和大约5%的镉组成的Ag-In-Cd吸收剂。该吸收材料与其中全部24个棒均为Ag-In-Cd的公知标准全强棒束控制组件一致。但是,应意识到AP1000的最终设计可替代使用例如银(Ag)的其他传统中子吸收材料作为主要吸收剂,例如在2005年7月26日申请并转让给本发明受让人的美国专利申请No.11/189,472中所描述的构造。
[0033]根据本发明,在灰控制棒顶部中使用具有优异辐射诱导膨胀特性的低当量吸收材料将降低用于AP1000反应堆的控制策略的所有所提及风险的可能性。优选的顶部材料是已知在极高中子影响条件下表现出最小膨胀(大大小于例如Ag-In-Cd的典型吸收材料)的若干种商业镍结构合金中的任一种,例如合金600[UNS N06600]、合金625[UNS N06625]、合金690[UNS N06690]或合金718[UNS N07718]。这将显著降低灰控制棒与缓冲区域机械干涉或者随着反应堆事故停堆而出现无法完全插入的风险。如前面提到的,本发明的灰棒的镍合金下段的反应性当量是计划在灰控制棒的此下段上方使用的吸收材料的大约50-60%,该下段在灰控制棒的最下端和上吸收区域之间提供低吸收的过渡区域。另外,镍合金具有主吸收材料平均原子量的大约一半,且具有明显更高的熔化温度。由于较低的中子吸收和较低的伽玛加热,在镍合金顶部区域中内部加热速率将显著降低。结果,如果使用镍合金顶部,缓冲区域中冷却剂的沸腾和吸收材料的中心线熔化的风险将显著降低。最后,当灰棒以慢速抽出时(这对全功率稳定状态条件下的大多数操作是典型的),在顶部中包括低当量吸收区域将导致局部功率水平更平缓地增加。局部功率的更平缓增加将显著降低由于过大或过快的局部功率变化导致的燃料损伤的可能性。
[0034]图3A示出完全插入缓冲器42中的控制棒34的下部。控制棒34包括细长管状包壳40,该包壳具有下端塞46和未示出的上端塞。镍合金材料50沿位于缓冲器44顶部正上方的控制棒34从下端塞46向断面(elevation)56延伸。灰棒上吸收材料48从断面56向位于上控制棒端盖下方的点延伸。镍合金材料50和灰吸收材料48的组合长度应该大致等于或大于控制棒所插入的燃料组件中的燃料芯块堆的长度。当控制棒完全插入缓冲器42中时,其间隔设置在导向套管18的下端塞上方。缓冲器的总高度典型地仅在两英尺(0.61米)以下。镍合金材料的长度被计量,以使其恰延伸超出缓冲器上端44的端部一段距离,该距离将防止控制棒包壳40由于吸收材料48的膨胀而膨胀达到缓冲器44的顶部。图3B示出图3A上部的放大部分,其提供镍合金顶部50区域中的导向套管18的壁,缓冲器42和灰控制棒金属包壳40之间的界面的更好视图。优选地,镍合金顶部50延伸不高于镍合金顶部50和灰上吸收材料48的组合长度的20%。
[0035]虽然已经详细描述本发明的具体实施例,但本领域技术人员将认识到考虑所公开的全部教导可对这些细节进行各种修改和替换。因此,所公开的具体实施例仅表示示例且不限定本发明的范围,本发明的范围将由所附权利要求的全部范围及其任何和全部等同方案所给出。

Claims (12)

1.一种用于核反应堆的控制棒,包括:
具有轴向尺寸的细长管状包壳,所述细长管状包壳具有在所述轴向尺寸的一个限度位置处的第一端和在所述轴向尺寸的另一限度位置处的第二端,所述管状包壳的外径尺寸形成为装配在核燃料组件的控制棒导向套管的中空内部的最窄尺寸内,所述控制棒导向套管的中空内部包括接收所述控制棒的上端和具有内部直径减小部的下端,所述直径减小部在所述控制棒落入所述导向套管时用作缓冲器,所述直径减小部从所述控制棒导向套管的下部向上延伸不超过所述导向套管的中空内部的高度的百分之二十;
第一端塞,其封闭所述细长管状包壳的第一端且设计为可滑动地接收在所述缓冲器中;
第一中子吸收材料,其在所述下端塞附近占据所述细长管状包壳的下部,且轴向延伸通过所述细长管状包壳一段基本等于或稍大于以下长度的距离,所述长度是当所述控制棒完全插入所述控制棒导向套管时所述细长管状包壳接收在所述缓冲器中的长度;
第二中子吸收材料,其在第一中子吸收材料的上方占据所述细长管状元件的中空内部的其余部分的一部分,所述第二中子吸收材料具有显著高于第一中子吸收材料的反应性当量;和
第二端塞,其用于封闭所述细长管状包壳的第二端。
2.如权利要求1的控制棒,其中第一中子吸收材料是从合金600、合金625、合金690和合金718的组中选择的镍合金。
3.如权利要求1的控制棒,其中第二中子吸收材料在辐射下的膨胀显著大于第一中子吸收材料的膨胀。
4.如权利要求1的控制棒,其中所述控制棒是灰棒。
5.如权利要求1的控制棒,其中第二中子吸收材料是Ag-In-Cd或Ag。
6.如权利要求1的控制棒,其中第一中子吸收材料在辐射下不出现任何显著的膨胀。
7.如权利要求1的控制棒,其中第一中子吸收材料轴向延伸通过所述细长管状包壳的距离大于当所述控制棒完全插入所述控制棒导向管套时所述细长管状包壳接收在所述缓冲器中的长度,足以使得由于在辐射下第二中子吸收材料的膨胀导致的包壳的可能增大不延伸至接收在所述缓冲器内的包壳的区域中。
8.如权利要求1的控制棒,其中第一中子吸收材料轴向延伸通过所述细长管状包壳的距离大于所述缓冲器从控制棒导向套管下端塞延伸的距离。
9.如权利要求8的控制棒,其中第一中子吸收材料轴向延伸通过所述细长管状包壳的距离小于2英尺(0.61m)。
10.如权利要求9的控制棒,其中第一中子吸收材料和第二中子吸收材料共同轴向延伸通过所述细长管状包壳至以下高度,所述高度等于或大于所述控制棒所插入的燃料组件中的燃料芯块堆的高度。
11.一种具有多个控制棒的控制棒组件,所述多个控制棒中的至少一些控制棒包括:
具有轴向尺寸的细长管状包壳,所述细长管状包壳具有在所述轴向尺寸的一个限度位置处的第一端和在所述轴向尺寸的另一限度位置处的第二端,所述管状包壳的外径尺寸形成为装配在核燃料组件的控制棒导向套管的中空内部的最窄尺寸内,所述控制棒导向套管的中空内部包括接收所述控制棒的上端和具有内部直径减小部的下端,所述直径减小部在所述控制棒落入所述导向套管时用作缓冲器,所述直径减小部从所述控制棒导向套管的下部向上延伸不超过所述导向套管的中空内部的高度的百分之二十;
第一端塞,其封闭所述细长管状包壳的第一端且设计为可滑动地接收在所述缓冲器中;
第一中子吸收材料,其在所述下端塞附近占据所述细长管状包壳的下部,且轴向延伸通过所述细长管状包壳一段基本等于或稍大于以下长度的距离,所述长度是当所述控制棒完全插入所述控制棒导向套管时所述细长管状包壳接收在所述缓冲器中的长度;
第二中子吸收材料,其在第一中子吸收材料的上方占据所述细长管状元件的中空内部的其余部分的一部分,所述第二中子吸收材料具有显著高于第一中子吸收材料的反应性当量;和
第二端塞,其用于封闭所述细长管状包壳的第二端。
12.一种核反应堆,包括具有多个燃料组件的堆芯,所述多个燃料组件中的至少一些燃料组件与相应的控制组件对齐,所述控制组件在所述燃料组件中的相应导向套管中提升和降低多个控制棒中的每个,所述控制棒中的至少一些控制棒包括:
具有轴向尺寸的细长管状包壳,所述细长管状包壳具有在所述轴向尺寸的一个限度位置处的第一端和在所述轴向尺寸的另一限度位置处的第二端,所述管状包壳的外径尺寸形成为装配在相应核燃料组件的控制棒导向套管的中空内部的最窄尺寸内,所述控制棒导向套管的中空内部包括接收所述控制棒的上端和具有内部直径减小部的下端,所述直径减小部在所述控制棒落入所述导向套管时用作缓冲器,所述直径减小部从所述控制棒导向套管的下部向上延伸不超过所述导向套管的中空内部的高度的百分之二十;
第一端塞,其封闭所述细长管状包壳的第一端且设计为可滑动地接收在所述缓冲器中;
第一中子吸收材料,其在所述下端塞附近占据所述细长管状包壳的下部,且轴向延伸通过所述细长管状包壳一段基本等于或稍大于以下长度的距离,所述长度是当所述控制棒完全插入所述控制棒导向套管时所述细长管状包壳接收在所述缓冲器中的长度;
第二中子吸收材料,其在第一中子吸收材料的上方占据所述细长管状元件的中空内部的其余部分的一部分,所述第二中子吸收材料具有显著高于第一中子吸收材料的反应性当量;和
第二端塞,其用于封闭所述细长管状包壳的第二端。
CN2008101456675A 2007-08-17 2008-08-15 核反应堆鲁棒灰控制棒 Active CN101369468B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/840,424 2007-08-17
US11/840,424 US8532246B2 (en) 2007-08-17 2007-08-17 Nuclear reactor robust gray control rod

Publications (2)

Publication Number Publication Date
CN101369468A true CN101369468A (zh) 2009-02-18
CN101369468B CN101369468B (zh) 2013-03-27

Family

ID=40105028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101456675A Active CN101369468B (zh) 2007-08-17 2008-08-15 核反应堆鲁棒灰控制棒

Country Status (7)

Country Link
US (1) US8532246B2 (zh)
EP (1) EP2026358B1 (zh)
JP (1) JP5660592B2 (zh)
KR (1) KR101499253B1 (zh)
CN (1) CN101369468B (zh)
ES (1) ES2529239T3 (zh)
RU (1) RU2461899C2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483962A (zh) * 2009-06-10 2012-05-30 巴布科克和威尔科克斯核作业集团股份有限公司 用于核反应堆的控制棒驱动机构
CN102890994A (zh) * 2011-07-22 2013-01-23 巴布科克和威尔科克斯核作业集团股份有限公司 用于核反应堆的、耐受环境影响的电磁铁和使用该种电磁铁的电动机
CN103374678A (zh) * 2012-04-27 2013-10-30 上海核工程研究设计院 一种先进的灰控制棒及吸收体
CN104094359A (zh) * 2011-12-02 2014-10-08 原子能和替代能源委员会 用于将吸收构件和/或缓和剂触发和插入到核反应堆的裂变区域中的装置以及包括该装置的核燃料组件
WO2015058408A1 (zh) * 2013-10-25 2015-04-30 上海核工程研究设计院 一种灰控制棒及其中子吸收体和组件
CN106531235A (zh) * 2016-12-29 2017-03-22 中科瑞华原子能源技术有限公司 一种原位运动的紧凑型反应性控制机构
US10102933B2 (en) 2012-04-13 2018-10-16 Bwxt Mpower, Inc. Control rod assembly impact limiter
CN110168666A (zh) * 2016-12-30 2019-08-23 纽斯高动力有限责任公司 控制棒阻尼系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8537962B1 (en) * 2008-02-08 2013-09-17 Westinghouse Electric Company Llc Advanced gray rod control assembly
US7946228B2 (en) * 2008-05-09 2011-05-24 Wendy Gainsborough, legal representative Self contained non toxic obscurant grenade and self-contained aerosol dispersing grenade
US9543046B2 (en) * 2009-07-31 2017-01-10 Lawrence Livermore National Security, Llc Detecting pin diversion from pressurized water reactors spent fuel assemblies
KR100957017B1 (ko) * 2009-10-30 2010-05-13 (주)에치케이일렉트 제어봉 구동장치용 코일조립체 및 그 제조방법
US8811562B2 (en) * 2010-03-12 2014-08-19 Babcock & Wilcox Nuclear Operations Group, Inc. Control rod drive mechanism for nuclear reactor
US8699653B2 (en) 2011-10-24 2014-04-15 Westinghouse Electric Company, Llc Method of achieving automatic axial power distribution control
US20130114780A1 (en) * 2011-11-03 2013-05-09 Westinghouse Electric Company Llc Nuclear core component
US9773573B2 (en) * 2014-09-25 2017-09-26 Westinghouse Electric Company Llc Pressurized water reactor fuel assembly
US11298774B2 (en) * 2016-04-01 2022-04-12 Electric Power Research Institute, Inc. Method to eliminate dissimilar metal welds
US10446277B2 (en) 2017-01-12 2019-10-15 Westinghouse Electric Company Llc Fuel assembly with an external dashpot disposed around a guide tube portion
WO2019083734A2 (en) 2017-10-11 2019-05-02 Westinghouse Electric Company Llc MAGNETETOHEHEALTH NUCLEAR REACTIVITY DISTRIBUTION CONTROL ELEMENTS
KR102463008B1 (ko) * 2020-06-11 2022-11-02 한국수력원자력 주식회사 부하 추종 운전용 노심

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733251A (en) * 1971-06-22 1973-05-15 Combustion Eng Control rod release mechanism
US3959072A (en) * 1973-09-27 1976-05-25 Combustion Engineering, Inc. Compactable control element assembly for a nuclear reactor
US4040876A (en) * 1974-07-02 1977-08-09 Westinghouse Electric Corporation High temperature alloys and members thereof
US4169760A (en) 1975-08-14 1979-10-02 Combustion Engineering Inc. Nuclear reactor with scrammable part length rod
US4062725A (en) 1975-08-14 1977-12-13 Combustion Engineering, Inc. Part length control rod
US4169759A (en) 1975-08-14 1979-10-02 Combustion Engineering Inc. Method for operating a nuclear reactor with scrammable part length rod
US4326919A (en) 1977-09-01 1982-04-27 Westinghouse Electric Corp. Nuclear core arrangement
US4172762A (en) 1978-01-20 1979-10-30 Combustion Engineering, Inc. High exposure control rod finger
US4236943A (en) * 1978-06-22 1980-12-02 The United States Of America As Represented By The United States Department Of Energy Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence
US4624827A (en) 1984-07-23 1986-11-25 Westinghouse Electric Corp. Nuclear reactor control rod having a reduced worth tip
CN85105559A (zh) * 1985-07-20 1987-01-28 西屋电气公司 一种减少端部反应性当量的核反应堆控制棒
US4699756A (en) * 1985-08-08 1987-10-13 Westinghouse Electric Corp. Full length control rod employing axially inhomogeneous absorber materials for zero reactivity redistribution factor
US4820478A (en) * 1986-01-07 1989-04-11 Westinghouse Electric Corp. Nuclear reactor control rod with uniformly changeable axial worth
US4707329A (en) 1986-01-07 1987-11-17 Westinghouse Electric Corp. Nuclear reactor control rod with uniformly changeable axial worth
US4678628A (en) * 1986-03-03 1987-07-07 Westinghouse Electric Corp. Nuclear reactor control rod cluster for enthalpy rise compensation
JPH01123195A (ja) * 1987-11-07 1989-05-16 Nippon Atom Ind Group Co Ltd 原子炉用制御棒
DE3835711A1 (de) * 1988-10-20 1990-04-26 Bbc Reaktor Gmbh Steuerstab zur beeinflussung der reaktivitaet eines kernreaktors und anordnung mehrerer dieser steuerstaebe zu einem steuerelement
US5064607A (en) * 1989-07-10 1991-11-12 Westinghouse Electric Corp. Hybrid nuclear reactor grey rod to obtain required reactivity worth
FR2710778B1 (fr) * 1993-09-29 1995-12-01 Framatome Sa Grappe de commande pour réacteur nucléaire et réacteur en faisant application.
FR2728097A1 (fr) * 1994-12-13 1996-06-14 Framatome Sa Grappe de commande absorbante pour reacteur nucleaire
RU2077741C1 (ru) * 1995-07-13 1997-04-20 Государственное предприятие "Московский завод полиметаллов" Регулирующий стержень ядерного реактора
DE19741165C2 (de) * 1997-09-18 1999-11-25 Vacuumschmelze Gmbh Neutronenabsorptionsfolie
JPH11153686A (ja) * 1997-11-20 1999-06-08 Mitsubishi Heavy Ind Ltd 原子炉用制御棒
FR2788161B1 (fr) * 1998-12-30 2001-03-23 Framatome Sa Crayon absorbant pour grappe de commande de reacteur nucleaire
JP2000266881A (ja) * 1999-03-15 2000-09-29 Mitsubishi Heavy Ind Ltd 原子炉制御棒の構造
RU2287193C2 (ru) * 2003-12-17 2006-11-10 Виктор Иванович Ряховских Регулирующий стержень ядерного реактора
US7412021B2 (en) * 2005-07-26 2008-08-12 Westinghouse Electric Co Llc Advanced gray rod control assembly

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483962A (zh) * 2009-06-10 2012-05-30 巴布科克和威尔科克斯核作业集团股份有限公司 用于核反应堆的控制棒驱动机构
CN102483962B (zh) * 2009-06-10 2015-01-21 巴布科克和威尔科克斯核作业集团股份有限公司 用于核反应堆的控制棒驱动机构
CN102890994A (zh) * 2011-07-22 2013-01-23 巴布科克和威尔科克斯核作业集团股份有限公司 用于核反应堆的、耐受环境影响的电磁铁和使用该种电磁铁的电动机
US10770942B2 (en) 2011-07-22 2020-09-08 Bwxt Nuclear Operations Group, Inc. Environmentally robust electromagnets and electric motors employing same for use in nuclear reactors
US9985488B2 (en) 2011-07-22 2018-05-29 RWXT Nuclear Operations Group, Inc. Environmentally robust electromagnets and electric motors employing same for use in nuclear reactors
CN104094359A (zh) * 2011-12-02 2014-10-08 原子能和替代能源委员会 用于将吸收构件和/或缓和剂触发和插入到核反应堆的裂变区域中的装置以及包括该装置的核燃料组件
CN104094359B (zh) * 2011-12-02 2016-08-24 原子能和替代能源委员会 用于将吸收构件和/或缓和剂触发和插入到核反应堆的裂变区域中的装置以及包括该装置的核燃料组件
US10102933B2 (en) 2012-04-13 2018-10-16 Bwxt Mpower, Inc. Control rod assembly impact limiter
CN103374678B (zh) * 2012-04-27 2017-02-22 上海核工程研究设计院 一种灰控制棒及吸收体
CN103374678A (zh) * 2012-04-27 2013-10-30 上海核工程研究设计院 一种先进的灰控制棒及吸收体
GB2535391A (en) * 2013-10-25 2016-08-17 Shanghai Nuclear Eng Res & Des Gray control rod, and neutron absorber and assembly thereof
WO2015058408A1 (zh) * 2013-10-25 2015-04-30 上海核工程研究设计院 一种灰控制棒及其中子吸收体和组件
US10650930B2 (en) 2013-10-25 2020-05-12 Shanghai Nuclear Engineering Research & Design Institute Gray control rod having a neutron absorber comprising terbium and dysprosium
GB2535391B (en) * 2013-10-25 2020-07-29 Shanghai Nuclear Engineering Res & Design Institute Gray control rod and neutron absorber thereof, and gray control rod assembly
CN106531235A (zh) * 2016-12-29 2017-03-22 中科瑞华原子能源技术有限公司 一种原位运动的紧凑型反应性控制机构
CN110168666A (zh) * 2016-12-30 2019-08-23 纽斯高动力有限责任公司 控制棒阻尼系统
CN110168666B (zh) * 2016-12-30 2023-11-10 纽斯高动力有限责任公司 控制棒阻尼系统

Also Published As

Publication number Publication date
KR101499253B1 (ko) 2015-03-11
ES2529239T3 (es) 2015-02-18
CN101369468B (zh) 2013-03-27
RU2461899C2 (ru) 2012-09-20
RU2008133648A (ru) 2010-02-20
US8532246B2 (en) 2013-09-10
EP2026358A1 (en) 2009-02-18
KR20090018581A (ko) 2009-02-20
EP2026358B1 (en) 2014-12-03
US20090046824A1 (en) 2009-02-19
JP5660592B2 (ja) 2015-01-28
JP2009047700A (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
CN101369468B (zh) 核反应堆鲁棒灰控制棒
CN101223607B (zh) 改进的灰棒控制组件
CN101504872B (zh) 先进灰棒控制组件
Buongiorno et al. Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps
Bortot et al. Core design investigation for a SUPERSTAR small modular lead-cooled fast reactor demonstrator
CN107731317B (zh) 一种无可溶硼冷却剂的压水反应堆及其燃料组件
US20080084957A1 (en) Nuclear reactor fuel assemblies
JP2006113069A (ja) 二酸化ウランにおけるホウ素または濃縮ホウ素同位体10bの使用
EP2020661A1 (en) Nuclear reactor control rod
CN105469838A (zh) 燃料组件及其提高反应堆安全性的燃料棒
CN103098141A (zh) 用于轻水反应堆的二硅化三铀核燃料组合物
CN110853777A (zh) 一种增强气冷快堆温度负反馈的燃料组件结构及堆芯结构
JPH0816710B2 (ja) 沸騰水型原子炉に於て燃料の高さが延長された燃料バンドル
EP0167069B1 (en) Gas displacement spectral shift reactor
KR890000412B1 (ko) 스펙트럼 이동식 가압수형 원자로
US4716006A (en) Spectral shift reactor control method
CA1180136A (en) Mechanical spectral shift reactor
CN112599259B (zh) 一种聚变-裂变混合堆嬗变燃料组件
CN101939794A (zh) 由注入有离散中子吸收剂的难熔金属构成的中子吸收剂
KR101756952B1 (ko) 중수로 코발트 동위원소 생산방법
RU2242810C2 (ru) Тепловыделяющая сборка водо-водяного энергетического реактора
US4692296A (en) Mechanical spectral shift reactor
Seidel et al. Experience with EBR-II [Experimental Breeder Reactor] Driver Fuel
Carluec et al. Ads: status of the studies performed by the european industry
Wilson et al. Mechanical spectral shift reactor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant