CN101365936A - 制作集成检测生物传感器的方法 - Google Patents

制作集成检测生物传感器的方法 Download PDF

Info

Publication number
CN101365936A
CN101365936A CNA2006800385544A CN200680038554A CN101365936A CN 101365936 A CN101365936 A CN 101365936A CN A2006800385544 A CNA2006800385544 A CN A2006800385544A CN 200680038554 A CN200680038554 A CN 200680038554A CN 101365936 A CN101365936 A CN 101365936A
Authority
CN
China
Prior art keywords
photodetector
assembly
filter
rejection filter
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800385544A
Other languages
English (en)
Inventor
乌塔·舒曼
克劳德·韦斯布奇
亨里·贝尼斯蒂
霍伊-源·哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genewave
Original Assignee
GENEWAVE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENEWAVE filed Critical GENEWAVE
Publication of CN101365936A publication Critical patent/CN101365936A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及用于制作集成检测生物传感器的方法,所述生物传感器包括CCD或CMOS型光电探测器(12)的组装件(10),其上沉积或形成了一个用于滤除激发光λe的滤波器,该滤波器包括至少一个吸收层(14)和布拉格反射镜或干扰滤波器,组成了设计成被激发光λe照射的发色团的支撑体。

Description

制作集成检测生物传感器的方法
技术领域
本发明涉及制作集成检测生物传感器的方法,并涉及通过实施该方法而获得的生物传感器。
集成检测生物传感器包括基底,用于支撑发色团和光电探测器的组装件,其用于拾取发色团响应于光激发而发射的光,光电探测器的组装件与基底连接并形成一个整体组装件。
背景技术
文献WO02/16912公开了这样一种生物传感器,其中,干扰反射镜和吸收层被设置在基底中,以滤除发色团的激发光并预防将噪音传递到设置在基底后面上的光电探测器。文献WO2004/042376也公开了一种带瞬息激发的集成发光生物传感器,其中,基底可以和光电探测器的组装件相连,并且在其表面上包括含有光致发光成分的平面波导,该成分被初级激发光照射,并且它们本身发射用于激发沉积到波导上的发色团的光。
这些结构具有的优势在于改进了检测灵敏度,这是通过非常有意义地增加发色团发射的光被收集的效率,并且通过减小激发光被捕获的程度,并且也减小了来自周围介质的干扰荧光:已知有大约80%的由发色团发射的光被传送进入基底,并且与放置到空气中的发色团之上方的电感耦合设备(CCD)光电探测器的基质相连的透镜可以仅拾取发射进入空气的20%光通量的一小部分。结果,最大检测灵敏度典型地处于10个发色团/平方微米(μm2)的量级。将一组光电探测器放置到基底的后面或者放置到面对带发色团的面上使发色团发射的光通量能够有效地被收集,这比放置到发色团上的标准图像大几十倍。
文献US2002/081716和WO2004/059006公开了集成检测生物传感器,具有光学滤波器,其使用于激发发色团的光波长停止,同时使发色团发射的荧光通过,然而,这些滤波器由自身发荧光的材料制成,并且它们发射的光足以掩蔽发色团发射的荧光。当激发光具有的波长处于紫外区时,如在前述两篇现有技术文献中描述的那样,该缺陷变得更严重。
发明内容
本发明的一个目的是避免这些缺陷,并且进一步改进文献WO02/16912中所描述的集成检测生物传感器。
为此,本发明提供了一种制作集成检测生物传感器的方法,该生物传感器包括基底,用于携带响应于特定波长的光激发而发射光的发色团,以及与基底相连的光电探测器组装件,以拾取发色团朝向基底里面发射的光,该方法的特征在于:它包括在光电探测器的组装件上沉积薄层,该薄层与滤波器一起组成了上述基底,二者均用于全方向滤除发色团的激发光,并用于传输由所述发色团发射的光,滤波器为激发光提供了大约为10-6或更小的透射,优选大约10-8,并且呈现出10-6或更小的自身荧光水平。
为了进一步限制滤波器的自身荧光,有利的是使用波长处于可见光或近红外光区的激发光。
本发明的方法使之有可能制作一种超敏感的检测生物传感器,其为集成的,并且不包含透镜或光学元件,并且其中,生物探针可以直接沉积到覆盖光电探测器的组装件的薄层拒波滤波器上。因此,有可能通过采用用于大量生产微型电子元件的已知技术以低成本制作微型生物传感器,所述的生物传感器也呈现出1个发色团/μm2量级的灵敏度。
在本发明的第一个实施例中,拒波滤波器包括至少一个薄层,其在发色团的激发波长下为可吸收的。
吸收层被设置成全方向地吸收激发光,与生物传感器被照射的角度或者激发光被扩散的角度无关。
该吸收层可以由任何公知的方式制作,例如,通过溶胶-凝胶法,或者通过沉积并展开可能分散在无机或聚合物基质内的染料层,利用了旋涂型的方法或者点涂型的方法。
在本发明的另一实施例中,拒波滤波器包括由材料薄层制成的布拉格反射镜,其在发色团的发射波长下为透明的,或者包括例如由叠置的聚合物薄层制成的干扰滤波器,并与吸收滤波器组合在一起。
布拉格反射镜或干扰滤波器覆盖至少一个沉积到光电探测器组装件上的吸收层。
布拉格反射镜或干扰滤波器与吸收层的组合就滤除用于激发发色团的光而言能够给出最好的结果。布拉格反射镜通过相长干涉(constructiveinterference)产生了放大激发的效果以及纯粹滤除激发的效果(方向效果),然而,滤除主要由吸收层来提供。布拉格反射镜的滤除提供了额外的减小吸收层中的荧光水平。
在变形例中,生物传感器包括不透明的表面层,例如,由金属制成,具有在那里形成的孔,该层用于限制生物传感器上的总光通量。
为了降低用于吸收吸收层中的激发光的分子的自身荧光,本发明在一个实施例中提供了在光电探测器的组装件上形成许多叠置的具有不同类型的吸收薄层,其中,较低的层(更靠近光电探测器)用于吸收来自较高层的自身荧光。
当用于发色团的激发波长和由发色团发射的光的中心波长之间的光谱差异大时,这种吸收薄层的层叠排列是特别有利的。
在任何情况下,为吸收层所选取的材料是生物传感器良好操作的基础。
在本发明的一种实施例中,拒波滤波器包括由一系列叠置薄层制成的布拉格反射镜,呈现出的光厚度等于1/4的激发波长,布拉格反射镜提供了0.025的激发滤除(即,0.1纯滤除)。在该结构中,基底表面的干扰影响使激发电磁场的能量能够增加大约4倍,从而导致光激发率放大4倍。关于激发能量通过这些层的传输,其相应于等价光密度为1.6。布拉格反射镜与光密度为6.4的吸收层相连,并且自身荧光水平小于激发光强度的10-6.4倍,拒波滤波器呈现的总等价光密度等于8,引起滤除率为10-8。对于常见的发色团,检测灵敏度则为1个发色团/μm2。
本发明的生物传感器可以这样来制作:在光电探测器的基质上沉积一个或多个吸收薄层,并且随后(供选地)沉积用于形成布拉格反射镜或干扰滤波器的薄层,各层依次地被沉积或形成在另一层上。
在变形的实施例中,本发明的方法包括在原始基底上制作拒波滤波器,随后在光电探测器的组装件上沉积由滤波器和原始基底形成的组装件,滤波器位于光电探测器的所述组装件和原始基底之间,并且最后去除原始基底。
在所述情况下,由于其自身的粘性或者借助于具有适当粘性的材料层,拒波滤波器通过粘结而固定到光电探测器的组装件上。
最初形成于原始基底上的拒波滤波器包括吸收膜或者反射膜,或者吸收膜与反射膜相连。与直接在传感器上制作各层的方法相比,这克服了与各种处理或退火操作有关的限制,从而可以实现更宽范围的设计和集成可能性。
这使得通过在原始基底上形成诸如布拉格反射镜的反射膜而开始,涉及将不能被光电探测器和吸收膜很好地忍受的退火操作,以及接着在布拉格反射镜上沉积形成吸收膜的薄层或薄层组装件尤为可能。
有利的是,拒波滤波器和原始基底可以形成一个柔性膜,其很容易存储和使用,例如,以卷的形式。
在变形例中,布拉格反射镜或干扰滤波器可以形成在原始基底上,并且吸收膜可以形成在另一原始基底上,因此有可能随后制作本发明的生物传感器,这是通过:将吸收膜转移到光电探测器的组装件上,并且随后将布拉格反射镜或干扰滤波器转移到吸收膜上。一旦制作了生物传感器,优选包括荧光标记物的探针以液相沉积到预定的区域上,例如,生物传感器的拒波滤波器上的阵列中(公知为“点样”的技术)。干燥之后,生物传感器被存储,并且其储存期可以很长。探针可以包括荧光标记物。
任选地,使用含有润湿剂的缓冲溶液,用于将探针沉积到拒波滤波器上,其表面可以为高度憎水的。
在本发明的一种实施例中,带有探针的生物传感器最后被封装到包装中,其随后可用于杂交探针,该包装具有至少一个液体入口和一个液体出口,其在包装内通过在带探针的过滤器表面上延伸的通道相互连接,用于观察和/或用激发光照射探针的至少一个窗口形成在覆盖探针的包装面上。
位于光电探测器旁边的包装的相对面可接近用于将光电探测器和数据处理装置连接的电接口。
典型地,使用的光电探测器组装件为电感耦合设备(CCD)或硅上有互补金属氧化物(CMOS)型光电探测器的基质,具有被拒波滤波器覆盖的前面。
在变形例中,有利的是使用CCD或CMOS光电探测器的基质,通过其后面被照射,以便提高灵敏度2倍。
在可见光谱中,经前面(光电探测器旁边)照射的CCD光电探测器的基质呈现的灵敏度与经后面照射的光电探测器的基底的灵敏度相比降低了大约一半,这是由于光子被它们的多晶硅转移格栅吸收。相反,利用经后面的照射需要减薄硅基底,这是一种很困难的操作。
根据本发明的另一特征,在拒波滤波器的一个或多个层中形成孔,其与一些光电探测器成一排,以便校准激发光被所述层滤除的程度。
附图说明
通过阅读下面通过举例并参照附图进行的描述,可以更好地理解本发明,并且其它的特征、细节及其优势将变得更加清楚,其中:
图1为本发明的生物传感器的局部概略横截面图;
图2为一变形实施例的生物传感器的局部概略横截面图;
图3的概略横截面图显示了安装在杂交盒中的本发明的生物传感器;
图4显示了制作本发明的生物传感器的四个步骤;
图5为本发明的生物传感器的局部概略横截面图,具有经后面照射的CCD光电探测器基质;
图6为组成本发明的另一变形例的生物传感器的局部概略横截面图;
图7为光电探测器的基质的局部概略图,具有不同尺寸的像素;以及
图8为本发明的一变形实施例的概略横截面图。
具体实施方式
图1的生物传感器包括CCD或CMOS型光电探测器12的基质组装件10,其上沉积有材料层14,用于吸收用来激发位于生物传感器表面上的点16内的发色团的光辐射,当发色团在那里被波长为λe的光辐射激发时,发色团发射出以波长λf为中心的光(例如,当发色团为Cy3标记物时,λf可以等于570纳米(nm),并且λe可以等于532nm),激发波长被选择成处于可见光(大约400-750nm)或近红外光范围内(大约750nm-2500nm)。
发色团发射的光通量中大约80%通过吸收层14,并且被光电探测器12捕获,波长为λe处的激发光通量被层14吸收。在所考虑的波长下,该层优选呈现出不小于6的光密度,以便确保检测灵敏度水平为1个发色团/μm2。吸收层14可以由一单层吸收材料形成,或者由许多叠置的具有不同类型的吸收层形成,用于减小由激发光引起的所述层的自身荧光。在这种环境下,位于吸收层n+1下的吸收层n呈现出一种确定的特性,用于吸收吸收层n+1的自身荧光,同时将波长λf下的光通量传递到光电探测器12。
由于在发色团和光电探测器之间不存在成像元件,单个的光电探测器可以接收来自不同点或区域的光信号,从而产生干扰信号或串扰,这些点或区域和光电探测器之间的间距或垂直距离越大,其变得越大。在本发明的一优选实施例中,该空间很小,因此干扰信号被减小到最小。例如,这些点或区域的直径为400微米(μm),并且他们与光电探测器的间距是10μm,从而干扰信号被最小化了。当与光电探测器的间距较大并达到100μm时,则串扰信号可能很大,并且属于将降低检测灵敏度的那种类型。在这种情况下,可以在带有干扰的图像上进行计算机去卷积处理,如本领域的技术人员公知的那样,以便通过消除干扰信号而恢复有用的信号。
可以按照如下所示的步骤制备吸收层14并且沉积到光电探测器12上:
制备染料溶液,其具有可与所用的荧光标记物的光发射兼容的排异作用,即该染料使激发光停止,但使标记物的一部分发射光谱通过。满足这些标准的染料包括基于铬或钴的金属络合物,具有由偶氮衍生物的有机分子所形成的粘合剂。
在变形例中,有可能使用染料(具有吸收激发光的功能)和某种其它成分的混合物,该成分消除或停止了吸收剂分子的荧光。
通过将1克染料溶解在1mL二甲基甲酰胺(DMF)中而制备染料溶液。搅拌后,将获得的溶液过滤,并且与1.5mL的聚酰亚胺溶液(如HD Microsystem公司出售的参考号为PI2555的商品)或丁基环苯溶液混合。最终的溶液浓度以染料的重量计为大约400毫克/毫升(mg/mL),并且摩尔消光系数等于约9×103/厘米(cm-1)。
染料溶液被沉积到CCD基质传感器的光电探测器上,保护窗已从中去除,并且金属触点已经在其中被保护起来,例如,通过局部沉积涂层树脂,其能够在热退火期间或者制作生物传感器所需的聚合步骤中提供良好的密封、良好的机械强度以及良好的化学阻抗。例如,有可能利用来自供应商Polytec PI SA的EPOTEK T7139树脂。染料溶液通过旋涂技术而展开,旋转速度为3000转/分(rpm),展开后在100°下在火炉内预退火30分钟,之后在火炉中在210°下退火1小时30分钟,这些温度对于光电探测器的基质是可接受的。
获得的染料膜具有的厚度为大约10μm,并且光密度在532nm波长下等于9,其相应于10-9的透射率。
生物探针基本上通过所谓的“点样”技术沉积到吸收层14的表面上,以形成上述的点16。由于吸收层14在本质上是非常憎水的,为了能够沉积生物探针,有必要使用缓冲液,该缓冲液含有相对大量的十二烷基磺酸钠(SDS)类型的润湿剂,以形成尺寸为大约400μm的点16(或者更小,与应用有关)。在本文中,应当观察到图1所示的各元件的相对尺寸不依从于附图中的尺寸,这是为了清楚起见。实际上,点16具有例如100μm-400μm的尺寸,吸收层14具有的厚度为大约10μm,光电探测器12具有10μm量级的单位尺寸,因此点16覆盖了十个或几十个光电探测器。
通常,在层14的上表面上形成功能层18,其上沉积了生物探针,该功能层用于固定探针。
在图2的变形实施例中,传感器10的光电探测器12被覆盖了许多具有不同类型的吸收薄层14以及布拉格反射镜20,该薄层能够使吸收层中使用的染料的自身荧光的影响减小,该布拉格反射镜由介电材料的许多叠置薄层22形成,分别具有高和低折射指数的层以本领域技术人员公知的方式被交替放置。
作为例子,可以使用折射指数等于1.45(低指数)和1.95(高指数)的交替材料层22,层数取决于这两个指数的比率,并且例如当布拉格反射镜的预期光密度等于1时,该比率等于20。
这些交替薄层22具有的光厚度等于激发波长λe的1/4,从而通过相长干涉(constructive interference)而使发色团的激发光通量密度增加4倍,并因此响应于这种激发而增加发色团发射光的密度。
此外,这些层减小了光激发在吸收滤波器上的密度,因而降低了滤波器的自身荧光。
布拉格反射镜20不需要精确地集中在激发波长λe上,以增加滤波器的总拒波斜率,其由布拉格反射镜20和多层吸收剂14组成。尽管如此,布拉格滤波器有必要以相对精确的方式集中在激发波长λe上,以实现有效的放大光激发(放大倍数大于3)。
可以利用任何公知的方法来沉积布拉格反射镜20的交替薄层22,例如,通过物理沉积技术、通过溶胶-凝胶法或者实际上通过挤压法。之后,在布拉格反射镜20的上表面上形成功能层18,并且随后可以将含有生物探针的点16沉积并固定到所述层18上,如上为图1的生物传感器所描述的那样。在变形的实施例中,半透明的金属反射镜可以作为第一滤波器。
在变形的实施例中,沉积到吸收层4上的布拉格反射镜20可以被干扰滤波器代替,其由叠置的聚合物薄层制成,具有交替的高和低折射指数,制造所述干扰滤波器的技术是本领域技术人员所公知的,并且尤其是描述在美国专利No.6737154中。
本发明的生物传感器,其上已形成了含有生物探针的点16,可以最后被包封在包装盒或者杂交盒24内(图3),其具有一个前面26,包括由通道32相互连接的至少一个液体入口28和至少一个液体出口30,能够使经口28进入的液体在带有点16的生物传感器的面上流动,其中已经沉积了生物探针。
盒24的前面26包括至少一个其它的口34,其面对着生物探针的沉积点16而形成,并且使这些点能够被用于激发发色团的光照射。
与光电探测器的组装件10的后面相连的电接口36可通过杂交盒24的后面接近,并且使光电探测器拾取的数据能够传输到数据处理装置38。
当覆盖着光电探测器的组装件10的拒波滤波器包括布拉格反射镜20和吸收层14时,在制造布拉格反射镜期间可能会遇到困难:布拉格反射镜需要在相当高的温度下退火,以便使层22硬化并防止其随后变形,然而,光电探测器的组装件10和吸收层14中使用的染料通常需要预防高温。
为了避免这些缺陷,本发明提供了一种制造生物传感器的方法,其包括图4所示的基本步骤a、b、c和d。该方法包括,在步骤a中,首先在常见类型的原始基底40上形成布拉格反射镜20(或干扰滤波器),随后在布拉格反射镜上沉积或形成吸收层14。这使得布拉格反射镜(或者干扰滤波器)层22易受到必要的退火,不必担心这种退火对生物传感器的其它组件的影响。
之后,在步骤b中,由基底40、布拉格反射镜20和吸收层14形成的组装件通过翻转被转移到光电探测器的组装件10上,使得吸收层14对着组装件10的光电探测器12挤压。
在接下来的步骤c中,去除原始基底40,以获得图2所示的那种类型的生物传感器。
下面的步骤d包括在布拉格反射镜20上沉积含有生物探针的点16。
在变形例中,本质上有可能在原始基底40上形成布拉格反射镜20(或者干扰滤波器),并且在另一原始基底上形成吸收层14,并且随后依次将它们沉积到光电探测器的组装件10上,将吸收层14放置到光电探测器12上的最初位置,并且随后去除带吸收层的原始基底,并接着在吸收层14上沉积布拉格反射镜20,以及最后去除带布拉格反射镜的原始基底40。
也有可能将吸收层14直接形成或沉积到组装件10的光电探测器12上,与此同时在原始基底40上形成布拉格反射镜20,并随后将获得的组装件翻转,以便将布拉格反射镜20沉积到由光电探测器的组装件20带有的吸收层14上,并且随后去除原始基底40。
用于通过堆叠聚合物层而制作干扰滤波器的技术,如在美国专利No.6737154中所描述的那样,通过转移,可很好地适于本制造方法,吸收层和干扰滤波器通过粘结而固定。
在该方法的再另一变形例中,吸收层14最初形成在原始基底40上,接着是在吸收层上形成干扰滤波器或者布拉格反射镜,之后,将含有吸收层14和布拉格反射镜或干扰滤波器的组装件从原始基底40上去除,以及沉积并键合到光电探测器的组装件10上。在所述环境下,当表面已被功能化之后,有可能在将所述组装件转移到光电探测器的组装件10上之前,在布拉格反射镜20或干扰滤波器上形成含有生物探针的点16。
该技术使得有可能以膜的形式制作吸收层14和布拉格反射镜20或干扰滤波器,可以为沉积到原始基底40上的柔性膜,而该原始基底同样由柔性膜构成。含有原始基底40、干扰滤波器或布拉格反射镜20、和吸收滤波器14的组装件组成一个柔性膜,其可以以卷的形式储存。当必要时,颗粒或者纳米纤维,诸如例如fullerenes、碳纳米管、玻璃纤维...,可以被包含在膜中,以增强其机械性能。相反,有可能在膜中包含微米尺寸的聚合物包合物,该包合物具有高于环境温度的玻璃转变温度,使得通过在去除基底40时加热,膜可以被制成柔软的,并且随后当沉积到光电探测器的组装件10上时,返回到刚性的。
在本发明的生物传感器的所有实施例中,用于滤除波长为λe处的激发光的滤波器不需要沉积到光电探测器12的组装件10的前面上,如图1-4所示,而是可以沉积到后面,如图5所示,即位于与带有光电探测器12的那面相反的一面上。在这种环境下,硅基底被减薄到大约10μm,以避免光子被硅吸收。即使在减薄后,基底形成了额外的厚度,其使光点远离光电探测器的平面移动,这可能导致增加串扰的干涉信号。基于对包含干扰的图像的去卷积,数据的计算机处理可以使之有可能消除干扰信号。
在图5的实施例中,吸收层14或者一组吸收层被P型-搀杂硅层42覆盖,其本身被覆盖在n型-搀杂硅层44中,再上面是光电探测器12。在布拉格反射镜或干扰滤波器的下面形成生物探针沉积点16,并且它们被波长为λe处的激发光照射。这使得特别有可能将灵敏度提高2倍,这是由于在其前面(在光电探测器12的旁边)照射的CCD光电探测器的组装件10呈现出在可见光中灵敏度降低,这是由于光子被位于光电探测器12处的多晶硅转移格栅吸收。
在本发明的所有实施例中,发色团可以为包含在生物传感器的表面层中的有机或无机纳米晶体,如在文献WO2004/005590中所描述的那样。
根据本发明的其它特征,如图6所示,有可能在生物传感器的上层14、20中形成一个或多个孔46,例如矩形孔,用于制作下面的一个或多个元件:布拉格反射镜(或者干扰滤波器);吸收层;预沉积的生物材料;...。生物传感器的表面被激发光照射,并且由和孔位于一排的光电探测器12传递的信号与由位于远离孔的光电探测器12传递的信号进行比较,以便为了校准激发光被布拉格反射镜、被吸收层、被布拉格反射镜和吸收层一起等滤除的程度...。
孔46可以形成在单个区域中或者不同的区域中,仅仅占据了很小百分比的生物传感器的有效表面。
如图7所示,在本发明的生物传感器中,有可能使用具有不同尺寸的光电探测器12a、12b的基质10。这使得有可能将两倍的发色团沉积到不同尺寸的像素上,以便受益于通过像素传输的信号中的不同动态范围,这对于非常弱或非常强的信号是有利的。
在图8所示的实施例中,金属膜48被沉积到生物传感器的表面上,位于上述拒波滤波器的上方,膜48包括尺寸非常小的孔50,其尺寸小于发色团所发射的光波长。这些孔限定了非常小的观察体积(例如,直径为150nm),用于检测和观察高浓度溶液中的各个发色团。这些孔也放大了将在他们的直接附近发现的发色团所发射的光。
在变形例中,金属(或不透明的)膜48被沉积到图6的生物传感器上,并且在膜中形成的孔的尺寸大于在拒波滤波器的各层中形成的孔46的尺寸,并且与之为一排的。
本发明的生物传感器可以以常规方式用在静止的荧光溶液中。然而,它也可以用在流动的荧光溶液中,尤其是微流控电路。

Claims (25)

1.一种制作集成检测生物传感器的方法,该生物传感器包括一个用于承载发色团的基底,其响应于光激发而在给定的波长下发射光,以及与基底相连的光电探测器(12)的组装件(10),用于拾取发色团朝着基底里面发射的光,该方法的特征在于:它包括在光电探测器(12)的组装件(10)上沉积薄层,薄层(14,22)和滤波器一起组成了上述的基底,用于全方向的滤除发色团的激发光,以及用于传输所述发色团发射的光,滤波器表现的激发光滤除率为10-6或更小,并且优选大约为10-8,并且自身荧光水平为10-6或更小,激发光的波长位于可见光或近红外光内。
2.根据权利要求1的方法,其特征在于:拒波滤波器包括至少一个薄层(14),其在激发波长下为能吸收的。
3.根据权利要求2的方法,其特征在于:拒波滤波器也包括由薄层(22)组成的布拉格反射镜(20),其在发色团发射的波长下是透明的,具有相应的高和低折射指数,并交替放置。
4.根据权利要求3的方法,其特征在于:布拉格反射镜(20)的薄层(22)呈现的光厚度基本上等于1/4的激发波长。
5.根据权利要求1或2的方法,其特征在于:拒波滤波器包括由一系列层压的聚合物薄层组成的干扰滤波器,薄层具有相应的高和低折射指数,并交替放置。
6.根据前述任一权利要求的方法,其特征在于:拒波滤波器包括一系列薄层(22),形成了布拉格反射镜(20)或干扰滤波器,并且覆盖至少一个沉积到光电探测器(12)的组装件(10)上的吸收层(14)。
7.根据权利要求1-6中任一项的方法,其特征在于:拒波滤波器包括多个具有不同类型的叠置吸收薄层(14),其中,下层(靠近光电探测器)用于吸收较高层的自身荧光。
8.根据权利要求2-7中任一项的方法,其特征在于:拒波滤波器的吸收薄层具有的光密度在激发波长处不小于大约6.4。
9.根据权利要求1-4和6-8中任一项的方法,其特征在于:拒波滤波器的薄层通过凝胶-溶胶方法制成。
10.根据前述任一权利要求的方法,其特征在于:在激发波长下能吸收的至少一个薄层(14)沉积或形成于光电探测器(12)的组装件(10)上,并且随后形成布拉格反射镜(20)或干扰滤波器的薄层接连地沉积或形成在吸收薄层(14)上。
11.根据权利要求1-9中任一项的方法,其特征在于:在原始基底(40)上形成拒波滤波器,并随后转移到光电探测器(12)的组装件(10)上,滤波器位于光电探测器(12)的组装件(10)和原始基底(40)之间,原始基底(40)随后被去除。
12.根据权利要求11的方法,其特征在于:拒波滤波器通过粘接而固定在光电探测器(12)的组装件(10)上。
13.根据权利要求11或12的方法,其特征在于:拒波滤波器和原始基底(40)形成柔性层。
14.根据权利要求11-13中任一项的方法,其特征在于:拒波滤波器包括吸收膜(14)和布拉格反射镜或干扰滤波器,其被共同设置在光电探测器(12)的组装件(10)上。
15.根据权利要求11-13中任一项的方法,其特征在于:拒波滤波器包括吸收膜(14)和布拉格反射镜或干扰滤波器,其被分开地设置在光电探测器(12)的组装件(10)上。
16.根据前述任一权利要求的方法,其特征在于:通过如下步骤制成吸收层(14):将染料溶解在溶剂中,将染料溶液与聚酰亚胺或丁基环苯溶液混合,将所述混合物沉积到基底或光电探测器(12)的组装件上,并且通过将载有吸收层的基底或光电探测器的组装件通过火炉而退火,所述吸收层具有的厚度为大约l0μm或更大,并且在激发波长处的光密度不小于大约6。
17.根据前述任一权利要求的方法,其特征在于:优选包括荧光标记物的探针随后沉积在拒波滤波器的点(16)上。
18.根据权利要求17的方法,其特征在于:含有润湿剂的缓冲液用于将探针沉积到拒波滤波器上。
19.根据权利要求17或18的方法,其特征在于:带探针的生物传感器被包封在可用于杂交探针的盒或包装(24)内,并具有至少一个入口(28)和一个出口(30),被在带探针的滤波器表面延伸的通道(32)液体连接,以及至少一个窗口(34),用于观察和/或用激发光照射探针,光电探测器的组装件(10)具有用于连接到数据处理部件(38)的电接口(36),并且可通过包装或盒的后面而接近。
20.根据前述任一权利要求的方法,其特征在于:光电探测器(12)的组装件(10)为CCD或CMOS型光电探测器(12)的基质,其前面带有用于滤除激发波长的滤波器。
21.根据权利要求1-19中任一项的方法,其特征在于:光电探测器(12)的组装件(10)为CCD或CMOS型光电探测器的基质,其后面带有用于滤除激发波长的滤波器。
22.根据前述任一权利要求的方法,其特征在于:在拒波滤波器的层(14,22)中形成孔(46),与光电探测器(12)成一排,用于校准由激发光的所述层进行的滤除。
23.根据前述任一权利要求的方法,其特征在于:光电探测器的基质(10)包括具有不同尺寸的光电探测器(12a,12b)。
24.根据前述任一权利要求的方法,其特征在于:它包括在生物传感器的表面上放置一金属膜(48),该膜包括尺寸小于发色团发射的波长的孔(50)。
25.根据前述任一权利要求描述的方法制作的生物传感器的用途,该用途的特征在于:生物传感器处于静止的或移动的荧光溶液中,例如在微流控电路中,并且用于发色团的激发波长位于可见光或近红外光中。
CNA2006800385544A 2005-10-18 2006-10-17 制作集成检测生物传感器的方法 Pending CN101365936A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0510614A FR2892196B1 (fr) 2005-10-18 2005-10-18 Procede de fabrication d'un biocapteur a detection integree
FR0510614 2005-10-18

Publications (1)

Publication Number Publication Date
CN101365936A true CN101365936A (zh) 2009-02-11

Family

ID=36601189

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800385544A Pending CN101365936A (zh) 2005-10-18 2006-10-17 制作集成检测生物传感器的方法

Country Status (5)

Country Link
US (1) US20090111207A1 (zh)
EP (1) EP1946080A1 (zh)
CN (1) CN101365936A (zh)
FR (1) FR2892196B1 (zh)
WO (1) WO2007045755A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688862A (zh) * 2007-06-27 2010-03-31 (株)赛丽康 利用图像传感器的诊断设备及其制造方法
CN109975255A (zh) * 2017-12-28 2019-07-05 伊鲁米那股份有限公司 具有降低的荧光范围噪声的检测器

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637436B2 (en) 2006-08-24 2014-01-28 California Institute Of Technology Integrated semiconductor bioarray
US11001881B2 (en) 2006-08-24 2021-05-11 California Institute Of Technology Methods for detecting analytes
US11098345B2 (en) * 2006-06-05 2021-08-24 California Institute Of Technology Methods for detecting target analytes
US11525156B2 (en) * 2006-07-28 2022-12-13 California Institute Of Technology Multiplex Q-PCR arrays
WO2008014485A2 (en) * 2006-07-28 2008-01-31 California Institute Of Technology Multiplex q-pcr arrays
US11560588B2 (en) 2006-08-24 2023-01-24 California Institute Of Technology Multiplex Q-PCR arrays
FR2908888B1 (fr) * 2006-11-21 2012-08-03 Centre Nat Rech Scient Dispositif pour la detection exaltee de l'emission d'une particule cible
FR2914067B1 (fr) 2007-03-21 2010-09-10 Centre Nat Rech Scient Nanocristaux organiques luminescents pour la realisation de capteurs biologiques
KR100801448B1 (ko) * 2007-05-16 2008-02-11 (주)실리콘화일 바이오칩
US20100122904A1 (en) * 2008-11-17 2010-05-20 Board Of Regents, The University Of Texas System Incorporating cmos integrated circuits in the design of affinity-based biosensor systems
WO2010088761A1 (en) * 2009-02-06 2010-08-12 Maziyar Khorasani Method and apparatus for manipulating and detecting analytes
EP2537010A4 (en) 2010-02-19 2013-12-25 Pacific Biosciences California SYSTEM AND METHOD FOR COLLECTING AND DETECTING OPTICAL ELEMENTS
US9103787B2 (en) 2010-05-25 2015-08-11 Stmicroelectronics S.R.L. Optically accessible microfluidic diagnostic device
FR2967362B1 (fr) 2010-11-16 2012-12-21 Genewave Cartouche microfluidique pour diagnostic moleculaire
AT510750B1 (de) * 2010-12-14 2012-09-15 Greiner Bio One Gmbh Messanordnung zur quantitativen optischen auswertung einer chemischen reaktion
FR2970079B1 (fr) * 2010-12-29 2022-08-12 Genewave Dispositif de type biopuce
JP5112553B1 (ja) * 2011-09-09 2013-01-09 シャープ株式会社 粒子検出装置
DE102011118057A1 (de) * 2011-11-09 2013-05-16 Giesecke & Devrient Gmbh Spektraler Lumineszenzstandard für den Nahinfrarotbereich
EP2904380A4 (en) * 2012-10-25 2016-06-08 Univ Colorado State Res Found IMPROVED OPTICAL MULTI-ANALYTIC SENSOR
EP2878375A1 (en) 2013-11-29 2015-06-03 Genewave Microfluidic cartridge for molecular diagnosis, docking station using such a microfluidic cartridge, and process for analyzing a biological sample
EP4220137A1 (en) 2013-12-10 2023-08-02 Illumina, Inc. Biosensors for biological or chemical analysis and methods of manufacturing the same
US9708647B2 (en) 2015-03-23 2017-07-18 Insilixa, Inc. Multiplexed analysis of nucleic acid hybridization thermodynamics using integrated arrays
US9499861B1 (en) 2015-09-10 2016-11-22 Insilixa, Inc. Methods and systems for multiplex quantitative nucleic acid amplification
WO2017155858A1 (en) 2016-03-07 2017-09-14 Insilixa, Inc. Nucleic acid sequence identification using solid-phase cyclic single base extension
KR102414666B1 (ko) 2016-06-01 2022-06-29 퀀텀-에스아이 인코포레이티드 분자들을 검출 및 분석하기 위한 통합 디바이스
KR102603196B1 (ko) * 2016-11-03 2023-11-15 엠쥐아이 테크 컴퍼니 엘티디. 생물학적 또는 화학적 분석을 위한 바이오센서들 및 이를 제조하는 방법
IL250695A0 (en) * 2017-02-21 2017-04-30 Technion Res & Dev Foundation Biometric detector platform
WO2018175341A1 (en) * 2017-03-20 2018-09-27 Complete Genomics, Inc. Biosensors for biological or chemical analysis and methods of manufacturing the same
JP7322001B2 (ja) 2017-09-19 2023-08-07 深▲セン▼華大智造科技股▲ふん▼有限公司 ウエハレベルのシーケンスフローセルの製造
WO2020022713A1 (ko) * 2018-07-26 2020-01-30 (주) 솔 측면광을 활용한 이미지 센서 기반의 바이오 진단 장치 및 일체화된 카트리지
KR102144523B1 (ko) * 2018-11-26 2020-08-13 (주) 솔 일체화된 카트리지
EP3937780A4 (en) 2019-03-14 2022-12-07 InSilixa, Inc. METHODS AND SYSTEMS FOR TIMED FLUORESCENCE-BASED DETECTION
US11705472B2 (en) 2019-10-10 2023-07-18 Visera Technologies Company Limited Biosensor and method of distinguishing a light
US11630062B2 (en) * 2019-10-10 2023-04-18 Visera Technologies Company Limited Biosensor and method of forming the same
CN111627948B (zh) * 2020-06-05 2023-04-28 中国电子科技集团公司第四十四研究所 一种具有片上滤光片的ccd结构
EP4033275A4 (en) * 2020-11-30 2023-10-25 Sol Inc. FLUORESCENT FILTER AND IMAGE SENSOR MODULE CONTAINING SAME

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171363A (en) * 1979-12-28 1992-12-15 Flex Products, Inc. Optically variable printing ink
US5196523A (en) * 1985-01-01 1993-03-23 The University Of Southern California Control of gene expression by glucose, calcium and temperature
US5066512A (en) * 1989-12-08 1991-11-19 International Business Machines Corporation Electrostatic deposition of lcd color filters
JP3625258B2 (ja) * 1999-07-06 2005-03-02 松下電器産業株式会社 受光素子およびその製造方法
US20010054696A1 (en) * 2000-04-17 2001-12-27 Aleksander Rebane Mode-locked laser infrared detection card and method
FR2813121A1 (fr) * 2000-08-21 2002-02-22 Claude Weisbuch Dispositif perfectionne de support d'elements chromophores
JP4534352B2 (ja) * 2000-12-27 2010-09-01 株式会社ニコン 有機分子検出用半導体素子、有機分子検出用半導体装置及びこれを用いた有機分子の測定方法
US6785052B2 (en) * 2001-05-21 2004-08-31 Jds Uniphase Corporation Stress free and thermally stabilized dielectric fiber
US7524459B2 (en) * 2002-01-24 2009-04-28 California Institute Of Technology In Pasadena Optoelectronic and microfluidic integration for miniaturized spectroscopic devices
US6894289B2 (en) * 2002-02-22 2005-05-17 Xenogen Corporation Fluorescence illumination assembly for an imaging apparatus
US6767749B2 (en) * 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
JP3846367B2 (ja) * 2002-05-30 2006-11-15 セイコーエプソン株式会社 半導体素子部材及び半導体装置並びにそれらの製造方法、電気光学装置、電子機器
US20050214160A1 (en) * 2002-08-13 2005-09-29 Genewave Supporting device for chromophore elements
WO2004059006A1 (en) * 2002-12-25 2004-07-15 Casio Computer Co., Ltd. Optical dna sensor, dna reading apparatus, identification method of dna and manufacturing method of optical dna sensor
FR2849922B1 (fr) * 2003-01-15 2008-09-05 Genewave Support d'elements chromophores.
GB2399941A (en) * 2003-03-24 2004-09-29 Univ Strathclyde Vertical cavity semiconductor optical devices
US7227145B2 (en) * 2004-07-01 2007-06-05 Lockheed Martin Corporation Polarization and wavelength-selective patch-coupled infrared photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688862A (zh) * 2007-06-27 2010-03-31 (株)赛丽康 利用图像传感器的诊断设备及其制造方法
CN109975255A (zh) * 2017-12-28 2019-07-05 伊鲁米那股份有限公司 具有降低的荧光范围噪声的检测器
CN109975255B (zh) * 2017-12-28 2022-04-19 伊鲁米那股份有限公司 具有降低的荧光范围噪声的检测器

Also Published As

Publication number Publication date
WO2007045755A1 (fr) 2007-04-26
FR2892196A1 (fr) 2007-04-20
US20090111207A1 (en) 2009-04-30
EP1946080A1 (fr) 2008-07-23
FR2892196B1 (fr) 2008-06-20

Similar Documents

Publication Publication Date Title
CN101365936A (zh) 制作集成检测生物传感器的方法
KR102047569B1 (ko) 케미컬 센서, 케미컬 센서 모듈, 화학물질 검출 장치 및 화학물질 검출 방법
Terasaki et al. Mechanoluminescent light source for a fluorescent probe molecule
EP1877772B1 (en) Photoluminescent silica-based sensors and methods of use
CN106549076B (zh) 一种量子点发光薄膜增强紫外成像探测器
ES2618869T3 (es) Una nanoetiqueta de SERS de longitud de onda selectiva
KR101795141B1 (ko) 염료 복합체, 광전환 필름, 및 이를 포함하는 전자소자
US7332344B2 (en) Luminescence assays
US9719923B2 (en) Tuning of metal enhanced emissions of long-lived luminescent compounds
CN1708680A (zh) 支持发色单元的装置
JP5066607B2 (ja) イメージセンサを利用した診断装置及びその製造方法
Ju et al. based biodetection using luminescent nanoparticles
CN107075358A (zh) 多孔粒子中的封装的材料
WO2005088314A1 (fr) Nanoparticules hybrides comprenant un coeur de ln2o3 porteuses de ligands biologiques et leur procede de preparation
US20020171045A1 (en) Enhancing surface-generated fluorescence signal emitted by a sample
CN104568864B (zh) 被检物质检测方法及装置、荧光检测方法及装置
JP2020531797A (ja) 蛍光範囲ノイズを低減した検出器
CN103857997A (zh) 化学传感器、化学传感器模块、生物分子检测装置及生物分子检测方法
US20170315058A1 (en) Surface enhanced fluorescence spectroscopy apparatus
EP2318471B1 (en) Conjugated nanoparticles and their use in detection of latent fingerprints
Zhu et al. Luminescence amplification strategies integrated with microparticle and nanoparticle platforms
JP2009092616A (ja) バイオセンサー
CN102095709A (zh) 基于荧光共轭聚合物中激光效应的化学传感器、方法及应用
US8610049B2 (en) Apparatus, system, and method for emission filter having a solution with polar protic solvent
JP2003083809A (ja) 赤外可視変換部材及び赤外線検出装置。

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090211