CN101363833A - 一种土体击实装置及测定方法 - Google Patents

一种土体击实装置及测定方法 Download PDF

Info

Publication number
CN101363833A
CN101363833A CN 200810211766 CN200810211766A CN101363833A CN 101363833 A CN101363833 A CN 101363833A CN 200810211766 CN200810211766 CN 200810211766 CN 200810211766 A CN200810211766 A CN 200810211766A CN 101363833 A CN101363833 A CN 101363833A
Authority
CN
China
Prior art keywords
plate
base plate
case
real
compaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200810211766
Other languages
English (en)
Other versions
CN101363833B (zh
Inventor
(请求不公开姓名)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geology and Geophysics of CAS
Original Assignee
Institute of Geology and Geophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geology and Geophysics of CAS filed Critical Institute of Geology and Geophysics of CAS
Priority to CN2008102117669A priority Critical patent/CN101363833B/zh
Publication of CN101363833A publication Critical patent/CN101363833A/zh
Application granted granted Critical
Publication of CN101363833B publication Critical patent/CN101363833B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明是一种土体击实装置及测定方法,该装置由击实箱,击实架和重锤组成,击实箱由两块侧板,一块后板和一块有机玻璃板围成一个立方体箱,底板是一块带有排水槽的铁板,槽呈倾斜状,其中一个角点有泄水孔,用于沟槽排水,立方体箱通过嵌槽嵌固于底板上,底板和四周设置了密封圈,侧板,后板与底板用合页连接在一起,有机玻璃板与底板铆接密封在一起,有机玻璃板表面贴有带坐标网格的胶片,击实架放在击实筒上面,并用固定销固定击实箱位置,击实架上安装有滑轮,用于悬吊重锤,旁边安装有直尺,用于量测重锤高度,重锤是长方体金属块,用于锤击土体。

Description

一种土体击实装置及测定方法
技术领域
本发明是一种土工实验仪器,属于土木工程技术领域。
背景技术
我国使用击实土处理公路路基已有几十年的历史。众所周知,这种方法可以提高路基承载力和压缩模量,且该方法具有施工方便、经济效益显著等优点,得到越来越广泛的应用。然而该方法还没有一套成熟的理论和设计体系,更多的是依赖经验设计。野外施工条件复杂,研制一台室内土体击实装置以再现现场施工情况,对于研究土体击实后的物理力学机理及孔隙水压力变化特性至关重要。目前,国内仅有的是研究土体最大干密度的击实仪,还没有一台研究土体现场击实特性的实验装置。
发明内容
本发明的目的在于提供一种土体击实装置及测定方法,解决土体击实后的压缩模量与物理力学指标测试。
本发明的技术解决方案,其特征是土体击实装置由击实箱,击实架和重锤组成,击实箱由三块铁板和一块有机玻璃板围成一个立方体,底板是一块带有排水沟槽的铁板,沟槽呈倾斜状,其中一个角点有泄水孔,用于沟槽排水,箱体的底板和四周设置了密封圈,三块铁板与底板用合页连接在一起,有机玻璃板与底板铆接密封在一起,有机玻璃板表面贴有带坐标网格的胶片,用于读取击实沉降数据;击实架放在击实筒上面,并用固定销固定击实箱位置,击实架上安装有滑轮,用于悬吊重锤,旁边安装有直尺,用于量测重锤高度;重锤是长方体金属块,用于锤击土体。
测定方法为:(1)将一定含水量、质量的土体分层装入击实箱,将微型土压力计、孔隙水压力计、含水量探头、吸力探头按测试需求放入土层中,适当压密,从有机玻璃板胶片刻度可以读出数据,计算压实度;(2)将击实箱推进击实架下方,击实架上通过一组滑轮悬挂的重锤对土体进行半模击实或通过击实架中间滑轮悬挂的重锤进行全模击实;(3)重锤悬挂高度由直尺读出,重锤下落后锤击土体,产生位移沉降由带有坐标网格的胶片读出;(4)击实过程中,土体土压力,水压力,含水量及吸力变化由探头通过读数仪读出,以研究击实土的物理力学机理与孔隙水压力变化特性;(5)土体在击实固结过程中的水分由底板排水沟槽通过角点处的泄水孔排出;(6)按照击实箱体积刻度,土体质量,含水量等指标可以计算土体击实后的压缩系数与压实度等物理力学指标。
本发明优点:按照实际工程要求的相似系数设计击实箱,击实架与重锤,通过预埋微型土压力计,孔隙水压力计,含水量探头与吸力探头,可以再现现场施工工程中的土水压力与土水特征曲线变化特性,量测击实土的固结系数与压实度等指标,研究土体击实后的物理力学机理与孔隙水压力变化特性,该方法简单,易行,可操作性强。
本发明适合于公路路堤、地下工程等领域。
附图说明
图1是一种土体击实装置及测定方法的立体图。图中:1侧板,2后板,3连接合页,4底板,5脚轮,6前有机玻璃板,7挡块。
图2是该发明底板4的主视图。图中:8排水槽,9嵌槽,10泄水孔。
图3是底板主视图的A—A剖视图。图中:8排水槽,倾斜方向自上而下。
图4是底板主视图B—B剖视图。图中:8排水槽,倾斜方向自右而左。
图5是击实架主视图。图中:11滑轮。
图6是击实架C-C剖视图。图中:11滑轮,可以位于一侧或中间,12固定销。
具体实施方式
实施例:(1)将侧板1,后板2,有机玻璃板3合拢在一起,相互嵌入密封成为箱体,整个箱体嵌入底板嵌槽9内,并用合页3连接;(2)将透水石放在底板上,将预先配好一定含水量和质量的土分层铺入击实箱,在不同位置埋设微型土压力计,孔隙水压力计,含水量探头,吸力探头等,并施加一定压力达到要求的初始压实度,压实度由有机玻璃板胶片刻度读数控制;(3)将击实架放在击实箱上面,通过固定销12固定击实箱,立方体重锤通过滑轮11悬挂,高度可以由击实架上固定的直尺控制,通过击实架一侧或中间落下重锤进行半模或全模击实,多余水分可以通过底板4倾斜排水槽8排至泄水孔10;(4)通过观看有机玻璃板上胶片刻度,控制土体沉降深度,以控制土体击实后的压实度,并读取预埋土压力计,水压力计,含水量探头和吸力探头的测量数据,量测土体击实过程中土水压力与土水特征曲线变化特征,以研究击实土的物理力学机理与孔隙水压力变化特性。

Claims (2)

1、一种土体击实装置及测定方法,其特征是该测定装置由击实箱,击实架和重锤组成,击实箱由两块侧板(1),一块后板(2)和一块有机玻璃板(6)围成一个立方体箱,底板(4)是一块带有排水槽(8)的铁板,槽呈倾斜状,其中一个角点有泄水孔(10),用于沟槽排水,立方体箱通过嵌槽(9)嵌固于底板上,底板和四周设置了密封圈,侧板(1),后板(2)与底板(4)用合页(3)连接在一起,有机玻璃板(6)与底板(4)铆接密封在一起,有机玻璃板(6)表面贴有带坐标网格的胶片,击实架放在击实筒上面,并用固定销(12)固定击实箱位置,击实架上安装有滑轮(11),用于悬吊重锤,旁边安装有直尺,重锤是长方体金属块。
2、根据权利要求1所述的一种土体击实装置及测定方法,其特征是测定方法如下,
1)将侧板(1),后板(2),有机玻璃板(3)合拢在一起,相互嵌入密封成为箱体,整个箱体嵌入底板嵌槽(9)内,并用合页(3)连接;
2)将透水石放在底板上,将预先配好一定含水量和质量的土分层铺入击实箱,在不同位置埋设微型土压力计,孔隙水压力计,含水量探头,吸力探头等,并施加一定压力达到要求的初始压实度,压实度由有机玻璃板(3)胶片刻度读数控制;
3)将击实架放在击实箱上面,通过固定销(12)固定击实箱,立方体重锤通过滑轮(11)悬挂,高度可以由击实架上固定的直尺控制,通过击实架一侧或中间落下重锤进行半模或全模击实,多余水分可以通过底板(4)倾斜排水槽(8)排至泄水孔(10);
4)通过观看有机玻璃板上胶片刻度,控制土体沉降深度,以控制土体击实后的压实度,并读取预埋土压力计,水压力计,含水量探头和吸力探头的测量数据,量测土体击实过程中土水压力与土水特征曲线变化特征,以研究击实土的物理力学机理与孔隙水压力变化特性。
CN2008102117669A 2008-09-25 2008-09-25 一种土体击实排水模型试验装置 Expired - Fee Related CN101363833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102117669A CN101363833B (zh) 2008-09-25 2008-09-25 一种土体击实排水模型试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102117669A CN101363833B (zh) 2008-09-25 2008-09-25 一种土体击实排水模型试验装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201110100459.5A Division CN102253178B (zh) 2008-09-25 2008-09-25 一种土体动力固结模型试验方法

Publications (2)

Publication Number Publication Date
CN101363833A true CN101363833A (zh) 2009-02-11
CN101363833B CN101363833B (zh) 2012-02-22

Family

ID=40390316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102117669A Expired - Fee Related CN101363833B (zh) 2008-09-25 2008-09-25 一种土体击实排水模型试验装置

Country Status (1)

Country Link
CN (1) CN101363833B (zh)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644263A (zh) * 2012-05-14 2012-08-22 云南三星机械设备制造股份有限公司 一种测定粗粒土的最大干密度试验用表面振动压实仪
CN105571755A (zh) * 2015-12-14 2016-05-11 太原理工大学 用于标准重型击实试验中土中应力测试系统
CN108871907A (zh) * 2018-08-31 2018-11-23 中国石油天然气股份有限公司 液压撼砂装置、应用于填砂模型的液压撼砂系统及方法
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US12010947B2 (en) 2023-01-23 2024-06-18 Deere & Company Predictive machine characteristic map generation and control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718835B2 (en) * 2001-10-10 2004-04-13 Wisconsin Alumni Research Foundation Pressure plate extractor
CN2636224Y (zh) * 2003-08-19 2004-08-25 济南瑞讯工程设备有限责任公司 一种筑路测试用击实仪
CN201258495Y (zh) * 2008-09-25 2009-06-17 李志清 一种土体击实装置

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644263A (zh) * 2012-05-14 2012-08-22 云南三星机械设备制造股份有限公司 一种测定粗粒土的最大干密度试验用表面振动压实仪
CN105571755A (zh) * 2015-12-14 2016-05-11 太原理工大学 用于标准重型击实试验中土中应力测试系统
CN108871907A (zh) * 2018-08-31 2018-11-23 中国石油天然气股份有限公司 液压撼砂装置、应用于填砂模型的液压撼砂系统及方法
CN108871907B (zh) * 2018-08-31 2020-10-09 中国石油天然气股份有限公司 液压撼砂装置、应用于填砂模型的液压撼砂系统及方法
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US12013698B2 (en) 2023-01-23 2024-06-18 Deere & Company Machine control using a predictive map
US12010947B2 (en) 2023-01-23 2024-06-18 Deere & Company Predictive machine characteristic map generation and control system

Also Published As

Publication number Publication date
CN101363833B (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
CN101363833B (zh) 一种土体击实排水模型试验装置
CN103953074B (zh) 一种开口管桩锤击贯入模拟实验装置及实验方法
Chen et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil
AU2013101531A4 (en) Deep softrock geostress test method and device based on flow stress recovery principle
CN105242028B (zh) 一种由高层建筑荷载和地下水抽灌引起土体分层沉降模型试验装置及试验方法
Viswanadham et al. Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements
CN110554169A (zh) 一种隧道开挖过程模拟试验装置及方法
CN207194039U (zh) 桩箱基础水平循环加载试验装置
Shi et al. Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay
CN104060637B (zh) 一种碎石桩加固软土路基的土工离心模拟试验方法
CN108086369B (zh) 不同嵌岩深度下桩土共同作用位移应力测量装置和方法
CN102011388A (zh) 水下真空预压离心模型试验装置及方法
CN108195684B (zh) 可用于研究循环移动荷载作用下地基力学行为的试验系统
CN104153404A (zh) 桩复合地基结合碎石垫层基础的试验装置及试验方法
CN108508141A (zh) 一种桩承式加筋路堤三维变形场可视化试验装置及其试验方法
Meng et al. Centrifuge modeling of effectiveness of protective measures on existing tunnel subjected to nearby excavation
Heib et al. Large-scale soil–structure physical model (1 g)–assessment of structure damages
CN206385578U (zh) 桩土接触面土颗粒细观运动测量装置
Shen et al. Experimental study on mesoscopic shear behavior of calcareous sand material with digital imaging approach
CN102253178B (zh) 一种土体动力固结模型试验方法
Zhao et al. Field infiltration of artificial irrigation into thick loess
CN108051304A (zh) 一种多功能三维可视结构界面的实验装置及实验方法
CN112459840A (zh) 基于劣化特征隧道富水及枯水交替突涌试验装置与方法
CN201258495Y (zh) 一种土体击实装置
CN101042390B (zh) 模型二维三维可调的岩土工程物理模拟多功能试验装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: The inventor has waived the right to be mentioned

Inventor after: Hu Ruilin

Inventor before: The inventor has waived the right to be mentioned

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: REQUEST TO WITHHOLD NAME TO: REQUEST TO WITHHOLD NAME HU RUILIN

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120222

Termination date: 20190925