CN101357855B - 一种提高陶瓷热障涂层隔热性能的后处理方法 - Google Patents

一种提高陶瓷热障涂层隔热性能的后处理方法 Download PDF

Info

Publication number
CN101357855B
CN101357855B CN2008101509598A CN200810150959A CN101357855B CN 101357855 B CN101357855 B CN 101357855B CN 2008101509598 A CN2008101509598 A CN 2008101509598A CN 200810150959 A CN200810150959 A CN 200810150959A CN 101357855 B CN101357855 B CN 101357855B
Authority
CN
China
Prior art keywords
barrier coating
thermal barrier
heat
coating
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008101509598A
Other languages
English (en)
Other versions
CN101357855A (zh
Inventor
张晖
梁工英
丁秉钧
王铁军
虞烈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN2008101509598A priority Critical patent/CN101357855B/zh
Publication of CN101357855A publication Critical patent/CN101357855A/zh
Application granted granted Critical
Publication of CN101357855B publication Critical patent/CN101357855B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种提高陶瓷热障涂层隔热性能的后处理方法,其特征在于:1)采用薄膜制备工艺,在陶瓷热障面层上沉积一层10~50nm的铝薄膜;2)对覆盖有铝膜的热障涂层进行真空扩散加热,工艺条件是:真空度10-2~10-3Pa,温度450~610℃,保温时间40~90分钟,加热时铝膜能发生向陶瓷热障涂层中孔隙和裂纹表面的扩散;3)铝扩散后的热障涂层工件置于电阻炉内,空气中加热至600~900℃,保温2~4小时,氧化后从孔隙和裂纹的内表面形成片状θ氧化铝或其他类型的氧化铝,实现对孔隙和裂纹的有限封闭,提高隔热效果和有害气体侵蚀性能。本发明的优点:不改变热障涂层制备工艺,及涂层中孔隙和裂纹的有益作用情况下,改善热障涂层的性能。

Description

一种提高陶瓷热障涂层隔热性能的后处理方法
技术领域
本发明涉及一种热障涂层的后处理技术,特别涉及一种用于燃气涡轮机高温部件如燃烧室、涡轮机叶片的陶瓷热障涂层的后处理方法,改善其隔热性能,提高对有害气体的热侵蚀抗力。
背景技术
热障涂层被广泛应用于燃气涡轮机中,起隔热作用,降低燃烧室和涡轮叶片等热端金属部件的表面温度,优异的热障涂层可使合金温度降低200℃左右。正是采用这一技术,从而可满足燃气涡轮机向高能效、低排放、高推重比方向不断发展的要求。典型的热障涂层是双层结构:抗氧化粘结底层和氧化锆陶瓷隔热面层。而等离子喷涂和电子束物理气相沉积是应用最广的热障涂层制备工艺。
热障涂层的工作条件十分恶劣,易受高温、氧化、热腐蚀、热冲击、流体冲蚀等多种侵害,加之涂层与基体金属物化性能不匹配造成应力场复杂,涂层服役中易出现开裂、剥落等失效形式。涂层的组织结构对这些使用性能起重要影响,对于性能最佳的MCrAlY粘结底层和氧化钇部分稳定氧化锆陶瓷面层的热障涂层,显微组织中含有大量的连通孔隙、垂直裂纹及柱状晶粒疏松,这些材料组织结构对提高由于基体与热障涂层热膨胀系数差异造成的形变容限和缓解涂层应力起重要和积极的作用,同时也存在降低隔热效果,加剧腐蚀气体的可穿透性,降低了涂层的抗氧化性能等严重问题。因此在改善涂层性能的后处理研究中,性能间存在着此消彼长的矛盾。
王仁华在(经溶胶-凝胶后处理之热障涂层热传导特性,国外热处理,第25卷第1期,pp31~36,2004年)一文中提到应用溶胶-凝胶法向热障涂层浸渗氧化铝和氧化锆,该法能够减少和封闭涂层的开放孔隙从而改善抗氧化性,但平均热导率相应地上升了27%和42.6%,降低了隔热性能。
激光重熔也是热障涂层的一种后处理方法,它是依靠激光表面加热,将热障涂层重新加热熔化并凝固,外表层全致密化,无开放孔隙。这种方法在改善表面光洁度,封闭开放孔隙方面有利,但另一方面,致密化和组织改变却增加了热导率,改变了热障性。封闭热障涂层中孔隙和裂纹类此的处理方法还有爆炸喷涂和硫酸铝溶液浸渗法等。
发明内容
本发明的目的在于提供一种提高陶瓷热障涂层隔热性能的后处理方法,即保持涂层中孔隙和裂纹缓解热障涂层与基体热膨胀不匹配、提高变形容限和热疲劳抗力的原有优点基本不变,同时又能提高隔热性能,并降低腐蚀气体穿透,改善涂层的抗氧化能力,解决显微组织对涂层性能影响此消彼长的矛盾。
为达到以上目的,本发明是采取如下技术方案予以实现的:
一种提高陶瓷热障涂层隔热性能的后处理方法,其特征在于,包括以下步骤:
a、采用薄膜制备工艺,在陶瓷热障面层上沉积一层的铝薄膜;
b、在真空炉中,对覆盖有铝薄膜的陶瓷热障涂层工件进行扩散加热,工艺条件是:真空度10-2~10-3Pa,温度450~610℃,保温时间40~90分钟,随炉冷却至室温;
c、将铝扩散后的陶瓷热障涂层工件置于电阻炉中,在空气中于600~900℃对陶瓷热障涂层中的扩散铝进行氧化,时间2~4小时,在涂层孔隙和裂纹中形成氧化铝。
上述方法中,所述薄膜制备工艺包括采用磁控溅射、真空蒸发一类方法。所述铝薄膜的沉积厚度是10~50nm。
本发明提供的用于燃气涡轮机中高温合金部件的氧化锆热障涂层的后处理方法,是铝扩散氧化对热障涂层封闭处理方法,根据表面扩散是最快速扩散途径的原理,通过真空加热,使铝扩散和迁移到热障涂层的孔隙、垂直裂纹和疏松的内表面,随后的氧化加热处理,使扩散的铝氧化形成片状θ氧化铝或其他类型的氧化铝,本发明的优点在于,仅对孔隙和裂纹进行有限封闭和有限填充,基本不改变孔隙比率和裂纹的形状、分布,在保持原涂层性能不变的情况下,可显著降低热导率和气体浸透能力,是一种全面提高性能的后处理方法,且工艺简单,适合工业化生产。
附图说明
图1是实施例三30nm铝薄膜在610℃电阻炉内加热3小时形成的片状分立的θ氧化铝电镜照片。
图2是铝扩散氧化对热障涂层孔隙和裂纹的封闭过程示意图。其中图2a、含有孔隙/裂纹2的热障陶瓷面层1;图2b、在面层上沉积一层铝膜3;图2c、真空加热扩散铝进入孔隙和裂纹内表面,形成富铝层4;图2d、铝氧化生成分立的片状θ氧化铝或氧化铝5。
具体实施方式
以下结合具体实施例对本发明做进一步的详细描述。
所有实施例都包含以下热障涂层表面清理步骤:
1)对热障涂层表面用3KW真空除尘器除去表面尘埃和颗粒
2)将热障涂层工件放入烘烤箱中,加热温度110℃,加热时间1小时,去除表面水汽和油脂。
用于封闭处理的陶瓷热障涂层,氧化锆面层是氧化钇稳定的氧化锆,其中氧化钇的含量为2~4%或6~8%,即3YSZ或7YSZ,厚度是0.2mm~0.8mm。粘结底层是MCrAlY合金体系,M代表Ni、Co或NiCo,Al的含量为5~12%,Cr为25%,Y为0.5%,余量为M。所述粘结底层厚度为0.1mm~0.4mm。
实施例1:
工件热障涂层系统是6~8%的氧化钇部分稳定氧化锆陶瓷面层,即7YSZ,厚度0.2mm,和CoCrAlY合金粘结底层,Al含量5%,Cr为25%,Y为0.5%,余量为Co,厚度0.1mm。经表面清理处理后,改善热障涂层性能的处理方法按以下步骤实现:
a、利用磁控溅射仪,在热障涂层表面沉积一层10nm厚铝薄膜。溅射条件:纯度99.99%以上的铝靶,靶与工件涂层距离50mm,直流电源,电流0.1A,工作气体Ar气,压力0.4Pa,流速28SCCM;
b、在真空炉中,对覆盖有铝膜的热障涂层进行扩散加热,工艺条件是:真空度6×10-3Pa,温度450℃,保温时间90分钟,随炉冷却至室温;
c、将铝扩散后的热障涂层工件置于电阻炉中,在空气中于600℃对涂层中的扩散铝进行氧化,时间4小时,炉冷,在涂层孔隙和裂纹中形成氧化铝。
实施例2:
工件热障涂层系统是2~3%的氧化钇部分稳定氧化锆陶瓷面层,即3YSZ,厚度0.5mm,和NiCrAlY合金粘结底层,Al含量8%,Cr为25%,Y为0.5%,余量为Ni,厚度0.25mm。经表面清理处理后,改善热障涂层性能的处理方法按以下步骤实现:
a、利用磁控溅射仪,在热障涂层表面沉积一层30nm厚铝薄膜。溅射条件:纯度99.99%以上的铝靶,靶与工件涂层距离50mm,直流电源,电流0.1A,工作气体Ar气,压力0.4Pa,流速28SCCM;
b、在真空炉中,对覆盖有铝膜的热障涂层进行扩散加热,工艺条件是:真空度4×10-2Pa,温度530℃,保温时间65分钟,随炉冷却至室温;
c、将铝扩散后的热障涂层工件置于电阻炉中,在空气中于750℃对涂层中的扩散铝进行氧化,时间3小时,在涂层孔隙和裂纹中形成氧化铝。
实施例3:
工件热障涂层系统是6~8%的氧化钇部分稳定氧化锆陶瓷面层,即7YSZ,厚度0.8mm,和NiCoCrAlY合金粘结底层,Al含量12%,Cr为25%,Y为0.5%,余量为Ni和Co各50%,厚度0.4mm。经表面清理处理后,改善热障涂层性能的处理方法按一下步骤实现:
a、利用溅射仪,在热障涂层表面沉积一层50nm厚铝薄膜。溅射条件:纯度99.99%以上的铝靶,靶与工件涂层距离50mm,直流电源,电流0.1A,工作气体Ar气,压力0.4Pa,流速28SCCM;
b、在真空炉中,对覆盖有铝膜的热障涂层进行扩散加热,工艺条件是:真空度9×10-3Pa,温度610℃,保温时间40分钟,随炉冷却至室温;
c、将铝扩散后的热障涂层工件置于电阻炉中,在空气中于900℃对涂层中的扩散铝进行氧化,时间2小时,炉冷,在涂层孔隙和裂纹中形成氧化铝。
实施例4:
本实施例与实施例1不同的是步骤a中的薄膜沉积方法是真空蒸发沉积,工艺条件为:真空度7×10-2Pa,W电阻加热蒸发源,加热温度1250℃,原料99.99%以上高纯铝,铝膜蒸镀厚度10nm。其他步骤及参数与具体实施例1相同。
实施例5:
本实施例与实施例2不同的是步骤a中的薄膜沉积方法是真空蒸发沉积,工艺条件为:真空度7×10-2Pa,W电阻加热蒸发源,加热温度1250℃,原料99.99%以上高纯铝,铝膜蒸镀厚度30nm。其他步骤及参数与具体实施例2相同。
实施例6:
本实施例与实施例3不同的是步骤a中的薄膜沉积方法是真空蒸发沉积,工艺条件为:真空度7×10-2Pa,W电阻加热蒸发源,加热温度1250℃,原料99.99%以上高纯铝,铝膜蒸镀厚度50nm。其他步骤及参数与具体实施例3相同。
如图2所示,本发明提供的铝扩散氧化对热障涂层封闭处理的方法,其真空加热扩散后,铝原子扩散或富集于热障涂层中孔隙和裂纹的内表面,形成富铝层4(图2c)。氧化处理后,从热障涂层的孔隙和裂纹内表面生长出片状θ氧化铝或其他类型的氧化铝5,并分立于孔隙和裂纹中(图2d),增加了热流和气流的阻碍界面。

Claims (5)

1.一种提高陶瓷热障涂层隔热性能的后处理方法,其特征在于,包括以下步骤:
a、采用薄膜制备工艺,在陶瓷热障面层上沉积一层铝薄膜;
b、在真空炉中,对覆盖有铝薄膜的陶瓷热障涂层工件进行扩散加热,工艺条件是:真空度10-2~10-3Pa,温度450~610℃,保温时间40~90分钟,随炉冷却至室温;
c、将铝扩散后的陶瓷热障涂层工件置于电阻炉中,在空气中于600~900℃对陶瓷热障涂层中的扩散铝进行氧化,时间2~4小时,在涂层孔隙和裂纹中形成氧化铝。
2.如权利要求1所述提高陶瓷热障涂层隔热性能的后处理方法,其特征在于,所述薄膜制备工艺包括采用磁控溅射、真空蒸发的方法。
3.如权利要求1所述提高陶瓷热障涂层隔热性能的后处理方法,其特征在于,所述步骤a铝薄膜的沉积厚度是10~50nm。
4.如权利要求2所述提高陶瓷热障涂层隔热性能的后处理方法,其特征在于,所述磁控溅射工艺条件为,纯度99.99%以上的铝靶,靶与工件涂层距离50mm,直流电源,电流0.1A,工作气体Ar气,压力0.4Pa,流速28SCCM。
5.如权利要求2所述提高陶瓷热障涂层隔热性能的后处理方法,其特征于,所述真空蒸发工艺条件为:真空度7×10-2Pa,钨电阻加热蒸发源,加热温度1250℃,原料99.99%以上高纯铝。
CN2008101509598A 2008-09-12 2008-09-12 一种提高陶瓷热障涂层隔热性能的后处理方法 Expired - Fee Related CN101357855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101509598A CN101357855B (zh) 2008-09-12 2008-09-12 一种提高陶瓷热障涂层隔热性能的后处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101509598A CN101357855B (zh) 2008-09-12 2008-09-12 一种提高陶瓷热障涂层隔热性能的后处理方法

Publications (2)

Publication Number Publication Date
CN101357855A CN101357855A (zh) 2009-02-04
CN101357855B true CN101357855B (zh) 2012-01-11

Family

ID=40330472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101509598A Expired - Fee Related CN101357855B (zh) 2008-09-12 2008-09-12 一种提高陶瓷热障涂层隔热性能的后处理方法

Country Status (1)

Country Link
CN (1) CN101357855B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534613A (zh) * 2011-12-19 2012-07-04 北京矿冶研究总院 一种新型复合结构涂层及其制备方法
CN103668191B (zh) * 2013-12-09 2016-01-20 广州有色金属研究院 一种热障涂层的制备方法
CN106756795B (zh) * 2016-09-30 2019-04-30 广东省新材料研究所 一种碳化硅复合材料高温防护涂层的制备方法
CN109763089B (zh) * 2018-12-18 2020-09-25 江苏大学 一种提高MCrAlY防护涂层表面Al含量及高温服役性能的处理方法
CN111441010A (zh) * 2020-04-26 2020-07-24 广东省新材料研究所 一种纳米复合热障涂层及其制备方法与应用、一种拉矫辊
CN114525476B (zh) * 2022-02-26 2024-01-19 辽宁科技大学 一种马氏体不锈钢表面Cr-AlSi复合涂层、方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740372A (zh) * 2005-09-21 2006-03-01 武汉理工大学 一种液相等离子喷涂制备纳米氧化锆热障涂层的方法
US20060110278A1 (en) * 2003-02-11 2006-05-25 Branagan Daniel J Formation of metallic thermal barrier alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060110278A1 (en) * 2003-02-11 2006-05-25 Branagan Daniel J Formation of metallic thermal barrier alloys
CN1740372A (zh) * 2005-09-21 2006-03-01 武汉理工大学 一种液相等离子喷涂制备纳米氧化锆热障涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张晓囡等.热障涂层界面扩散阻挡层研究进展.《材料导报》.2008,第22卷(第4期),摘要. *

Also Published As

Publication number Publication date
CN101357855A (zh) 2009-02-04

Similar Documents

Publication Publication Date Title
CN101357855B (zh) 一种提高陶瓷热障涂层隔热性能的后处理方法
CN102127738B (zh) 一种多层热障涂层及其制备方法
EP1111085B1 (en) Method for producing ceramic coatings
CN101357854B (zh) 一种降低陶瓷热障涂层热导率的后处理方法
EP1642993A1 (en) Segmented gadolinia zirconia coatings
EP1897967B1 (en) Nanolaminate thermal barrier coatings
CN101310971B (zh) 一种MCrAlY加复合梯度涂层及制备工艺
US20070224443A1 (en) Oxidation-resistant coating and formation method thereof, thermal barrier coating, heat-resistant member, and gas turbine
CN109266996B (zh) 柱层双模结构热障涂层及其制备方法
CN107699840A (zh) 多孔氧化锆热障涂层的制备方法
CN105970168B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
EP2258889A1 (en) Thermal barrier coatings and methods
CN102212823A (zh) 在合金基板上设置薄膜传感器的方法
CN108677064A (zh) 一种高寿命高温合金航空发动机叶片及制造方法
CN102925871A (zh) 一种复合热障涂层及其制备方法
CN110284096A (zh) 一种新型孔隙率梯度的热障涂层
CN104451675A (zh) 高抗热震性陶瓷封严涂层的制备方法
CN106746666A (zh) 玻璃陶瓷复合热障涂层设计模型及涂层制备方法
CN104789926B (zh) 一种金属基薄膜传感器的制备方法
CN108754387A (zh) 一种耐高温低导热长寿命双层双模结构热障涂层及其制备工艺
CN104451518A (zh) 一种低导热抗烧结热障涂层及其制备方法
CN108286036B (zh) 一种原位补氧型扫描式电子束气相沉积(ioc-sevd)装置及其方法
CN108018522A (zh) 一种曲折柱状结构的热障涂层陶瓷层及其制备方法
JP2006342427A (ja) 熱障壁被覆の熱伝導率の低減方法および熱障壁被覆
CN103434209B (zh) 一种新型的低热导率和耐高温热障涂层及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20140912

EXPY Termination of patent right or utility model