CN101349047A - Air-entrained curve ladder energy dissipator in the flood discharge tunnel - Google Patents
Air-entrained curve ladder energy dissipator in the flood discharge tunnel Download PDFInfo
- Publication number
- CN101349047A CN101349047A CNA2008100459784A CN200810045978A CN101349047A CN 101349047 A CN101349047 A CN 101349047A CN A2008100459784 A CNA2008100459784 A CN A2008100459784A CN 200810045978 A CN200810045978 A CN 200810045978A CN 101349047 A CN101349047 A CN 101349047A
- Authority
- CN
- China
- Prior art keywords
- section
- tunnel
- slope
- energy dissipator
- flood discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007704 transition Effects 0.000 claims abstract description 18
- 238000005273 aeration Methods 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 22
- 230000003628 erosive effect Effects 0.000 abstract description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
Images
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
一种泄洪洞内掺气型曲线阶梯消能工,包括在两高度不同的平行泄洪洞或有压隧洞与下游泄洪洞之间的曲线连接洞体进口处设置的掺气装置、在曲线连接洞体底板上设置的阶梯消能工,所述阶梯消能工位于曲线连接洞体底板的调整斜坡段后,从高位至低位,依次为斜面阶梯段、过渡阶梯段和水平阶梯段。掺气装置可以有效地对进口高速水流进行掺气,减轻或避免阶梯台阶发生空蚀破坏的可能性,阶梯消能工可以将高速水流的方向过渡到与阶梯坡度平行,调整好曲线连接洞体的流态,降低曲线连接洞体出口流速,减小对下游泄洪洞的冲刷。
An aeration-type curved ladder energy dissipator in a spillway tunnel, including an aeration device installed at the entrance of a curved connection tunnel body between two parallel spillway tunnels or pressurized tunnels with different heights and a downstream spillway tunnel; The ladder energy dissipator arranged on the bottom of the body is located behind the adjusted slope section where the curve connects the bottom of the cave body. From the high position to the low position, there are incline step section, transition step section and horizontal step section in sequence. The aeration device can effectively aerate the inlet high-speed water flow, reduce or avoid the possibility of cavitation damage to the steps, and the step energy dissipator can transition the direction of the high-speed water flow to be parallel to the step slope, and adjust the curve to connect the cave body reduce the flow velocity at the outlet of the curve connecting the cave body, and reduce the erosion of the downstream spillway tunnel.
Description
技术领域 technical field
本发明属于水利水电工程中使用的消能设施,特别涉及一种用于高流速的两高度不同的平行泄洪洞或有压隧洞与下游泄洪洞的曲线连接洞体的阶梯消能工。The invention belongs to energy dissipating facilities used in water conservancy and hydropower projects, in particular to a stepped energy dissipating device used for two parallel flood discharge tunnels with different heights at high flow rates or a pressurized tunnel and a curved connection cave body of a downstream flood discharge tunnel.
背景技术 Background technique
现有工程中,两高度不同的平行泄洪洞的连接洞体底板往往设计为光滑渥奇曲线,由于连接洞体进口流速很大,导致连接洞体内和连接洞体后的下游泄洪洞流速也很大,因此要设置掺气保护措施。为了达到消能的目的,减小对下游河道的冲刷,在泄洪洞出口或者在泄洪洞内需设置消力池等消能设施,但是需要较大的工程量,增加工程投资。In existing projects, the bottom plate of the connecting tunnel body of two parallel spillway tunnels with different heights is often designed as a smooth Wolch curve. Due to the high flow velocity at the inlet of the connecting tunnel body, the flow velocity in the connecting tunnel body and the downstream spillway tunnel after the connecting tunnel body is also very high. Large, so it is necessary to set up air entrainment protection measures. In order to achieve the purpose of energy dissipation and reduce the erosion of the downstream channel, energy dissipation facilities such as stilling basins must be installed at the outlet of the spillway tunnel or inside the spillway tunnel, but this requires a large amount of work and increases the project investment.
阶梯消能工在水利工程中的应用历史虽然较长,但通常使用在溢流坝和溢洪道的直坡上,与其它消能工一起使用,共同消能。对于高流速的明流泄洪洞,或者高流速有压出口的泄洪洞,设置突跌突扩型掺气设施时,如果阶梯面为传统的水平面时,连接段水流流态不好,容易产生水翅现象,同时阶梯上难于产生横向旋滚水流,而易产生空腔,形成负压区,因此一般不使用阶梯消能工。Although the application history of stepped energy dissipators in water conservancy projects is long, they are usually used on the straight slopes of overflow dams and spillways, and are used together with other energy dissipators to dissipate energy together. For high-velocity open-flow flood discharge tunnels, or high-velocity flood discharge tunnels with pressurized outlets, when the sudden drop and expansion type aeration facilities are installed, if the step surface is a traditional horizontal plane, the flow state of the connecting section is not good, and it is easy to generate water. At the same time, it is difficult to generate horizontal tumbling water flow on the steps, but it is easy to generate cavities and form negative pressure areas, so step energy dissipators are generally not used.
发明内容 Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种泄洪洞内掺气型曲线阶梯消能工,以解决两高度不同的平行泄洪洞或有压隧洞与下游泄洪洞的连接洞体内和下游泄洪洞流速大,流态难以调节,容易空化空蚀、消能率低等问题,并减小工程量,降低工程投资。The purpose of the present invention is to overcome the deficiencies of the prior art, and provide an aeration-type curved ladder energy dissipator in the flood discharge tunnel to solve the problem of the connection between two parallel flood discharge tunnels or pressurized tunnels and downstream flood discharge tunnels with different heights. The flow rate of the spillway is high, the flow state is difficult to adjust, it is easy to cause problems such as cavitation, cavitation, and low energy dissipation rate, and it reduces the amount of work and investment.
本发明的技术方案:在曲线连接洞体的进口处设置掺气装置,在曲线连接洞体底板上设置阶梯消能工并对阶梯体型进行优化。The technical scheme of the present invention: install an aeration device at the entrance of the curved connection hole, install a stepped energy dissipator on the bottom plate of the curved connection hole, and optimize the shape of the step.
本发明所述泄洪洞内掺气型曲线阶梯消能工,包括在两高度不同的平行泄洪洞或有压隧洞与下游泄洪洞之间的曲线连接洞体进口处设置的掺气装置、在曲线连接洞体底板上设置的阶梯消能工,所述阶梯消能工位于曲线连接洞体底板的调整斜坡段后,从高位至低位,依次为斜面阶梯段、过渡阶梯段和水平阶梯段,水平阶梯段或直接与下游泄洪洞底板相接,或通过反弧段、调整水平段与下游泄洪洞底板相接。The aeration-type curved ladder energy dissipation device in the flood discharge tunnel of the present invention includes an aeration device arranged at the entrance of the curved connection tunnel body between two parallel flood discharge tunnels with different heights or a pressurized tunnel and a downstream flood discharge tunnel. Connect the ladder energy dissipator set on the floor of the cave body. The ladder energy dissipator is located behind the adjusted slope section of the curve connecting the cave floor. The stepped section is either directly connected to the floor of the downstream spillway tunnel, or connected to the floor of the downstream spillway tunnel through an anti-arc section or an adjusted horizontal section.
本发明所述泄洪洞内掺气型曲线阶梯消能工的机理:来自上游泄洪洞或有压隧洞的高速水流进入曲线连接洞体,曲线连接洞体进口处设置的掺气装置对水流侧面和底部掺气,调整斜坡段调整好水舌与底板的接触,有效的避免水舌冲击底板,同时也可以为掺气装置提供足够的空腔长度;水舌流过调整斜坡段后,斜面阶梯段和过渡阶梯段将水流过渡到水平阶梯段,使水流方向与底板坡度方向趋于平行,主要消能处在水平阶梯段,水流经水平阶梯段后能量大大减小,流速降低,平缓地进入下游泄洪洞。The mechanism of the aeration-type curved ladder energy dissipator in the flood discharge tunnel described in the present invention: the high-speed water flow from the upstream flood discharge tunnel or pressurized tunnel enters the curved connection cave body, and the aeration device arranged at the entrance of the curved connection tunnel body is opposite to the water flow side and Aeration at the bottom, adjust the slope section to adjust the contact between the water tongue and the bottom plate, effectively avoid the impact of the water tongue on the bottom plate, and at the same time provide sufficient cavity length for the aeration device; And the transition step section transitions the water flow to the horizontal step section, so that the direction of the water flow is parallel to the slope direction of the bottom plate. The main energy dissipation is in the horizontal step section. After the water flows through the horizontal step section, the energy is greatly reduced, the flow velocity is reduced, and it enters the downstream gently spillway.
曲线连接洞体底板上的调整斜坡段坡度和长度根据上游泄洪洞或有压隧洞来流的流速决定,流速越大,其坡度越小,长度越长,以便有效控制该段的空腔长度和水流表面形态。斜面阶梯段的长度也根据上游泄洪洞或有压隧洞来流的流速决定,流速越大,长度越长;水平阶梯段的长度根据上游泄洪洞或有压隧洞与下游泄洪洞之间的高程差和设计需要的消能率确定,高程差越大,要求的消能越大,水平阶梯段的长度越长。The slope and length of the adjusted slope section on the floor of the curved connection cave are determined according to the flow velocity of the upstream spillway or pressurized tunnel. The greater the flow velocity, the smaller the slope and the longer the length, so as to effectively control the cavity length and Surface morphology of water flow. The length of the slope step section is also determined by the flow velocity of the upstream spillway or pressurized tunnel. The greater the flow velocity, the longer the length; the length of the horizontal step section is based on the elevation difference between the upstream spillway or pressurized tunnel and the downstream spillway The greater the elevation difference, the greater the required energy dissipation and the longer the length of the horizontal step section.
为了更好地实现发明目的,阶梯消能工的有关几何参数如下:In order to better realize the purpose of the invention, the relevant geometric parameters of the ladder energy dissipator are as follows:
斜面阶梯段的阶梯坡度ii=1∶20~5,阶梯高度0<hi<1.0m;水平阶梯段的阶梯高度h大于斜面阶梯段的阶梯高度hi,阶梯长度l为阶梯高度h的1~5倍。The step slope i i of the slope step section = 1:20~5, the step height 0<h i <1.0m; the step height h of the horizontal step section is greater than the step height h i of the slope step section, and the step length l is the step height h 1 to 5 times.
过渡阶梯段的阶梯高度从斜面阶梯段的阶梯的高度hi过渡至水平阶梯段的阶梯高度h。The step height of the transition step section transitions from the step height h i of the inclined step section to the step height h of the horizontal step section.
本发明具有以下有益效果:The present invention has the following beneficial effects:
1、曲线连接洞体进口处的掺气装置可以有效地对进口高速水流进行掺气,掺气水流能够保护好前几级阶梯,减轻或避免台阶发生空蚀破坏的可能性,曲线连接洞体底板上的阶梯消能工可以将高速水流的方向有效的过渡到与阶梯坡度平行,调整好曲线连接洞体的流态,大大降低曲线连接洞体出口流速,从而达到消能目的,减小对下游泄洪洞的冲刷。1. The aeration device at the entrance of the curve-connected cave body can effectively aerate the high-speed water flow at the entrance. The aerated water flow can protect the first few steps and reduce or avoid the possibility of cavitation damage on the steps. The curve-connected cave body The ladder energy dissipator on the bottom plate can effectively transition the direction of the high-speed water flow to be parallel to the gradient of the ladder, adjust the flow state of the curved connection hole, and greatly reduce the flow rate at the outlet of the curved connection hole, so as to achieve the purpose of energy dissipation and reduce the impact on Scouring of the downstream spillway.
2、下游泄洪洞不需设置掺气减蚀设施,体型设计和施工更为方便和简单。2. The downstream flood discharge tunnel does not need to be equipped with aerated corrosion reduction facilities, and the shape design and construction are more convenient and simple.
3、与在泄洪洞出口或者泄洪洞内设置消力池等消能装置相比,工程量减小,工程投资降低。3. Compared with installing stilling basins and other energy-dissipating devices at the outlet of the flood discharge tunnel or in the flood discharge tunnel, the engineering quantity is reduced and the project investment is reduced.
4、本发明所述的掺气型曲线阶梯消能工结构简单,体型优化容易,可广泛使用在不同流量和不同坡度的泄洪洞的曲线连接洞体中。4. The air-entrained curved ladder energy dissipator described in the present invention has a simple structure and easy shape optimization, and can be widely used in curved connection tunnels of flood discharge tunnels with different flow rates and different slopes.
附图说明 Description of drawings
图1是本发明所述泄洪洞内掺气型曲线阶梯消能工的一种结构示意图;Fig. 1 is a kind of structural representation of aerated type curve ladder energy dissipator in the flood discharge tunnel of the present invention;
图2是图1的A-A剖视图;Fig. 2 is A-A sectional view of Fig. 1;
图3是图1的I-I剖面放大图;Fig. 3 is the enlarged view of the I-I section of Fig. 1;
图4是图1的II-II剖面放大图;Fig. 4 is the enlarged view of the II-II section of Fig. 1;
图5是图1的III-III剖面放大图;Fig. 5 is an enlarged view of the III-III section of Fig. 1;
图6是图1的IV-IV剖面放大图;Fig. 6 is an enlarged view of the IV-IV section of Fig. 1;
图7是本发明所述泄洪洞内掺气型曲线阶梯消能工的又一种结构示意图;Fig. 7 is another structural schematic diagram of an aeration-type curved ladder energy dissipator in a flood discharge tunnel according to the present invention;
图8是图7的A-A剖视图;Fig. 8 is A-A sectional view of Fig. 7;
图9是图7的I-I剖面放大图;Fig. 9 is an enlarged view of the I-I section of Fig. 7;
图10是图7的II-II剖面放大图;Figure 10 is an enlarged view of the II-II section of Figure 7;
图11是图7的III-III剖面放大图。Fig. 11 is an enlarged view of the section III-III in Fig. 7 .
图中,1-有压隧洞或上游泄洪洞、2-压坡、3-掺气装置、4-调整斜坡段、5-斜面阶梯段、6-过渡阶梯段、7-水平阶梯段、8-反弧段、9-调整水平段、10-下游泄洪洞、11-水面线、12-底空腔、13-侧空腔。In the figure, 1-Pressure tunnel or upstream spillway, 2-Pressure slope, 3-Aeration device, 4-Adjustment slope section, 5-Slope step section, 6-Transition step section, 7-Horizontal step section, 8- Anti-arc section, 9-adjustment horizontal section, 10-downstream spillway, 11-water surface line, 12-bottom cavity, 13-side cavity.
Δ-跌坎高度、i0-调整斜坡段坡度、L1-调整斜坡段长度、L2-斜面阶梯段长度、ii-斜面阶梯段的阶梯坡度、hi-斜面阶梯段的阶梯高度、L3-过渡阶梯段长度、L4-水平阶梯段长度、l-水平阶梯段的阶梯长度、h-水平阶梯段的阶梯高度、θ-水平阶梯段坡度、L5-反弧段长度、R-反弧半径、L6-调整水平段长度、V-曲线连接洞体进口流速。Δ - drop height, i 0 - adjust the slope of the slope, L 1 - adjust the length of the slope, L 2 - the length of the slope step, i i - the slope of the slope, h i - the height of the slope, L 3 - the length of the transitional step, L 4 - the length of the horizontal step, l - the step length of the horizontal step, h - the step height of the horizontal step, θ - the slope of the horizontal step, L 5 - the length of the anti-arc segment, R - Anti-arc radius, L 6 - Adjust the length of the horizontal section, V-curve to connect the inlet flow rate of the hole.
具体实施方式 Detailed ways
下面结合附图对本发明所述泄洪洞内掺气型曲线阶梯消能工的结构作进一步说明。Below in conjunction with accompanying drawing, the structure of the aerated type curved ladder energy dissipator in the flood discharge tunnel of the present invention will be further described.
实施例1Example 1
本实施例中,泄洪洞内掺气型曲线阶梯消能工用于上游有压隧洞(放空洞)1与下游泄洪洞10之间的曲线连接洞体。有压隧洞(放空洞)1与下游泄洪洞10相互平行,它们之间的高程差为28m左右;有压隧洞(放空洞)1直径d为3.5m,最大流量Q=190m3/s,最大单宽流量q=54m3/s.m,出口处设置压坡2,断面逐渐由圆形变为矩形(见图3、图4),矩形断面的宽度B1=2.5m、高度H1=2.25m;曲线连接洞体的断面如图5所示,其宽度B2=3.5m,其边墙直墙面的高度H2=5.0m,其进口最大流速V=30m/s;下游泄洪洞的断面如图6所示,其宽度B3=7.5m,边墙直墙面的高度H3=8.0m。In this embodiment, the aeration-type curved ladder energy dissipator in the spillway tunnel is used for the curved connection between the upstream pressurized tunnel (empty tunnel) 1 and the
本实施例中的泄洪洞内掺气型曲线阶梯消能工,其结构如图1、图2所示,由在曲线连接洞体进口处设置的掺气装置3和在曲线连接洞体底板上设置的阶梯消能工组成。掺气装置3为突扩突跌式结构,其跌坎高度Δ=0.5m。阶梯消能工位于曲线连接洞体底板的调整斜坡段4后,从高位至低位,依次为斜面阶梯段5、过渡阶梯段6和水平阶梯段7,水平阶梯段7通过反弧段8、调整水平段9与下游泄洪洞10的底板相接。有关几何参数如下:调整斜坡段4的长度L1=15m,坡度i0=0.10;斜面阶梯段5的长度L2=34m,阶梯个数8个,阶梯坡度ii=1∶10~6,阶梯长度从5m过渡到3m,阶梯高度hi=0.5m;过渡阶梯段6的长度L3=18m,阶梯个数6个,阶梯高度由0.5m过渡到1m,阶梯长度均为3m;水平阶梯段7的长度L4=36m,坡度θ=1∶3,阶梯个数12个,阶梯高度为h=1m,阶梯长度l=3m;反弧段8的长度L5=12m,反弧半径R=40m;调整水平段9的长度L6=6m。The aeration-type curved ladder energy dissipator in the flood discharge tunnel in this embodiment has a structure as shown in Figure 1 and Figure 2. The
实验表明,曲线连接洞体内水流流态平顺,没有不利的水力现象,阶梯段水流掺气明显,阶梯消能工的的消能率在40%~50%之间,曲线连接洞体的出口流速为25m/s,大大减小了下游泄洪洞的流速。Experiments show that the water flow in the curve-connected cave is smooth, there is no unfavorable hydraulic phenomenon, the water flow in the stepped section is obviously aerated, the energy dissipation rate of the stepped energy dissipater is between 40% and 50%, and the outlet flow rate of the curved-connected cave is 25m/s, which greatly reduces the flow velocity of the downstream spillway.
实施例2Example 2
本实施例中,泄洪洞内掺气型曲线阶梯消能工用于上游泄洪洞(明渠)1与下游泄洪洞10之间的曲线连接洞体。上游泄洪洞1与下游泄洪洞10相互平行,它们之间的高程差为42m左右;上游泄洪洞1的断面如图9所示,其宽度B1=3.0m,其边墙直墙面的高度H1=5.0m,最大流量Q=210m3/s,最大单宽流量q=70m3/s.m;曲线连接洞体的断面如图10所示,其宽度B2=4.0m,其边墙直墙面的高度H2=8.0m,其进口最大流速V=35m/s;下游泄洪洞的断面如图11所示,其宽度B3=7.0m,其边墙直墙面的高度H3=7.0。In this embodiment, the aeration-type curved ladder energy dissipator in the spillway tunnel is used for the curved connection between the upstream spillway tunnel (open channel) 1 and the
本实施例中的泄洪洞内掺气型曲线阶梯消能工,其结构如图7、图8所示,由在曲线连接洞体进口处设置的掺气装置3和在曲线连接洞体底板上设置的阶梯消能工组成。掺气装置3为突扩突跌式结构,其跌坎高度Δ=1.0m。阶梯消能工位于曲线连接洞体底板的调整斜坡段4后,从高位至低位,依次为斜面阶梯段5、过渡阶梯段6和水平阶梯段7,水平阶梯段7通过反弧段8、调整水平段9与下游泄洪洞10的底板相接。有关几何参数如下:调整斜坡段4的长度L1=40m,坡度i0=0.05;斜面阶梯段5的长度L2=42m,阶梯个数8个,阶梯坡度ii=1∶13.33~8.33,阶梯长度从8m过渡到5m,阶梯高度hi=0.6m;过渡阶梯段6的长度L3=40m,阶梯个数10个,阶梯高度由0.6m过渡到1.2m,阶梯长度均为4.0m;水平阶梯段7的长度L4=60m,坡度θ=1∶3.33,阶梯个数15个,阶梯高度为h=1.2m,阶梯长度l=4.0m;反弧段8的长度L5=20m,反弧半径R=40m;调整水平段9的长度L6=15m。The structure of the aeration-type curved ladder energy dissipator in the flood discharge tunnel in this embodiment is shown in Figure 7 and Figure 8. The
实验表明,曲线连接洞体内水流流态平顺,没有不利的水力现象,阶梯段水流掺气明显,阶梯消能工的的消能率在60%左右,曲线连接洞体的出口流速为25m/s,大大减小了下游泄洪洞的流速。Experiments show that the water flow in the curved connection cave is smooth, there is no unfavorable hydraulic phenomenon, the water flow in the step section is obviously aerated, the energy dissipation rate of the step energy dissipator is about 60%, and the outlet flow rate of the curved connection cave is 25m/s. The flow velocity of the downstream spillway is greatly reduced.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100459784A CN101349047B (en) | 2008-09-04 | 2008-09-04 | Air-entrained curve ladder energy dissipator in the flood discharge tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100459784A CN101349047B (en) | 2008-09-04 | 2008-09-04 | Air-entrained curve ladder energy dissipator in the flood discharge tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101349047A true CN101349047A (en) | 2009-01-21 |
CN101349047B CN101349047B (en) | 2010-06-02 |
Family
ID=40267998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008100459784A Expired - Fee Related CN101349047B (en) | 2008-09-04 | 2008-09-04 | Air-entrained curve ladder energy dissipator in the flood discharge tunnel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101349047B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102677640A (en) * | 2012-05-25 | 2012-09-19 | 四川大学 | Step energy dissipater comprising reverse arc surfaces |
CN102691280A (en) * | 2012-06-13 | 2012-09-26 | 四川大学 | Multistage sliding ladder and stilling pool combined energy dissipater used for soft foundation section |
CN103362103A (en) * | 2013-07-12 | 2013-10-23 | 天津大学 | Steel membrane step-type overflow dam |
CN104480912A (en) * | 2014-11-27 | 2015-04-01 | 中国电建集团成都勘测设计研究院有限公司 | Flood discharging tunnel structure |
CN107476262A (en) * | 2017-07-19 | 2017-12-15 | 昆明理工大学 | A kind of plagiohedral ladder energy dissipater on overfall dam |
CN109577291A (en) * | 2018-12-25 | 2019-04-05 | 中国电建集团贵阳勘测设计研究院有限公司 | Flow channel capable of realizing centralized energy dissipation |
CN111121854A (en) * | 2019-12-31 | 2020-05-08 | 南昌工程学院 | Device and method for measuring energy dissipation rate of deflector energy dissipators |
CN111794193A (en) * | 2020-06-30 | 2020-10-20 | 中国电建集团华东勘测设计研究院有限公司 | Connecting structure for eliminating cavitation damage of reverse arc tail end of high-flow-rate flood discharge tunnel |
CN113023814A (en) * | 2021-02-03 | 2021-06-25 | 四川大学 | Liftable hydraulic device for promoting level recovery of dissolved gas in water body based on step aeration |
CN114016474A (en) * | 2021-12-06 | 2022-02-08 | 中国电建集团华东勘测设计研究院有限公司 | Aeration facilities suitable for low inflow Freund's number |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103898881B (en) * | 2014-04-17 | 2015-05-27 | 四川大学 | Graded flow configuration energy dissipation method for deflecting water streams |
CN103898882B (en) * | 2014-04-21 | 2015-05-27 | 四川大学 | Classified pool-inlet high-dam flood discharge energy dissipater for bottom flow and energy dissipating method |
CN104389299A (en) * | 2014-10-28 | 2015-03-04 | 中国电建集团成都勘测设计研究院有限公司 | Aeration structure for Longluowei flood discharging tunnel |
-
2008
- 2008-09-04 CN CN2008100459784A patent/CN101349047B/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102677640A (en) * | 2012-05-25 | 2012-09-19 | 四川大学 | Step energy dissipater comprising reverse arc surfaces |
CN102691280A (en) * | 2012-06-13 | 2012-09-26 | 四川大学 | Multistage sliding ladder and stilling pool combined energy dissipater used for soft foundation section |
CN102691280B (en) * | 2012-06-13 | 2015-08-26 | 四川大学 | For multi-stage slide ladder and the absorption basin combined energy dissipater of soft base section |
CN103362103A (en) * | 2013-07-12 | 2013-10-23 | 天津大学 | Steel membrane step-type overflow dam |
CN103362103B (en) * | 2013-07-12 | 2015-05-20 | 天津大学 | Steel membrane step-type overflow dam |
CN104480912A (en) * | 2014-11-27 | 2015-04-01 | 中国电建集团成都勘测设计研究院有限公司 | Flood discharging tunnel structure |
CN107476262A (en) * | 2017-07-19 | 2017-12-15 | 昆明理工大学 | A kind of plagiohedral ladder energy dissipater on overfall dam |
CN109577291A (en) * | 2018-12-25 | 2019-04-05 | 中国电建集团贵阳勘测设计研究院有限公司 | Flow channel capable of realizing centralized energy dissipation |
CN111121854A (en) * | 2019-12-31 | 2020-05-08 | 南昌工程学院 | Device and method for measuring energy dissipation rate of deflector energy dissipators |
CN111794193A (en) * | 2020-06-30 | 2020-10-20 | 中国电建集团华东勘测设计研究院有限公司 | Connecting structure for eliminating cavitation damage of reverse arc tail end of high-flow-rate flood discharge tunnel |
CN113023814A (en) * | 2021-02-03 | 2021-06-25 | 四川大学 | Liftable hydraulic device for promoting level recovery of dissolved gas in water body based on step aeration |
CN113023814B (en) * | 2021-02-03 | 2022-06-17 | 四川大学 | Liftable hydraulic device for promoting level recovery of dissolved gas in water body based on step aeration |
CN114016474A (en) * | 2021-12-06 | 2022-02-08 | 中国电建集团华东勘测设计研究院有限公司 | Aeration facilities suitable for low inflow Freund's number |
Also Published As
Publication number | Publication date |
---|---|
CN101349047B (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101349047B (en) | Air-entrained curve ladder energy dissipator in the flood discharge tunnel | |
CN100392193C (en) | Method of rebuilding diversion tunnel into flood discharge tunnel with sudden expansion under pressure and aeration | |
CN106368185A (en) | Hydropower station water inlet gallery desilting system and method | |
CN101182707A (en) | Flood discharging and energy dissipating device | |
CN101538840B (en) | deflected flow energy dissipator in the stilling basin | |
CN112281770A (en) | Flood discharge structure adopting bottom hole and surface hole combined flood discharge and energy dissipation | |
CN104264639B (en) | Underflow type step absorption basin energy-dissipating system | |
CN206428676U (en) | Spillway inlet channel guiding device | |
CN103669301B (en) | The height bank absorption basin of double-layer disperse energy dissipating | |
CN109098152B (en) | Anti-cavitation facility of ladder overflow dam | |
CN110528475A (en) | A water intake system for water conservancy projects | |
CN107663851B (en) | Cavitation damage prevention curved stepped overflow dam | |
CN107476262A (en) | A kind of plagiohedral ladder energy dissipater on overfall dam | |
CN101851910A (en) | The water deflector set at the outlet of the pressurized waterway | |
CN212077858U (en) | Interactive Hydraulic Rectification and Energy Dissipation System | |
CN106013009B (en) | A kind of more counter-slope formula stiling basins | |
CN104594309A (en) | Spaced staggered reverse deflecting flow energy dissipation hydraulic rectifying device and method | |
CN107964928A (en) | A kind of baffle pier structure using limbers deduction and exemption cavitation erosion | |
CN203755267U (en) | High arch dam flood discharge deep hole outlet structure | |
CN207193911U (en) | A kind of stage beam pattern debris flow drainage groove | |
CN210946733U (en) | Energy dissipation structure of diversion tunnel outlet | |
CN108517842A (en) | Asymmetric aeration method suitable for curving spillway | |
CN207749492U (en) | Plagiohedral ladder energy dissipater on overfall dam | |
CN209412796U (en) | An underflow energy dissipation structure suitable for wide tail piers extending to stilling basins | |
CN210737484U (en) | Water intaking system of hydraulic engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20120904 |