CN101346913A - 使用下行链路前导测量逻辑带的载波干扰噪声比的设备和方法 - Google Patents

使用下行链路前导测量逻辑带的载波干扰噪声比的设备和方法 Download PDF

Info

Publication number
CN101346913A
CN101346913A CNA2006800492832A CN200680049283A CN101346913A CN 101346913 A CN101346913 A CN 101346913A CN A2006800492832 A CNA2006800492832 A CN A2006800492832A CN 200680049283 A CN200680049283 A CN 200680049283A CN 101346913 A CN101346913 A CN 101346913A
Authority
CN
China
Prior art keywords
signal
cinr
band
leading symbol
performance number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800492832A
Other languages
English (en)
Inventor
郭起永
李康珉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POSDATA株式会社
Posdata Co Ltd
Original Assignee
Posdata Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posdata Co Ltd filed Critical Posdata Co Ltd
Publication of CN101346913A publication Critical patent/CN101346913A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明提供了一种使用下行链路前导测量载波干扰噪声比(CINR)的设备和方法。更具体地,本发明提供了一种使用前导根据在下行链路带自适应调制和编码(AMC)信道模式区带中的多个逻辑带测量CINR并基于CINR确定是否切换至另一信道模式或逻辑带的设备和方法。根据该设备和方法,可以使用测量得到的CINR容易地测量多个CINR并切换至更好的信道模式或另一逻辑带。从而,可以维持最佳的信道环境。

Description

使用下行链路前导测量逻辑带的载波干扰噪声比的设备和方法
技术领域
本发明涉及一种使用下行链路前导测量逻辑带的载波干扰噪声比(CINR)的设备和方法。更具体地,本发明涉及一种使用前导根据在下行链路带自适应调制和编码(AMC)信道模式区带(zone)中的多个逻辑带来测量CINR并基于CINR确定是否切换至另一信道模式或逻辑带的设备和方法。
背景技术
当通过多径信道传输信号时,在接收的信号中会发生由于多径而产生的符号间干扰(ISI)。为了降低由ISI引起的信号失真,符号周期必须长于信道延迟扩展。作为一种能够简单地补偿在多径信道中发生的这种失真的调制方法,提出了一种正交频分复用(OFDM)技术(或正交频分多址(OFDMA)技术)。不同于使用单载波的传输技术,OFDM技术使用多个相互正交的子载波来传输数据。更具体地,OFDM技术以与用于调制的子载波的数量相同的次数执行输入数据的串并转换,并使用相应的子载波调制每个转换后的数据,从而在在维持数据传输率不变的同时,使每个子载波的符号周期增加子载波的数量。由于OFDM技术使用相互正交的子载波,其具有比传统频分复用(FDM)技术更好的带宽效率和更长的符号周期。因此,OFDM技术比单载波调制技术更能防止ISI。
在OFDM系统中,收发机单元执行离散傅立叶逆变换(IDFT)和离散傅立叶变换(DFT)的调制/解调过程,其可以由快速傅立叶逆变换(IFFT)和快速傅立叶变换(FFT)来有效地实现。这里,当比信道延迟扩展更长的保护间隔被插入每个传输的符号周期时,就维持了子载波的正交性。
在上述OFDM系统中,信道信号质量的精确测量对于功率控制或调制/解调来说是及其重要的。载波干扰噪声比(CINR)是用于测定信道信号质量的量,并被使用来在用于自适应功率控制或自适应调制和编码方案(MCS)的设备中根据信道质量来控制功率并调整调制和编码方案(MCS)级别。这里,CINR被定义为总子载波信号功率除以总噪声和干扰功率,并且可以是用于确定OFDM系统中的信道质量的参考量。
同时,电气和电子工程师协会(IEEE)802.16d/e标准将下行链路(DL)子帧和上行链路(UL)子帧中的一帧划分为多个均一部分,并使用分别用于多个部分的不同信道模式来支持多个区带。在多区带环境中,存在多个信道模式。这里,在具有多个区带的OFDM/OFDMA帧中,存在多个排列区带(permutation zone),诸如PUSC、FUSC、具有所有子信道的PUSC等。由于信道模式占用不同频带或排列区带占用不同时域,其信道环境可以不是统一的。另外,符合IEEE 802.16d/e标准的带自适应调制和编码(AMC)区带包括多个逻辑带,由于频带不同,其同样显示了信道环境的差别。
因此,需要从多个逻辑带中的每一个中提取预定信道质量信息,基于该信息切换至更好的信道模式或另一逻辑带,并从而向用户提供更好的信道环境。
因此,本发明提出了一种涉及用于在数字通信系统中使用接收信号的前导测量多个逻辑带的CINR的设备和方法。
发明内容
技术问题
本发明旨在使用前导更容易且精确地测量每个逻辑带的载波干扰噪声比(CINR)。
本发明还旨在基于根据逻辑带分别测量的CINR确定是否切换至更好的信道模式(排列区带)或另一个逻辑带。
本发明还旨在通过插值运算和平均运算从前导符号更精确地估计前导信号。
本发明还旨在根据频率重复使用因子来有选择性地提取噪声和干扰分量信号,从而更精确地测量CINR。
本发明还旨在向对应基站报告由通信终端测量的CINR,并允许基站识别通信终端的信道状态等,并将它们用于调度。
技术方案
本发明的一方面提供了一种用于在具有多个逻辑带的下行链路信道模式区带中测量载波干扰噪声比(CINR)的设备,该设备包括:前导符号获取单元,用于从基带频率信号中获取下行链路前导符号;信号估计单元,用于从前导符号估计前导信号和数据信号;功率计算单元,用于从前导符号和所估计的前导信号计算所估计的数据信号的功率值并计算噪声信号的功率值;以及CINR计算单元,用于使用数据信号和噪声信号的功率值来计算CINR。
本发明的另一方面提供了一种在具有多个逻辑带的下行链路信道模式区带中测量CINR的方法,该方法包括以下步骤:从基带频率信号中获取下行链路前导符号;从前导符号估计前导信号和数据信号;从前导符号和所估计的前导信号计算所估计的数据信号的功率值并计算噪声信号的功率值;以及使用数据信号和噪声信号的功率值来计算CINR。
有益效果
根据本发明,使用前导根据多个逻辑带更为简单且精确地测量载波干扰噪声比(CINR)。
此外,根据本发明,可以基于根据多个逻辑带分别测量的CINR来确定是否切换至更好的信道模式或另一个逻辑带。
此外,根据本发明,可以通过插值运算和平均运算更精确地据前导符号估计前导信号。
此外,根据本发明,根据频率重复使用因子选择性地提取噪声和干扰分量信号,从而可以更精确地测量CINR。
此外,根据本发明,向相应基站报告由通信终端测量的CINR,从而该基站可以识别通信终端的信道状态等并将它们用于调度。
附图说明
图1是示出了普通正交频分复用(OFDM)系统的构造的框图;
图2示出了根据本发明的示例性实施例的多个信道模式的结构;
图3示出了在本发明的示例性实施例中的段(segment)的前导结构;
图4是根据本发明的示例性实施例的用于测量特定逻辑带的载波干扰噪声比(CINR)的装置的框图;
图5是示出了根据本发明的示例性实施例的用于测量CINR的设备的构造的框图;
图6是示出了根据本发明的示例性实施例的信号估计单元的构造的框图;
图7是示出了根据本发明的示例性实施例的功率计算单元的构造的框图;
图8是示出了根据本发明的示例性实施例的基于前导的功率计算单元的构造的框图;
图9是示出了根据本发明的示例性实施例的CINR计算单元的构造的框图;以及
图10是示出了根据本发明的示例性实施例的使用前导测量CINR的方法的流程图。
具体实施方式
在本说明书中,术语“通信终端”是指便携式电气/电子装置,包括各种手持式无线通信装置,例如,具有通信功能的装置、便携式终端、和国际移动通信(IMT)-2000终端。具有通信功能的装置包括个人数字蜂窝(PDC)电话、个人通信业务(PCS)电话、个人手提电话系统(PHS)电话、码分多址(CDMA)-2000(1X和3X)电话、宽带CDMA(WCDMA)电话、双带/双模电话、全球移动标准(GSM)电话、移动宽带系统(MBS)电话、数字多媒体广播(DMB)终端、智能手机、正交频分复用(OFDM)/正交频分多址(OFDMA)通信终端等。便携式终端包括个人数字助理(PDA)、手持式个人计算机(PC)、笔记本计算机、膝上型计算机、无线宽带互联网(WiBro)终端、运动图象专家组层3(MP3)播放器、微型唱片(MD)播放器等。并且,IMT-2000终端提供了国际漫游服务和扩展的移动通信服务。通信终端可以具有预定的通信模块(例如,OFDMA模块、CDMA模块、蓝牙模块、红外线通信模块)、有线/无线局域网(LAN)卡、以及装配有全球定位系统(GPS)芯片以能够使用GPS系统进行定位的无线通信装置。此外,通信终端装配有能够播放多媒体的微处理器,从而执行特定的操作。
另外,术语“噪声”(或“噪声信号”)包括当频带彼此重叠以及信号和在无线通信环境中产生的无意的不规则噪声彼此混合时发生的信道之间的干扰。噪声不但包括将发送的数据信号,还包括在发送/接收过程中包括的所有其他信号。因此,在本发明中,“噪声”以及“噪声与干扰”可以被认为是相同的事物。
在下文中,将参照附图详细描述根据本发明的示例性实施例的用于使用下行链路前导(下文称作“前导”)测量载波干扰噪声比(CINR)的设备和方法。
图1是示出了普通OFDM系统的构造的框图。如图1所示,普通的OFDM系统包括串/并转换器、快速傅立叶变换(FFT)装置或快速傅立叶逆变换(IFFT)装置、以及频率转换器。
发送单元的串/并转换器将串行输入的数据流转换为与子载波编号相同的并行数据流,并且IFFT装置对每个并行数据流执行IFFT运算。IFFT数据被转换回串行数据,并在进行频率转换之后被发送。接收单元接收通过有线/无线信道传输的信号,并在解调处理之后输出数据,该解调处理是由发送单元执行的处理的逆处理。
图2示出了根据本发明的示例性实施例的多个信道模式的结构。一般,根据电气和电子工程师协会(IEEE)802.16d/e标准,下行链路(DL)子帧和上行(UL)子帧均支持多个区带。如图2所示,在具有DL信道的多个区带的子帧结构中,一个DL子帧被划分成多个预定部分(即,多个区带),并且这些部分分别使用不同的信道模式。这里,信道模式是诸如部分使用子信道(PUSC)、全部使用子信道(FUSC)、带-AMC等的排列区带。另外,DL部分使用子信道(PUSC)、DL全部使用子信道(FUSC)和DL带-自适应调制和编码(AMC)可以在DL中被用作信道模式。带-AMC信道模式包括多个逻辑带,并且将其可变地分配给用户(终端)。
图3示出了在本发明的示例性实施例中的段的前导结构。如图3所示,用于减少来自邻近频带的干扰的保护带被设置在多个子载波的左边和右边,并设置了直流电(DC)子载波(其为空子载波)。另外,在段中以预定间隔定位前导子载波。如图3所示,每三个子载波是一个前导子载波,并可以用于初始同步、小区搜索、频率偏移和信道估计。
一般,前导信号具有比数据信号和导频信号更高的信号电平,因而,即使在恶劣的信道环境中,也可以容易地获得该前导信号。因此,本发明使用这种前导信号来测量CINR,从而提高精确性。这里,当根据多个逻辑带测量CINR时,由于导频信号的数量(信息的量)不足以对应于所有逻辑带,所以导频信号不是有效的。
图4是根据本发明的示例性实施例的用于测量特定逻辑带的CINR的设备的框图。如图4所示,为了使用前导来根据逻辑带测量CINR,FFT单元401在基带中对从时域接收到的前导执行FFT。
经FFT处理后的前导被分类成与逻辑带相同的子组,并且特定逻辑带的CINR测量装置402根据逻辑带测量对应子组的CINR。
另外,根据本发明,还包括用于使用整个频域的前导来测量参考CINR的全带CINR测量装置403。
CINR排列(alignment)单元404接收根据逻辑带分别测量的多个CINR,将其以降序排列,并选择与对应基站所需要的数量相同的多个CINR。以这种方式选择的CINR被映射为CINR报告单元405确定的格式,以将其报告给基站。
本发明的CINR测量装置402可以在诸如通信终端的数字通信系统中实现,并且数字通信系统可以基于IEEE 802.16d/e标准、无线宽带互联网(WiBro)标准、和微波接入全球互通(WiMAX)标准中的至少一个标准。
图5是示出了根据本发明的示例性实施例的CINR测量装置402的构造的框图。
如图5所示,CINR测量装置402包括前导符号获取单元501、信号估计单元502、功率计算单元503、CINR计算单元504、以及带切换确定单元505。
前导符号获取单元501从基带频率信号获取前导符号(或前导符号信号)。作为本发明的实例,前导符号获取单元501将前导码与基带频率信号(其为OFDM/OFDMA信号)的多个子载波相乘,或对其执行异或(XOR)运算,从而获得用于测量CINR的前导符号。
已经根据每个信道模式调整了前导符号的传输位置,并且前导符号具有正交性。因此,可以通过将接收信号的子载波与具有经调整的统一模式(pattern)的前导序列(码)相乘来容易地提取前导符号。前导码是为每个小区或扇区确定的唯一值,并被从管理该小区或扇区的基站传输至终端。
例如,当使用二进制相移键控(BPSK)来调制具有先前设定的统一模式的前导信号时,由于使传输信号对应于两个相位(即,0和π)并通过BPSK将其发送,所以前导序列对应于复数1和-1。因此,可以通过计算前导序列和接收到的基带信号之间的相关性来仅获取期望的前导符号。
信号估计单元502从由前导符号获取单元501获取的前导符号估计前导信号和数据信号。由于前导信号以及噪声和干扰分量信号混合在由前导符号获取单元501获取的前导符号中,所以信号估计单元502从前导符号估计前导信号,然后使用所估计的前导信号值估计噪声和干扰分量信号。另外,信号估计单元502基于所估计的前导信号值来估计数据信号。下面将参照图6进一步详细描述信号估计单元502的操作。
功率计算单元503计算由信号估计单元502估计的数据信号的功率值,并使用由前导符号获取单元501获取的前导符号和由信号估计单元502估计的前导信号之间的差来计算噪声信号的功率值。
换言之,功率计算单元503通过使数据信号和噪声信号成平方来计算功率值。另外,相对于多个前导符号,功率计算单元503分别在预定时间内对数据信号和噪声信号的功率值进行累加,从而进一步提高CINR计算的精确度。下面将参照图7和图8进一步详细描述功率计算单元503的运算。.
CINR计算单元504使用由功率计算单元503计算出的数据信号和噪声信号的功率值来计算CINR。CINR被定义为总子载波信号功率除以总噪声和干扰信号功率。因此,CINR计算单元504可以通过将数据信号的总功率值除以噪声信号的总功率值来计算CINR。
(公式1)
G · Σ n = 0 N - 1 | h ^ ( n ) | 2 Σ n = 0 N - 1 | p ( n ) - h ^ ( n ) | 2
公式1表示使用功率计算单元503和CINR计算单元504来计算CINR的处理。这里,
Figure A20068004928300152
表示根据本发明估计的前导信号,p(n)表示前导信号分量与噪声分量混合的前导符号,N表示每个终端的累加参数,以及G表示用于将使用前导符号测量的信号调整为数据信号的增益的参数。换言之,N是前导符号子载波的数量。
另外,n表示前导符号子载波指数,以及N表示根据功率消耗可以包括在DL帧内的最大前导载波的指数。在多个区带的情况下,N表示对应区域的最大值。
根据本发明,前导符号获取单元501、信号估计单元502、功率计算单元503、和CINR计算单元504为每个逻辑带执行上述运算,从而测量特定逻辑带的CINR。
为了测量每个逻辑带的CINR,首先,可以将前导分类为对应于频域内的逻辑带区带的子组,其与逻辑带编号相同。换言之,经FFT处理的前导被分类成对应于逻辑带的多个子组,以及CINR测量装置402仅使用包括在对应逻辑带中的前导来测量每个逻辑带的CINR。
在DL带-AMC信道模式下,一个逻辑带基本包括两个物理带,并且根据FFT的大小来确定逻辑带的数量。例如,当FFT的大小为1024时,在2个族(bin)*3个符号的DL带-AMC中,物理带的数量为24,逻辑带的数量为12。因此,在这种情况下,CINR测量装置402分别测量12个逻辑带的CINR。
更具体地,前导符号获取单元501从分为频域内的多个子组的前导中提取前导符号。信号估计单元502根据如图3所示的特定段的传输结构使用适当的方案或算法从前导符号估计特定逻辑带的前导信号,并基于所估计的前导信号估计数据信号。功率计算单元503计算由信号估计单元502估计的特定逻辑带的数据信号的功率值,并根据由前导符号获取单元501获取的前导符号和由信号估计单元502估计的前导信号之间的差来计算特定逻辑带的噪声信号的功率值。CINR计算单元504使用特定逻辑带的数据信号和噪声信号的功率值来计算特定逻辑带的CINR。
另外,根据本发明,使用整个频域的前导测量用于所测量的特定逻辑带的CINR的参考CINR。
术语“全带”是指全部FFT大小,以及“参考CINR”是指使用FFT大小中所有前导测量得到的CINR。
因此,终端对当前分配和使用的逻辑带的CINR与参考CINR进行比较,从而可以肯定地要求分配另一逻辑带或信道模式的信道。
换言之,本发明的CINR测量装置402还包括带切换确定单元505,其根据分别根据逻辑带测量的CINR确定是否切换至另一信道模式或逻辑带。
例如,使用根据逻辑带分别测量的CINR,带切换确定单元505可以确定是否在正常信道模式(例如,DL PUSC,DL FUSC等)和DL带-AMC信道模式之间进行切换,或者在DL带-AMC信道模式下将终端切换至具有更好的信道质量的频带。
可选地,当通信终端按照降序排列分别根据各逻辑带测量的CINR并将与当前服务基站需要的CINR编号相同的CINR报告给该基站时,基站可以根据向其报告的CINR确定是否切换至另一信道模式或逻辑带。
图6是示出了根据本发明的示例性实施例的信号估计单元502的构造的框图。如图6所示,信号估计单元502包括插值运算单元601和平均运算单元602。
插值运算单元601接收前导符号并在频域内执行插值运算,从而产生预定的虚拟前导符号集合。根据本发明,从前导符号获取单元501获取的前导符号的信息的量(即,数量)并不足以用于估计前导信号或用于其他目的。因此,需要一种用于使用前导符号更有效地估计前导信号的方法。
根据本方法的实例,插值运算单元601复制前导符号以增加数量,并通过预定的差值运算来计算所增加的前导符号之间的中间值,从而产生适于估计前导信号的虚拟前导符号集合。
同时,插值运算可以使用线性插值、二次插值、三次样条插值、利用低通滤波器的插值等。可以根据系统需求和精确度来适当地选择插值运算。
平均运算单元602在时域内对由插值运算单元601产生的虚拟前导符号集合执行平均运算,从而估计前导信号。虚拟前导符号集合包括噪声和干扰分量信号以及前导信号。噪声和干扰分量信号是一种白噪声,并且发生频率和电平具有随机概率分布。因此,当平均运算单元602在时域内对包括在虚拟前导符号集合中的所有前导符号求和并取平均时,所有的噪声和干扰分量信号均会被抑制,并可以容易地仅提取期望的前导信号。
信号估计单元502最后使用前导信号估计数据信号。一般,根据信道结构或OFDMA/OFDM符号结构,在传输功率方面,前导信号不同于数据信号。因此,为了根据前导信号估计数据信号,增益映射单元603将所估计的前导信号与适当的权重相乘,从而调整增益。
例如,当前导信号的电平比数字信号的电平高出以分贝测量的预定功率时,可以通过适当地映射增益来估计数据信号,以使前导信号电平对应于数据信号电平。
图7是示出了根据本发明的示例性实施例的功率计算单元503的构造的框图。如图7所示,功率计算单元503接收所估计的数据信号值、所估计的前导信号值和前导符号,并输出数据信号功率值和噪声信号功率值。
功率计算单元503可以根据前导符号和所估计的前导信号之间的差提取噪声信号。更具体地,由于前导符号包括前导信号以及干扰和噪声信号,可以通过从前导符号中减去所估计的前导信号来单独提取噪声和干扰信号(701)。另外,在平方运算(702)之后,功率计算单元503在预定时间内对所提取的数据信号和噪声信号执行累加运算(703),从而计算数据信号功率值和噪声信号功率值。
图8是示出了根据本发明的示例性实施例的当频率重复使用因子为1时的功率计算单元503的构造的框图。
频率重复使用因子是表示频谱效率的参数,其表示整个频带被划分为并分配给多少个小区。在增加每单位面积的信道数量的方法中使用频率重复使用因子。
在本发明中,可以应用不同的方法来根据频率重复使用因子计算噪声和干扰分量的功率。更具体地,当频率重复使用因子不为1时,可以在一个小区或扇区中使用不同的频带。因此,在图3的结构中,应当考虑仅在传输前导的位置处的噪声和干扰分量。
另一方面,当频率重复使用因子为1时,可以在整个一个小区或扇区使用相同的频带。因此,在图3的结构中,在不传输前导的位置处的符号值包括噪声和干扰分量。因此,当频率重复使用因子为1时,在CINR计算中必须考虑噪声和干扰因子。换言之,根据本发明,当频率重复使用因子为1时,功率计算单元503还包括在噪声信号的功率值中的除了前导符号之外的符号的功率值。
如图8所示,选择器801根据频率重复使用因子关闭或开启开关,从而执行添加在不传输前导的位置处的符号值作为噪声和干扰分量/从噪声和干扰分量中排除该符号值的运算。
当频率重复使用因子为1时,通过下面给出的公式2计算CINR。
(公式2)
G · Σ n = 0 N - 1 | h ^ ( n ) | 2 Σ n = 0 N - 1 | p ( n ) - h ^ ( n ) | 2 + Σ m = 0 M - 1 | p ( m ) | 2
这里,
Figure A20068004928300201
表示根据本发明估计的前导信号,p(n)表示前导信号分量与噪声分量混合的调制DL前导符号,以及p(m)表示混合有噪声分量的非调制DL前导符号。另外,n表示前导符号子载波指数,N表示根据功率消耗可以包括在DL帧内的最大前导载波的指数,以及M表示累加参数。同时,p(m)不包括左保护间隔、右保护间隔、和DC子载波。G表示用于将使用前导符号测量得到的信号调整为数据信号的增益的参数。
当将公式2与公式1进行比较时,在表示噪声和干扰分量信号的总功率的分母中,公式2还包括表示在不传输前导的位置处的符号值的信号p(m)的功率值。即,当频率重复使用因子为1时,除了前导符号之外的符号的功率值还包括在噪声信号的总功率值中。
因此,根据本发明,根据频率重复使用因子提取或不提取噪声和干扰分量信号,从而可以更精确地测量CINR。
图9是示出了根据本发明的示例性实施例的CINR计算单元504的构造的框图。载波信噪比是信号传输系统中载波信号电平与噪声电平之比。在根据本发明的OFDM/OFDMA系统中,可以测量CINR来作为载波信噪比的实例。CINR(通常以dB为单位表示)被定义为总子载波信号功率除以总噪声和干扰功率,并且在本发明中可以使用数据信号的功率值和噪声信号的功率值来获得。在CINR计算单元504中,为了计算CINR,如图9所示,取噪声信号功率值的倒数(901)并与数据信号功率值一起输入乘法器(902)。
图10是示出了根据本发明的示例性实施例的使用前导测量CINR的方法的流程图。
在步骤1001中,根据多个逻辑带对变换至频域的前导符号进行分类。在本步骤中,为了测量每个逻辑带的CINR,首先,将前导分类成对应于频域内的逻辑带的子组,其与逻辑带编号相同。换言之,将经FFT处理的前导分类成对应于逻辑带的子组,从而仅使用包括在对应逻辑带中的前导来测量每个逻辑带的CINR。
在步骤1002中,根据每个逻辑带估计前导信号和数据信号。在本步骤中,从分类为多个子组的在频域内的前导中提取前导符号,并且使用适当的方案或算法来从符合段的传输结构的前导符号估计每个逻辑带的前导信号。另外,从前导信号估计数据信号。
步骤1002包括以下子步骤:在频域内对每个逻辑带的前导符号执行插值运算以产生虚拟前导符号集合,以及在时域内对虚拟前导符号集合执行平均运算以估计前导信号。
由于前导符号的信息的量(即,数量)不足以用来估计前导信号或用于其他目的,所以需要一种用于使用前导符号更有效地估计前导信号的方法。
为此,在产生虚拟前导符号集合的子步骤中,输入、复制并增加前导符号,并且通过预定的插值运算计算所增加的前导符号之间的中间值,从而产生适于估计前导信号的虚拟前导符号集合。插值运算可以使用线性插值、二次插值、三次样条插值、利用低通滤波器的插值等。可以根据系统需求和精确度来适当地选择插值运算。
另外,在估计前导信号的子步骤中,在时域中对虚拟前导符号集合执行平均运算,从而估计前导信号。虚拟前导符号集合包括噪声和干扰分量信号以及前导信号。噪声和干扰分量信号是一种白噪声,并且发生频率和电平具有随机概率分布。因此,在本步骤中,当在时域中对包括在虚拟前导符号集合中的所有前导符号求和并取平均时,抑制了所有的噪声和干扰分量信号,并且可以容易地仅估计期望的前导信号。
另外,在本步骤中,为了最终使用前导信号来估计数据信号,将所估计的前导信号值与适当的权重相乘,从而调整增益。例如,当前导信号的电平比数据信号的电平高出以dB为单位的预定功率时,可以通过适当地映射增益来估计数据信号,以使前导信号电平对应于数据信号电平。
在步骤1003中,根据逻辑带计算数据信号和噪声信号的功率值。更具体地,在本步骤中,计算每个逻辑带的所估计的数据信号的功率值,并根据所估计的前导信号值和在步骤1002中获取的前导符号来计算噪声信号的功率值。
前导符号包括前导信号以及噪声和干扰信号。因此,可以通过从前导符号中减去所估计的前导信号来单独提取噪声和干扰信号。此外,在本步骤中,在进行平方运算之后,在预定时间内对数据信号和噪声信号执行累加运算,从而计算数据信号功率值和噪声信号功率值。
另外,在本步骤中,可以根据频率重复使用因子添加在不传输前导的位置处的符号值作为噪声和干扰分量加上/将其从噪声和干扰分量中排除,频率重复使用因子是表示整个频带被划分为和分配至多少个小区的参数,即,表示频谱效率。
例如,当频率重复使用因子为3时,可以在每个小区中使用不同的频带。因此,在图3的结构中,只需考虑在传输前导的位置处的噪声和干扰分量。另一方面,当频率重复使用因子为1时,可以在所有小区中使用相同的频带,因而,在图3的结构中在不传输前导的位置处的符号值还包括噪声和干扰分量。因此,当频率重复使用因子为1时,在CINR计算中必须考虑噪声和干扰分量。换言之,根据本发明,当频率重复使用因子为1时,除了前导符号之外的符号的功率值还被包括在噪声信号功率值中。
在步骤1004中,使用数据信号和噪声信号的功率值来计算每个逻辑带的CINR。换言之,由于CINR被定义为总子载波信号功率除以总噪声和干扰信号功率,所以可以在本步骤中通过将数据信号的总功率值除以噪声信号的总功率值来计算CINR。
在步骤1005中,基于特定逻辑带的CINR确定是否切换至另一信道模式或逻辑带。例如,在本步骤中,使用根据逻辑带分别测量得到的CINR,可以确定是否在普通信道模式(例如,DL PUSC,DL FUSC等)和DL带-AMC信道模式之间进行切换,或者在DL带-AMC信道模式下将终端切换至具有更好信道质量的带。
可选地,当通信终端按照降序排列根据逻辑带测量的CINR并将与当前服务的基站所需要的CINR编号相同的CINR报告给该基站时,基站可以根据向其报告的CINR确定是否切换至另一信道模式或逻辑带。
可选地,可以包括使用整个频域的前导来测量根据逻辑带分别测量的CINR的参考CINR的步骤。因此,可以通过将参考CINR与当前分配且使用的逻辑带的CINR进行比较来明确地要求分配另一逻辑带或信道模式的信道。
换言之,CINR测量装置402还包括带切换确定单元505,其根据按照多个逻辑带分别测量的CINR确定是否切换至另一信道模式或逻辑带。
至此,已根据本发明的示例性实施例描述了使用前导、根据多个逻辑带测量CINR的方法。可以将在图1至图9中示出的实施例的详细描述应用于该实施例而不进行修改,因而这里不再重申。
可以将根据本发明的示例性实施例的使用前导测量CINR的方法具体化为计算机程序指令,并记录在计算机可读介质上。计算机可读介质可以分别或混合地包括程序指令、数据文件、数据结构等。记录在介质中的程序指令可以为本发明特别地设计和配置,或被计算机软件领域的技术人员所公知和使用。计算机可读介质可以是磁介质(例如,硬盘、软盘和磁带)、光学介质(例如,光盘只读存储器(CD-ROM))、以及硬件器件(例如,ROM、随机存取存储器(RAM)、闪存等)),特别用于存储和执行程序指令。介质还可以是传输介质(例如,光线路或金属线、波导管等),包括传递表示程序指令、数据结构的信号等的载波。程序指令可以是由编译器生成的机器语言代码以及可以由计算机使用解释器等执行的高级语言代码。为了执行本发明的运算,可以实现硬件器件以作为至少一个软件模块来进行操作,反之亦然。
尽管已参照本发明的某些示例性实施例示出并描述了本发明,本领域技术人员应理解,在不背离由所附权利要求限定的本发明的精神和范围的前提下,可以在形式和细节上对本发明做出各种改变。

Claims (20)

1.一种数字通信系统,包括:
前导符号获取单元,用于在具有多个逻辑带的下行链路信道模式区带中从基带频率信号中获取下行链路前导符号;
信号估计单元,用于从所述前导符号估计前导信号和数据信号;
功率计算单元,用于从所述前导符号和所估计的前导信号计算所估计的数据信号的功率值和噪声信号的功率值;以及
载波干扰噪声比(CINR)计算单元,用于使用所述数据信号和所述噪声信号的功率值来计算与所述信道模式相关的CINR。
2.根据权利要求1所述的数字通信系统,其中,所述信道模式是带-自适应调制与编码(AMC)排列区带。
3.根据权利要求1所述的数字通信系统,其中,从频域内的全部逻辑带中获取所述前导符号。
4.根据权利要求1所述的数字通信系统,其中,所述前导符号被分类为与频域内的所述逻辑带相对应的多个组,所述信号估计单元从每个分类的前导符号组估计前导信号和数据信号,并且所述CINR计算单元从所估计的数据信号独立测量分别对应于所述逻辑带的CINR。
5.根据权利要求4所述的数字通信系统,还包括:
CINR报告单元,用于按照值的顺序选择预定数量的所独立测量的CINR并将其传输至基站。
6.根据权利要求5所述的数字通信系统,其中,所述基站根据所报告的CINR确定是否切换至另一信道模式或逻辑带。
7.根据权利要求1所述的数字通信系统,其中,所述噪声信号包括干扰信号。
8.根据权利要求4所述的数字通信系统,还包括:
带切换确定单元,用于根据所独立测量的CINR确定是否切换至另一信道模式或逻辑带。
9.根据权利要求1所述的数字通信系统,其中,所述信号估计单元包括:
插值运算单元,用于在频域内对所述前导信号执行插值运算,并产生虚拟前导符号集合;以及
平均运算单元,用于在时域内对所述虚拟前导符号集合执行平均运算,并估计所述前导信号。
10.根据权利要求1所述的数字通信系统,其中,所述信号估计单元包括:
增益映射单元,用于调整所估计的前导信号的增益并估计所述数据信号。
11.根据权利要求1所述的数字通信系统,其中,所述基带频率信号是正交频分复用(OFDM)信号或正交频分多址(OFDMA)信号。
12.根据权利要求1所述的数字通信系统,其中,当频率重复使用因子为1时,所述功率计算单元还包括在所述噪声信号的功率值中的在不传输所述下行链路前导符号的位置处的符号的功率值。
13.根据权利要求1所述的数字通信系统,其中,所述系统基于电气和电子工程师协会(IEEE)802.16d/e、无线宽带互联网(WiBro)、和微波接入全球互通(WiMAX)标准中的至少一个。
14.一种数字通信系统,包括:
前导符号获取单元,用于在具有多个逻辑带的下行链路信道模式区带中根据所述多个逻辑带从基带频率信号中独立获取下行链路前导符号;
信号估计单元,用于从所获取的前导符号估计前导信号和数据信号;
功率计算单元,用于从所述前导符号和所估计的前导信号计算所估计的数据信号的第一功率值以及干扰和噪声的第二功率值;以及
CINR计算单元,用于使用所述第一功率值和所述第二功率值根据所述逻辑带独立计算CINR,
其中,所述功率计算单元根据频率重复使用因子确定是否在不传输所述下行链路前导符号的位置处的符号的第三功率值加到所述第二功率值中。
15.一种在具有多个逻辑带的下行链路信道模式区带中测量CINR的方法,该方法包括以下步骤:
从基带频率信号中获取下行链路前导符号;
从所述前导符号估计前导信号和数据信号;
从所述前导符号和所估计的前导信号计算所估计的数据信号的功率值和噪声信号的功率值;以及
使用所述数据信号和所述噪声信号的功率值来计算CINR。
16.根据权利要求15所述的方法,其中,从频域内的全部逻辑带中获取所述前导符号。
17.根据权利要求15所述的方法,其中,所述前导符号被分类为与频域内的所述逻辑带相对应的多个组,在估计所述前导信号的步骤中从每个分类的前导符号组估计所述前导信号,以及在计算所述CINR的步骤中从所估计的前导信号独立测量分别对应于所述逻辑带的所述CINR。
18.根据权利要求17所述的方法,还包括以下步骤:
根据所独立测量的CINR确定是否切换至另一信道模式或逻辑带。
19.根据权利要求15所述的方法,其中,所述噪声信号包括干扰信号。
20.一种计算机可读记录介质,用于存储执行根据权利要求14所述的方法的程序。
CNA2006800492832A 2005-12-31 2006-12-27 使用下行链路前导测量逻辑带的载波干扰噪声比的设备和方法 Pending CN101346913A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050136249A KR100794426B1 (ko) 2005-12-31 2005-12-31 다운링크 프리앰블을 이용한 로지컬 밴드의 반송파 신호 대잡음비 측정 장치 및 방법
KR1020050136249 2005-12-31

Publications (1)

Publication Number Publication Date
CN101346913A true CN101346913A (zh) 2009-01-14

Family

ID=38228396

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800492832A Pending CN101346913A (zh) 2005-12-31 2006-12-27 使用下行链路前导测量逻辑带的载波干扰噪声比的设备和方法

Country Status (5)

Country Link
US (1) US20090135892A1 (zh)
EP (1) EP1966913A1 (zh)
KR (1) KR100794426B1 (zh)
CN (1) CN101346913A (zh)
WO (1) WO2007078086A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035507A1 (zh) * 2009-09-24 2011-03-31 中兴通讯股份有限公司 一种载波干扰噪声比的测量方法及装置
CN101594636B (zh) * 2009-06-30 2011-05-11 中兴通讯股份有限公司 双流内环链路自适应方法和系统
CN102137311A (zh) * 2010-12-16 2011-07-27 华为技术有限公司 在无源光网络中传输数据的方法、系统以及光网络单元
WO2012013031A1 (zh) * 2010-07-30 2012-02-02 中兴通讯股份有限公司 一种调制编码方式选择方法及装置
CN102571152A (zh) * 2012-03-02 2012-07-11 钜泉光电科技(上海)股份有限公司 电力载波通信发送功率的控制装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355831B (en) * 2007-04-02 2012-01-01 Ind Tech Res Inst Method for estimating and compensating frequency o
US8379762B2 (en) 2007-07-19 2013-02-19 Cisco Technology, Inc. Physical carrier to interference-plus-noise ratio techniques for wideband wireless communication networks
WO2009065263A1 (fr) * 2007-11-23 2009-05-28 Zte Corporation Procédé de division de zone de permutation de sous-porteuses et système de configuration d'informations
KR100942917B1 (ko) * 2008-01-15 2010-02-22 주식회사 이노와이어리스 와이맥스 dl신호의 동기 관리 방법
US8625685B2 (en) * 2008-02-21 2014-01-07 Qualcomm Incorporated Signal quality estimation for OFDMA systems
KR100933130B1 (ko) * 2008-02-28 2009-12-21 주식회사 케이티 휴대 인터넷 시스템에서의 밴드 amc 부채널 할당 방법
WO2011072440A1 (zh) * 2009-12-15 2011-06-23 中兴通讯股份有限公司 一种用于无线网络的切换触发方法和装置
KR101392849B1 (ko) * 2012-04-13 2014-05-27 서울시립대학교 산학협력단 무선 ofdm 시스템을 위한 시간영역 신호대 잡음비 추정 장치 및 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852630A (en) * 1997-07-17 1998-12-22 Globespan Semiconductor, Inc. Method and apparatus for a RADSL transceiver warm start activation procedure with precoding
GB9823467D0 (en) * 1998-10-28 1998-12-23 Koninkl Philips Electronics Nv Radio communication system
US7260054B2 (en) * 2002-05-30 2007-08-21 Denso Corporation SINR measurement method for OFDM communications systems
KR101015736B1 (ko) * 2003-11-19 2011-02-22 삼성전자주식회사 직교 주파수 분할 다중 방식의 이동통신 시스템에서선택적 전력 제어 장치 및 방법
KR100600673B1 (ko) * 2003-12-18 2006-07-18 한국전자통신연구원 이동 통신 시스템에서의 채널 품질 정보 요청 및 보고방법, 그리고 그 장치
WO2005096531A1 (en) * 2004-04-02 2005-10-13 Nortel Networks Limited Wireless comunication methods, systems, and signal structures
KR100965694B1 (ko) * 2004-06-15 2010-06-24 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 소프트 핸드오버 지원을 위한 시스템 및 방법
KR100957408B1 (ko) * 2004-06-17 2010-05-11 삼성전자주식회사 광대역 무선 분할 다중 접속 통신 시스템에서 핸드오버 지원을 위한 방법 및 장치
KR100651556B1 (ko) * 2004-06-30 2006-11-29 삼성전자주식회사 통신 시스템에서 cinr 추정 장치 및 방법
KR100713436B1 (ko) * 2004-10-28 2007-05-07 삼성전자주식회사 통신 시스템에서 cinr 추정 장치 및 방법
US20070149249A1 (en) * 2005-12-22 2007-06-28 Interdigital Technology Corporation Method and apparatus for efficient configuration of hybrid sub-carrier allocation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594636B (zh) * 2009-06-30 2011-05-11 中兴通讯股份有限公司 双流内环链路自适应方法和系统
WO2011035507A1 (zh) * 2009-09-24 2011-03-31 中兴通讯股份有限公司 一种载波干扰噪声比的测量方法及装置
CN102035768B (zh) * 2009-09-24 2013-10-16 中兴通讯股份有限公司 一种载波干扰噪声比的测量方法及装置
WO2012013031A1 (zh) * 2010-07-30 2012-02-02 中兴通讯股份有限公司 一种调制编码方式选择方法及装置
US9025480B2 (en) 2010-07-30 2015-05-05 Zte Corporation Method and apparatus for selecting modulation and coding scheme
CN102137311A (zh) * 2010-12-16 2011-07-27 华为技术有限公司 在无源光网络中传输数据的方法、系统以及光网络单元
CN102571152A (zh) * 2012-03-02 2012-07-11 钜泉光电科技(上海)股份有限公司 电力载波通信发送功率的控制装置

Also Published As

Publication number Publication date
KR20070072226A (ko) 2007-07-04
EP1966913A1 (en) 2008-09-10
WO2007078086A1 (en) 2007-07-12
US20090135892A1 (en) 2009-05-28
KR100794426B1 (ko) 2008-01-16

Similar Documents

Publication Publication Date Title
CN101346913A (zh) 使用下行链路前导测量逻辑带的载波干扰噪声比的设备和方法
CN101346962A (zh) 用于使用下行链路前导测量载波干扰噪声比的装置和方法
JP4358270B2 (ja) 直交周波数分割多重方式を使用する通信システムにおけるチャンネル品質情報の送受信方法及び装置
KR100794430B1 (ko) 반송파 신호 대 잡음비 측정 장치 및 방법
US8717905B2 (en) Apparatus and method for adaptive channel quality feedback in a multicarrier wireless network
EP1808990B1 (en) Adaptive subcarrier allocation to a mobile terminal in a multi cell fdm or ofdm network
CN1826745B (zh) 无线发送装置和无线发送方法
CN102204367B (zh) 无线通信系统中用于上行链路功率控制的装置和方法
WO2008026898A1 (en) Method and apparatus for transmitting uplink signal, and method and apparatus for generating uplink signal in communication system
CN108418772A (zh) 一种ofdm-im系统频偏估计方法
US8947998B2 (en) Method and apparatus for detecting radio signal
CN101946432B (zh) 用于ofdma系统的信号质量估计
Sheu et al. Characteristics and modelling of inter-cell interference for orthogonal frequency-division multiple access systems in multipath Rayleigh fading channels
Mannoni et al. A flexible physical layer for lpwa applications
CN102132505A (zh) 用于ofdm/a系统中混合mimo方案的方法和系统
Plass et al. Cellular cyclic delay diversity for next generation mobile systems
Mule et al. Design of CR-OFDM in 900 MHz Band
Plass et al. Smart Base Stations using Cyclic Delay Diversity in a Cellular OFDMA Environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090114