CN101345828A - Cmos图像传感器的光电信号处理电路及方法 - Google Patents

Cmos图像传感器的光电信号处理电路及方法 Download PDF

Info

Publication number
CN101345828A
CN101345828A CNA2007100436684A CN200710043668A CN101345828A CN 101345828 A CN101345828 A CN 101345828A CN A2007100436684 A CNA2007100436684 A CN A2007100436684A CN 200710043668 A CN200710043668 A CN 200710043668A CN 101345828 A CN101345828 A CN 101345828A
Authority
CN
China
Prior art keywords
signal
exposure
voltage
photodiode
high level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100436684A
Other languages
English (en)
Other versions
CN100586158C (zh
Inventor
黄碧珍
万涛涛
任晓慧
曹庆红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI RUIJING ELECTRONIC CO Ltd
Original Assignee
SHANGHAI RUIJING ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI RUIJING ELECTRONIC CO Ltd filed Critical SHANGHAI RUIJING ELECTRONIC CO Ltd
Priority to CN200710043668A priority Critical patent/CN100586158C/zh
Publication of CN101345828A publication Critical patent/CN101345828A/zh
Application granted granted Critical
Publication of CN100586158C publication Critical patent/CN100586158C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明公开了CMOS图像传感器的光电信号处理方法,包括在光敏二极管曝光前,在行复位信号为高电平时对光敏二极管复位;在行使能信号首次为高电平且复位采样控制信号为高电平时采样光敏二极管复位电压作为曝光前光敏二极管电压信号并暂存;在光敏二极管曝光后,在行使能信号再次为高电平且在曝光采样控制信号为高电平时采样曝光后光敏二极管电压信号;比较采样的曝光后与曝光前光敏二极管电压信号,并将比较结果作为图像信号输出。本发明还公开了CMOS图像传感器的光电信号处理电路。本发明CMOS图像传感器的光电信号处理电路及方法解决了相关二次采样不精确的问题,实现了精确相关二次采样,改善了图像质量。

Description

CMOS图像传感器的光电信号处理电路及方法
技术领域
本发明涉及互补金属氧化物半导体(CMOS)图像传感器,特别涉及互补金属氧化物半导体(CMOS)图像传感器的光电信号处理电路及光电信号处理方法。
背景技术
图像传感器是用于将光学图像转换成电信号的半导体器件,包括电荷耦合器件(CCD,Charge Coupled Device)图像传感器和互补金属氧化物半导体(CMOS)图像传感器。
一般的CCD图像传感器包括将光信号转换成电信号的光敏二极管阵列,多个垂直的电荷耦合器件,形成在以矩阵型配置对准的各垂直光敏二极管之间,并垂直地传送产自各光敏二极管的电荷。水平电荷耦合器件,用于水平地传送由各垂直电荷耦合器件传送的电荷,以及读出放大器,用于检测和输出水平传送的电荷。电荷耦合器件的缺陷在于驱动方法复杂、高功耗以及需要多级光刻处理的复杂制造工艺。另外,在电荷耦合器件中,难以将诸如控制电路、信号处理器、以及模数转换器这样的互补电路集成到单芯片器件中,因而,阻碍了利用这种图像传感器的紧凑型产品的发展,例如,数字照相机和数字摄像机。
而与此相对地,CMOS图像传感器采用了利用控制电路和信号处理电路作为外围电路的CMOS技术,还采用了允许利用与排列的像素的数量对应设置的MOS晶体管顺序检测输出而由此检测图像的开关技术。另外,CMOS图像传感器利用了CMOS制造技术。因而,与CCD图像传感器相比,CMOS图像传感器具有以下优势:1)与CCD图像传感器相比,CMOS图像传感器工艺成本较低。2)CMOS图像传感器可以通过单一的电源操作,使得其耗电比CCD图像传感器低。3)CMOS图像传感器可以将信号处理电路在电路集成到传感器芯片上,从而面积更小。
现有的CMOS图像传感器通常包括3管结构和4管结构。4管像素单元的结构,通常包括三个晶体管和一个用于吸收入射光并转换为光电流的光敏二极管,如图1所示,4管CMOS图像传感器包括光敏二极管PD、第一晶体管T1、第二晶体管T2、第三晶体管T3和第四晶体管T4。光敏二极管正极接地、负极与第四晶体管T4的源极相连;第一晶体管T1的源极与第四晶体管T4的漏极相连、第一晶体管T1的栅极接收复位信号(RST)、漏极与第二晶体管T2的漏极相连且与外围电源电路相连以提供像素电压VDDPIX;第二晶体管T2的栅极与第一晶体管T1的源极相连、源极与第三晶体管T3的漏极相连;第三晶体管T3的栅极接收行使能信号(ENX)、源极与电压采样电路相连;第四晶体管T4的栅极与传输门相连。其中,第一晶体管T1的作用是提供复位功能。第二晶体管T2的作用是作为跟随器。第三晶体管T3的作用是接收行使能信号。第四晶体管T4的作用是作为传输管。第一晶体管T1和第四晶体管T4一起导通时将像素电压VDDPIX转移给光敏二极管PD,第三晶体管T3和第四晶体管T4一起导通时是将光敏二极管PD上的电荷转移到电压采样电路的电容上。但是,4管结构工艺实现过程比较复杂,并且由于CMOS图像传感器的光敏性受光敏二极管所占的表面区域与CMOS图像传感器的整个表面区域的比值度影响,因而像素单元的MOS管数量如果较多,就会使每个像素单元的实际感光面积较小,从而影响图像质量。
相应地,现有的3管像素单元的结构,如图2所示,包括光敏二极管PD、复位管T1、跟随管T2和使能管T3,光敏二极管正极接地,负极与复位管T1的源极相连;复位管T1的栅极接收复位信号(RST)、漏极与跟随管T2的漏极相连且与外围电源电路相连以提供像素电压VDDPIX;跟随管T2的栅极与光敏二极管的负极相连、源极与使能管T3的漏极相连;使能管T3的栅极接收行使能信号(ENX)、源极与电压采样电路相连。复位管T1的作用是提供复位功能,主要使光敏二极管PD的电压复位。跟随管T2的作用是作为跟随器。使能管T3的作用是当接收到行使能信号为高时,将光敏二极管PD两端电压输送给采样电路。相对于采用4管结构的CMOS图像传感器来说,3管结构的CMOS图像传感器的感光面积会更大。
在例如专利号为ZL 02120295.8的中国专利中还能发现更多关于CMOS图像传感器的信息。
而现有3管结构的CMOS图像传感器进行相关二次采样来实现光电信号处理的过程如下,结合图2和图3所示:当行复位信号RST为高电平时,复位管T1导通,对电容C3进行充电;当行复位信号RST由高变为低电平时,电容C3充电结束,基本接近于像素电压VDDPIX;曝光过程中,光敏二极管PD受光照影响,电阻值变小,电容C3开始放电,使得电容C3上的电压降低。曝光结束后,行使能信号ENX由低变高,使能管T3导通,当曝光采样控制信号SHS变为高电平时,对电容C2进行充电,SHS变低后,行复位信号RST变高电平,重新对电容C3进行充电,当行复位信号RST由高变为低电平时,电容C3充电结束,基本接近于像素电压VDDPIX。然后,复位采样控制信号SHR变成高电平时,对电容C1进行充电,复位采用控制信号SHR变低后,行使能信号ENX变低,充电结束,电容C1的电压基本接近于电容C3的电压,此电压约等于曝光前电容C3的电压。然后将电容C1的电压作为输入信号,电容C2的电压作为参考信号,通过比较电容C1和电容C2的电压来得到电压差,也就是将曝光前后光敏二极管的电压变化来作为图像输出信号,来达到光信号转换成电信号的目的。但是,现有光电信号处理方法存在下列不足:
1.由于作为参考电压的电容C1的电压与曝光前光敏二极管的电压并不完全一致,而只是一个近似值,因而输出的反映曝光前后光敏二极管电压变化的信号就不太精确,特别是在暗光下曝光时间比较长,复位管传递的像素电压会发生变化,导致曝光前后光敏二极管复位后的电压值相差较大,因而相关二次采样不精确,最终会影响图像质量。
2.在进行光电信号处理的过程中需要进行两次复位,因而光电信号处理的时间较长,传感器的工作效率不高。
发明内容
本发明即是为了解决现有技术CMOS图像传感器相关二次采样不精确的问题。
本发明还解决了现有技术CMOS图像传感器需要进行两次复位,因而效率不高的问题。
为解决上述问题,本发明提供了一种CMOS图像传感器的光电信号处理电路,包括,
在接收的行复位信号为高电平时,对光敏二极管复位,并在接收的行使能信号首次为高电平时,输出曝光前光敏二极管电压信号以及在接收的行使能信号再次为高电平时,输出曝光后光敏二极管电压信号的像素单元;
在接收的复位采样控制信号为高电平时,接收曝光前光敏二极管电压信号并输出曝光前电压采样信号以及在接收的曝光采样控制信号为高电平时,接收曝光后光敏二极管电压信号并输出曝光后电压采样信号的电压采样电路;
根据接收的曝光前电压采样信号及曝光后电压采样信号进行比较,并将比较结果作为图像信号输出的电压比较电路。
所述电压比较电路包括用于存储所接收的曝光前电压采样信号的存储器以及用于调用存储器存储的曝光前电压采样信号并与所接收的曝光后电压采样信号进行比较,并将比较结果作为图像信号输出的比较器。
相应地,本发明提供了一种CMOS图像传感器的光电信号处理方法,包括下列步骤,
在光敏二极管曝光前,在行复位信号为高电平时对光敏二极管复位;
在光敏二极管曝光前,在行使能信号首次为高电平,且复位采样控制信号为高电平时采样光敏二极管复位电压作为曝光前光敏二极管电压信号;
在光敏二极管曝光后,在行使能信号再次为高电平,且在曝光采样控制信号为高电平时采样曝光后光敏二极管电压信号;
比较采样的曝光后光敏二极管电压信号与曝光前光敏二极管电压信号,并将比较结果作为图像信号输出。
与现有技术相比,上述方案具有以下优点:
1.上述方案通过在曝光之前采样光敏二极管的电压,然后与曝光后采样得到的光敏二极管的电压进行比较,从而能够精确地反映曝光前后光敏二极管的电压变化,使相关二次采样更精确,提高传感器图像输出信号的精确性,从而使传感器图像质量得到提高。
2.上述方案进行光电信号处理的过程中只需要进行一次复位,节省了光电信号处理的时间,提高了传感器工作的效率。
附图说明
图1是现有技术CMOS图像传感器4管像素单元结构图;
图2是现有技术CMOS图像传感器3管像素单元结构图;
图3是现有技术3管结构CMOS图像传感器信号处理时序图;
图4是本发明实施例CMOS图像传感器光电信号处理方法流程图;
图5是本发明实施例CMOS图像传感器光电信号处理电路结构图;
图6是本发明实施例CMOS图像传感器光电信号处理时序图。
具体实施方式
本发明CMOS图像传感器的光电信号处理方法的实质是在光敏二极管曝光前后分别对于光敏二极管电压进行采样,从而能够精确地反映曝光前后光敏二极管的电压变化,实现精确相关二次采样,提高传感器图像输出信号的精确性。
参照图4所示,本发明实施例CMOS图像传感器的光电信号处理方法包括下列步骤,
步骤s1,在光敏二极管曝光前,在行复位信号为高电平时对光敏二极管复位;
步骤s2,在光敏二极管曝光前,在行使能信号首次为高电平,且复位采样控制信号为高电平时采样光敏二极管复位电压作为曝光前光敏二极管电压信号并暂存;
步骤s3,在光敏二极管曝光后,在行使能信号再次为高电平,且在曝光采样控制信号为高电平时采样曝光后光敏二极管电压信号;
步骤s4,比较采样的曝光后光敏二极管电压信号与曝光前光敏二极管电压信号,并将比较结果作为图像信号输出。
参照图5所示,本发明实施例CMOS图像传感器光电信号处理电路包括,
在接收的行复位信号为高电平时,对光敏二极管复位,并在接收的行使能信号首次为高电平时,输出光敏二极管复位电压作为曝光前光敏二极管电压信号以及在接收的行使能信号再次为高电平时,输出曝光后光敏二极管电压信号的像素单元10;
在接收的复位采样控制信号为高电平时,接收曝光前光敏二极管电压信号并输出曝光前电压采样信号以及在接收的曝光采样控制信号为高电平时,接收曝光后光敏二极管电压信号并输出曝光后电压采样信号的电压采样电路20;
根据接收的曝光前电压采样信号及曝光后电压采样信号进行比较,并将比较结果作为图像信号输出的电压比较电路30。
下面以3管结构的CMOS图像传感器的光电信号处理电路为例来对于本发明CMOS图像传感器的光电信号处理电路以及光电信号处理方法进行详细说明。
继续参照图5所示,像素单元10的作用是在光敏二极管PD曝光前,对光敏二极管PD复位并将复位电压作为曝光前光敏二极管的模拟电压信号输出,以及在光敏二极管PD曝光后,将光敏二极管PD所接收的光转换成模拟电压并作为曝光后光敏二极管PD的模拟电压信号输出。作为本发明的实施例,像素单元10包括复位管T1,光敏二极管PD,跟随管T2,使能管T3,以及电容C3。其中,光敏二极管PD正极接地,负极与复位管T1的源极相连;复位管T1的栅极接收复位信号(RST),漏极与跟随管T2的漏极相连且与像素电压VDDPIX相连;跟随管T2的栅极与光敏二极管PD的负极相连、源极与使能管T3的漏极相连;使能管T3的栅极接收行使能信号(ENX)、源极与电压采样电路11相连。电容C3的两端分别接于光敏二极管PD的正极和负极。其中,复位管T1的作用是提供复位功能,主要使光敏二极管PD的电压复位。跟随管T2的作用是作为跟随器。使能管T3的作用是当接收到行使能信号为高时,将光敏二极管PD两端电压输送给电压采样电路20。
电压采样电路20的作用是采样像素单元10输出的曝光前光敏二极管PD模拟电压信号并输出曝光前电压采样信号,以及采样像素单元10输出的曝光后光敏二极管的模拟电压信号并输出曝光后电压采样信号。电压采样电路20包括复位电压采样电路(图5中未标示)和曝光电压采样电路(图5中未标示),分别用以采样所述的曝光前光敏二极管PD的模拟电压信号和曝光后光敏二极管PD的模拟电压信号。
作为本发明的实施例,复位电压采样电路包括根据复位采样控制信号SHR对于电容C1的充放电进行控制的复位电压采样控制开关201,以及用以存储曝光前光敏二极管模拟电压的电容C1,并且,所述的复位采样控制开关201和电容C1为串联。更进一步,为了使复位采样电路输出的曝光前电压采样信号质量更高,还可以在电容C1之后串联具有放大功能的可编程增益放大器(PGA,Programmable Gain Amplifier)(图5中未显示)。可编程增益放大器将曝光前电压采样信号放大之后传输给电压比较电路30。
作为本发明的实施例,曝光电压采样电路包括根据曝光采样控制信号SHS对于电容C2的充放电进行控制的曝光电压采样控制开关202,以及用以存储曝光后光敏二极管模拟电压的电容C2,并且,所述的曝光采样控制开关202和电容C2为串联。更进一步,为了使曝光采样电路输出的曝光后电压采样信号质量更高,还可以在电容C2之后串联具有放大功能的可编程增益放大器(PGA,Programmable Gain Amplifier)(图5中未显示)。可编程增益放大器将曝光后电压采样信号放大之后传输给电压比较电路30。
电压比较电路30的作用是接收电压采样电路20输出的曝光前电压采样信号和曝光后电压采样信号,并对这两个信号进行比较,并将比较结果作为光电信号处理电路的图像输出信号。
作为本发明的实施例,电压比较电路30包括用以将电压采样电路20输出的曝光前采样信号转换成数字电压信号的模数转换器302、用以将电压采样电路20输出的曝光后采样信号转换成数字电压信号的模数转换器301,用以存储经模数转换器302转换之后的曝光前光敏二极管的数字电压信号的存储器303,以及用以对于曝光前光敏二极管电压的数字电压信号和曝光后光敏二极管电压的数字电压信号进行比较的比较器304。其中比较器304分别接收模数转换器301传输的曝光后光敏二极管的数字电压信号和存储器303传输的曝光前光敏二极管的数字电压信号,并将比较结果作为光电信号处理电路的图像信号输出。更进一步,存储器303可以是随机存储器(RAM),比较器304可以是相减器。
结合图4、图5和图6所示,在CMOS图像传感器的光电信号处理电路进行光电信号处理前,即在曝光前,需要先对于光敏二极管PD复位。当复位管T1接收的行复位信号RST的电平为高时,复位管T1导通,像素电压VDDPIX通过复位管T1对电容C3进行充电。此处所指的行复位信号RST为高电平是行复位信号RST稳定维持在复位管T1的开启电压。因为电容C3的两端分别接于光敏二极管PD的正极和负极,电容C3由于充电过程,存储的电荷越来越高,而光敏二极管PD两端的电压也越来越高,因此对于电容C3的充电过程也是使光敏二极管PD两端的电压达到像素电压VDDPIX的过程。当行复位信号RST的电平由高变为低时,复位管T1截止,对于电容C3的充电结束,光敏二极管PD两端的电压也达到了像素电压VDDPIX,对于光敏二极管PD的复位过程也就此完成。并且,此时由于光敏二极管PD还未曝光,因此电阻值极大,光敏二极管PD的负极电压也维持在像素电压VDDPIX,而跟随管T2的栅极与光敏二极管PD的负极相连,因此,跟随管T2导通。
继续结合图4、图5和图6所示,在复位过程结束后,就需要对于曝光前光敏二极管的电压进行采样。当行复位信号的电平完全变低时,行使能信号ENX的电平由低变高,使能管T3也随之导通,因为跟随管T2已经处于导通状态,因此,使能管T3就会通过跟随管T2将像素电压VDDPIX传输给电压采样电路。而当行使能信号ENX的电平完全变高时,复位采样控制信号SHR的电平由低变高,电压采样电路20中对于电容C1的充放电进行控制的复位电压采样控制开关201也随之闭合,开始对于电容C1进行充电。此处所指的行使能信号ENX的电平完全变高指的是行使能信号ENX稳定维持在使能管T3的开启电压,而复位采样控制信号SHR由低变高指的是复位采样控制信号SHR达到复位电压采样控制开关201的开启电压。当复位采样控制信号SHR的电平由高变低时,复位电压采样控制开关201也随之断开,对于电容C1的充电过程结束。此时,电容C1两端的电压就是曝光前光敏二极管的电压VDDPIX。如前所述,在电容C1之后可以设置具有放大功能的可编程增益放大器来对于电容C1的电压信号进行放大,之后可编程增益放大器会将电容C1的电压信号传输给电压比较电路30。由于电容C1经可编程增益放大器放大的电压信号是模拟信号,因此,电压比较电路30会先通过模数转换器302将模拟信号转换成数字信号,然后将该数字信号传输给存储器303暂存。此时,存储器303中存储的就是曝光前光敏二极管PD的数字电压信号。所述经模数转换器302转换后的数字电压信号的形式是由“1”或“0”组成的数据编码,而存储器303中存储的曝光前光敏二极管PD的数字电压信号就是所述的数据编码。并且,在复位采样控制信号SHR的电平完全变低后,行使能信号ENX也变低,使能管T3也随之截止。
继续结合图5和图6所示,在完成了对于曝光前光敏二极管PD的电压的采样之后,对于光敏二极管PD进行曝光。光敏二极管PD受光照影响,电阻值变小,电容C3与光敏二极管PD形成放电回路,电容C3开始放电,因而光敏二极管PD的负极上的电压下降。当曝光结束后,光敏二极管PD两端的电压也降到了曝光后的电压。
继续结合图4、图5和图6所示,在光敏二极管PD的曝光结束后,采样曝光后光敏二极管的电压。当经过了光敏二极管曝光时间的间隔之后,行使能信号ENX的电平再次由低变高时,使能管T3也随着导通,将曝光后光敏二极管PD的电压传输给电压采样电路20。当行使能信号ENX的电平完全变高时,曝光采样控制信号SHS的电平由低变高,电压采样电路20中对于电容C2的充放电进行控制的曝光电压采样控制开关202也随之闭合,开始对电容C2进行充电。此处所指的行使能信号ENX的电平完全变高指的是行使能信号ENX稳定维持在使能管T3的开启电压,而曝光采样控制信号SHS由低变高指的是曝光采样控制信号SHS达到曝光电压采样控制开关202的开启电压。当曝光采样控制信号SHR的电平由高变低时,曝光电压采样控制开关202也随之断开,对于电容C2的充电过程结束。此时,电容C2两端的电压就是曝光后光敏二极管的电压。如前所述,在电容C2之后可以设置具有放大功能的可编程增益放大器来对于电容C2的电压信号进行放大,之后可编程增益放大器会将电容C2的电压信号传输给电压比较电路30。由于电容C2经可编程增益放大器放大的电压信号是模拟信号,因此,电压比较电路30会先通过模数转换器301将模拟信号转换成数字信号,然后将该数字信号传输给比较器304。所述由模数转换器301转换后的数字电压信号的形式是由“1”或“0”组成的数据编码。并且,在曝光采样控制信号SHS的电平完全变低后,行使能信号ENX也变低,使能管T3也随之截止。
继续结合图4和图5所示,在完成了采样曝光后光敏二极管PD的电压后,将曝光后光敏二极管电压与曝光前光敏二极管电压比较得到曝光前后光敏二极管电压变化值,并作为光电信号处理电路的输出信号。比较器304在接收到模数转换器301传输的曝光后光敏二极管的数字电压信号后,会调用存储器303存储的曝光前光敏二极管的数字电压信号,并将两者进行比较得到曝光前后光敏二极管的电压变化,并作为光电信号处理电路的图像输出信号。如前所述,由于曝光前电压采样信号和曝光后电压采样信号经模数转换器转换后,分别得到的是由“1”或“0”组成的不同数据编码,而比较器304就能够根据所述的数据编码比较得到曝光前电压采样信号对应的数据编码和曝光后电压采样信号对应的数据编码的差值,并以该差值作为光电信号处理电路的图像输出信号。由于经过模数转换器转换得到的模拟电压信号对应的数字电压信号都是唯一的,因此所述的经比较器304比较得到的数据编码的差值能够非常精确地反应曝光前后光敏二极管PD的电压变化,从而提高光电信号处理电路的图像输出信号的精确性,并且进一步使传感器的图像质量得到提高。
综上所述,上述方案通过在曝光之前采样光敏二极管的电压并暂存,然后与曝光后采样得到的光敏二极管的电压进行比较,从而能够精确地反映曝光前后光敏二极管的电压变化,实现精确二次相关采样,提高传感器图像输出信号的精确性,从而使传感器图像质量得到提高。并且,上述方案进行光电信号处理的过程中只需要进行一次复位,节省了光电信号处理的时间,提高了传感器工作的效率。
虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (14)

1.一种CMOS图像传感器的光电信号处理电路,其特征在于,包括,
在接收的行复位信号为高电平时,对光敏二极管复位,并在接收的行使能信号首次为高电平时,输出光敏二极管复位电压作为曝光前光敏二极管电压信号以及在接收的行使能信号再次为高电平时,输出曝光后光敏二极管电压信号的像素单元;
在接收的复位采样控制信号为高电平时,接收曝光前光敏二极管电压信号并输出曝光前电压采样信号以及在接收的曝光采样控制信号为高电平时,接收曝光后光敏二极管电压信号并输出曝光后电压采样信号的电压采样电路;
根据接收的曝光前电压采样信号及曝光后电压采样信号进行比较,并将比较结果作为图像信号输出的电压比较电路。
2.如权利要求1所述的CMOS图像传感器的光电信号处理电路,其特征在于,所述电压比较电路包括用于存储所接收的曝光前电压采样信号的存储器以及用于调用存储器存储的曝光前电压采样信号并与所接收的曝光后电压采样信号进行比较,并将比较结果作为图像信号输出的比较器。
3.如权利要求1所述的CMOS图像传感器的光电信号处理电路,其特征在于,所述行使能信号在所述行复位信号由高电平达到低电平时,首次由低电平变高电平。
4.如权利要求3所述的CMOS图像传感器的光电信号处理电路,其特征在于,所述复位采样控制信号在所述行使能信号首次由低电平达到高电平时,由低电平变高电平。
5.如权利要求4所述的CMOS图像传感器的光电信号处理电路,其特征在于,所述行使能信号在所述复位采样控制信号由高电平达到低电平时,首次由高电平变低电平。
6.如权利要求5所述的CMOS图像传感器的光电信号处理电路,其特征在于,所述曝光采样控制信号在所述行使能信号再次为高电平时,由低电平变高电平。
7.如权利要求6所述的CMOS图像传感器的光电信号处理电路,其特征在于,所述行使能信号再次为高电平的时间与行使能信号首次为高电平的时间间隔等于光敏二极管的曝光时间。
8.一种CMOS图像传感器的光电信号处理方法,其特征在于,包括下列步骤,
在光敏二极管曝光前,在行复位信号为高电平时对光敏二极管复位;
在光敏二极管曝光前,在行使能信号首次为高电平,且复位采样控制信号为高电平时采样光敏二极管复位电压作为曝光前光敏二极管电压信号;
在光敏二极管曝光后,在行使能信号再次为高电平,且在曝光采样控制信号为高电平时采样曝光后光敏二极管电压信号;
比较采样的曝光后光敏二极管电压信号与曝光前光敏二极管电压信号,并将比较结果作为图像信号输出。
9.如权利要求8所述的CMOS图像传感器的光电信号处理方法,其特征在于,所述采样光敏二极管复位电压作为曝光前光敏二极管电压信号后,将曝光前光敏二极管电压信号暂存。
10.如权利要求8所述的CMOS图像传感器的光电信号处理方法,其特征在于,所述行使能信号在所述行复位信号由高电平达到低电平时,首次由低电平变高电平。
11.如权利要求10所述的CMOS图像传感器的光电信号处理方法,其特征在于,所述复位采样控制信号在所述行使能信号首次由低电平达到高电平时,由低电平变高电平。
12.如权利要求11所述的CMOS图像传感器的光电信号处理方法,其特征在于,所述行使能信号在所述复位采样控制信号由高电平达到低电平时,首次由高电平变低电平。
13.如权利要求12所述的CMOS图像传感器的光电信号处理方法,其特征在于,所述曝光采样控制信号在所述行使能信号再次达到高电平时,由低电平变高电平。
14.如权利要求13所述的CMOS图像传感器的光电信号处理方法,其特征在于,所述行使能信号再次为高电平的时间与行使能信号首次为高电平的时间间隔等于光敏二极管的曝光时间。
CN200710043668A 2007-07-11 2007-07-11 Cmos图像传感器的光电信号处理电路及方法 Active CN100586158C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200710043668A CN100586158C (zh) 2007-07-11 2007-07-11 Cmos图像传感器的光电信号处理电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200710043668A CN100586158C (zh) 2007-07-11 2007-07-11 Cmos图像传感器的光电信号处理电路及方法

Publications (2)

Publication Number Publication Date
CN101345828A true CN101345828A (zh) 2009-01-14
CN100586158C CN100586158C (zh) 2010-01-27

Family

ID=40247701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710043668A Active CN100586158C (zh) 2007-07-11 2007-07-11 Cmos图像传感器的光电信号处理电路及方法

Country Status (1)

Country Link
CN (1) CN100586158C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138838A1 (zh) * 2020-01-08 2021-07-15 华为技术有限公司 一种图像读取电路、图像传感器以及终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021138838A1 (zh) * 2020-01-08 2021-07-15 华为技术有限公司 一种图像读取电路、图像传感器以及终端设备

Also Published As

Publication number Publication date
CN100586158C (zh) 2010-01-27

Similar Documents

Publication Publication Date Title
US10608101B2 (en) Detection circuit for photo sensor with stacked substrates
CN109819184B (zh) 图像传感器及减少图像传感器固定图像噪声的方法
CN101582978B (zh) 一种红外读出电路的背景抑制方法及其电路
TWI516123B (zh) 具有複數個放大器電晶體之高動態範圍像素
CN108200366B (zh) 像素单元和形成像素单元的方法及数字相机成像系统
CN102547159B (zh) 高动态范围图像传感器及其控制方法
KR101619480B1 (ko) 다중 플로팅 확산 영역을 갖는 단위 픽셀 및 이를 포함한 이미지 센서
TWI489620B (zh) 利用一光電二極體之互補金氧半導體影像感測器像素
CN110351500A (zh) 一种兼容两种曝光模式的cmos图像传感器读出电路
CN101385329A (zh) 使用斜变转移栅极时钟的a/d转换器
CN116156298B (zh) 基于感存算一体化的内窥镜高清视频处理系统及方法
CN101902583A (zh) 影像传感器及具有高转换增益的低噪声像素读出电路
CN111447385B (zh) 全局快门图像传感器像素结构及其信号采样读取方法
US5389971A (en) Image sensor provided on a chip and having amplifying means
CN111918007A (zh) Cmos图像传感器、像素单元及其控制方法
US20200021768A1 (en) Image sensor and pixel array circuit thereof
CN100586158C (zh) Cmos图像传感器的光电信号处理电路及方法
CN107040733B (zh) Cmos图像传感器
EP3871407B1 (en) Ultra-high dynamic range cmos sensor
KR20180031288A (ko) 이미지 센서 및 이를 포함하는 촬상 장치
WO2023030239A1 (zh) 像素电路、图像传感器及电子设备
CN112040156B (zh) 全局曝光图像传感器电路及其控制方法
EP1094308B1 (en) High quantum efficiency point light detector
CN111935427A (zh) Cmos图像传感器、像素单元及其控制方法
US20090127434A1 (en) Image sensor with expanding dynamic range

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant