CN101332559B - Laser compound processing and modifying method of no-recasting-layer micro deep-hole - Google Patents

Laser compound processing and modifying method of no-recasting-layer micro deep-hole Download PDF

Info

Publication number
CN101332559B
CN101332559B CN 200810150387 CN200810150387A CN101332559B CN 101332559 B CN101332559 B CN 101332559B CN 200810150387 CN200810150387 CN 200810150387 CN 200810150387 A CN200810150387 A CN 200810150387A CN 101332559 B CN101332559 B CN 101332559B
Authority
CN
China
Prior art keywords
hole
laser
machining
borehole
deep cooling
Prior art date
Application number
CN 200810150387
Other languages
Chinese (zh)
Other versions
CN101332559A (en
Inventor
梅雪松
王文君
姜歌东
杨成娟
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to CN 200810150387 priority Critical patent/CN101332559B/en
Publication of CN101332559A publication Critical patent/CN101332559A/en
Application granted granted Critical
Publication of CN101332559B publication Critical patent/CN101332559B/en

Links

Abstract

The invention discloses a laser combined machining and profile modification method of a micro deep borehole without a recast layer. The method of the invention includes the following steps: first, a micro deep cooling borehole of a turbine blade is roughly machined by high power laser or electric sparks, and the like; the allowance for finish of the aperture is more than the thickness of the recast layer produced by using the machining method; and femtosecond laser is used for the secondary finish machining and profile modification of the micro deep cooling borehole; while femtosecond impulse laser is used for performing the finish machining and profile modification of the primarily machined micro deep borehole, under the precondition of guaranteeing the laser energy acting with the recast layer of a workpiece is higher than the ablation threshold of the material, a light beam is inclined for certain angle according to the spiral drilling mode; and the recast layer of the internal wall of the borehole is machined to remove erosion and profile modification by combining the method of lengthening the focal depth by a long focus lens. The concept of the combined machining method and the specific machining technology are used for solving the high-efficiency and high-precision machining problems of micro deep borehole groups of turbine blades.

Description

The laser Compound Machining and the correction method of no re cast layer micro deep-hole
Technical field
The present invention relates to a kind of laser Compound Machining and correction method, be specifically related to a kind of laser Compound Machining and correction method that does not have the re cast layer micro deep-hole.
Background technology
Gas turbine is the rotating type impeller motive power machine device that a kind of heat energy with gas or liquid fuel (as natural gas, fuel oil) burning generation is converted into mechanical power, being widely used in fields such as the energy, aviation, traffic, national defence, is the crucial great equipment that adapts to China's Energy restructuring and aircraft industry development.The high-temperature turbine blade is in gas turbine temperature the highest (more than 1400 ℃), the most complicated, the worst position of environment of stress, and its value accounts for the nearly 50% of product complete machine, is the critical component in the gas turbine.Along with improving constantly that large-scale gas turbine thrust and thrust-weight ratio require, fuel gas temperature improves constantly before the turbine, and the cooling technology of turbine moving blade becomes one of key factor of decision gas turbine performance.For forming the cooling air film protection high temperature blade of work down, the cooling provision that is adopted on the turbine moving blade mostly is blade inside at present the profiled holes cooling duct, especially has the cooling structure form of the aperture that gathers on the blade surface at leading edge.Thereby the little deep cooling of the blade surface but crudy of Kong Qun also just becomes and guarantees that blade is in high temperature, the key in adverse circumstances such as rotation following service life at a high speed.The high temperature whirling motion blade construction of gas turbine is very complicated, is made up of blade profile, Ye Tai, petiole and blade root; Each blade has tens of to hundreds of coolings holes, the aperture generally between 0.25~1.25mm, the degree of depth≤0.5mm in hole, aspect ratio≤10; Because the harsh working environment and the working condition requirement of high temperature whirling motion blade, these chilly but holes should not have microfissure, no recrystallized layer, move reliably to guarantee its high speed and long-life.
At present, kind of micro hole machining method is used for the micro hole machining of different situations surplus in the of nearly 50, and micro hole machining method commonly used mainly comprises: traditional machining (drilling, punching press, grinding and abrasive flows), spark machined, Electrolyzed Processing, Ultrasonic machining, electron beam processing, ion beam processing and Laser Processing.At the little deep cooling of turbine moving blade but in the hole processing, the maximum of usefulness are electric discharge machining method and common high power laser processing method.Because blade is with difficult-to-machine material manufacturings such as high-temperature titanium alloys, adopt the micro deep-hole of spark machined to have that working (machining) efficiency is low, cost is high, quality is unstable, working depth is restricted, blind hole adds problems such as chip removal in man-hour difficulty, and there is certain thickness re cast layer in the micro-pore wall of being processed.Equally, though use the Laser Processing micro deep-hole that plurality of advantages is also arranged, wide as the rapidoprint scope, working ability is strong, machining accuracy is high, productivity ratio is high, investment is little etc.But, the hole wall fineness in the hole that is processed by methods such as electric spark and high power lasers is poor, tapering is arranged, the hole shape roundness is bad, particularly on hole wall, produce re cast layer and micro-crack, this becomes the principal element of the chilly but hole of restriction turbo blade Processing Technology Development, therefore is mainly used in turbine stator vane processing at present.
Characteristics such as a kind of ultra-short pulse laser in recent years,---femtosecond laser is short with its action time, peak power is high, fuel factor is little are subjected to people's common concern.Femtosecond laser processing is exactly to make laser energy inject machining area at femtosecond in the time, and the machining area temperature is raise rapidly.Because injection length is extremely short, energy has little time diffusion, and the machining area material gasifies rapidly and sprays from material surface.Therefore, the melting zone of femtosecond laser processing is very little or do not have (after optimizing laser parameter), and the hole edge of being processed is comparatively smooth, clear-cut, neat, and finished surface does not have re cast layer and micro-crack.
Summary of the invention
The object of the present invention is to provide methods such as a kind of use high power laser or electric spark to the little deep cooling of turbo blade but after the preparatory processing of hole, utilize again femtosecond laser to this slightly deep cooling but carry out laser Compound Machining and the correction method that the no re cast layer micro deep-hole that re cast layer and bore edges repair is removed in secondary fine finishining in the hole.
For achieving the above object, the technical solution used in the present invention is: at first adopt high power laser, electric spark or other boring method that the little deep cooling of turbo blade is but carried out roughing in the hole, the allowance for finish that the aperture is stayed utilizes femtosecond laser according to spiral feeding mode little deep cooling but to be carried out secondary fine finishining and correction of the flank shape in the hole greater than the re cast layer thickness that this processing method produces again.
Concrete steps are as follows:
1) at first, utilize high power laser, electric spark or other boring method hole on turbo blade to process a size and precision coarse hole, the re cast layer thickness that the allowance for finish that the aperture is stayed produces greater than this processing method near required value;
2) adopt femtosecond laser according to spiral drilling method, make the femtosecond laser light beam contact processing with the bore edges in coarse hole, and simultaneously around the rotation of the central axis in hole, to realize ablation to re cast layer material on the looping pit inwall in this laser overburden depth scope;
3) after this layer looping pit inwall machines, the femtosecond laser light beam is moved downward to next Working position, adjusts the angle of light beam inclination and adopt long-focus lens to make depth of focus elongated to reduce the light beam irradiates scope according to the size in aperture;
4) so move in circles, progressively finish fine finishining and correction of the flank shape, finally obtain the chilly but hole that size and precision all meet processing request whole cooling hole inwall.
Because the present invention at first adopts high power laser, electric spark or other boring method that the little deep cooling of turbo blade is but carried out roughing in the hole, utilize femtosecond laser little deep cooling but to be carried out secondary fine finishining and correction of the flank shape in the hole again, solved the problem of turbo blade micro deep-hole group's efficient, high accuracy processing according to spiral feeding mode.
Description of drawings
Fig. 1, Fig. 2 are preliminary working metapore inwall constituent structure schematic diagrames;
Fig. 3 is the energy diagram of the effective processing part of laser;
Fig. 4 is the accurately machined schematic diagram in femtosecond laser light beam angle of inclination;
Fig. 5 is focusing technology (use long-focus lens make depth of focus elongated) figure;
Fig. 6 is the complex machining process schematic flow sheet;
Fig. 7 is a femtosecond laser fine finishining correction of the flank shape schematic diagram.
The specific embodiment
Below in conjunction with accompanying drawing the present invention is described in further detail.
Referring to Fig. 1,2, at first, utilize high power laser, electric spark or other boring method hole on turbo blade to process a size and precision coarse hole near required value, referring to Fig. 3, the re cast layer thickness that the allowance for finish that the aperture is stayed produces greater than this processing method; Adopt femtosecond laser according to spiral drilling method and in conjunction with the angle of inclination processing of Fig. 4, make the elongated focusing means of depth of focus with the long-focus lens of selecting for use among Fig. 5, coarse hole inwall after the roughing is carried out fine finishining to be handled, remove excess stock and re cast layer, finally obtain meeting the chilly but hole of processing request, referring to Fig. 6,7, its detailed process is: make the femtosecond laser light beam contact processing with the bore edges in coarse hole, and simultaneously around central axis 0 rotation in hole, to realize ablation to re cast layer material on the looping pit inwall in this laser overburden depth scope; After this layer looping pit inwall machines, the femtosecond laser light beam is moved downward to next Working position, in this process, because increase along with working depth, if light beam still keeps original mode incident,, then may damage manufactured hole wall for micro deep-hole less than 0.01mm, the present invention adopts light beam is tilted certain angle also in conjunction with selecting long-focus lens for use and making depth of focus elongated to reduce the method for light beam irradiates scope, avoids the generation of this situation; Adjust the angle of light beam inclination and adopt long-focus lens to make depth of focus elongated according to the size in aperture to reduce the light beam irradiates scope; So move in circles, progressively finish fine finishining and correction of the flank shape, finally obtain the chilly but hole that size and precision all meet processing request whole cooling hole inwall.

Claims (2)

1. do not have the little deep cooling of re cast layer but the laser Compound Machining and the correction method in hole, it is characterized in that: concrete steps are as follows:
Step (1): at first, utilize high power laser, electric spark or other drilling method on turbo blade, to hole to process a size and precision coarse hole, the re cast layer thickness that the allowance for finish that the aperture in described coarse hole is stayed produces greater than this drilling method near required value;
Step (2): adopt femtosecond laser according to spiral drilling method, make the femtosecond laser light beam contact processing with the bore edges in coarse hole, and simultaneously around the rotation of the central axis in coarse hole, to realize ablation to re cast layer material on the hole inwall in the coarse hole of the annular in this laser overburden depth scope.
2. the little deep cooling of no re cast layer according to claim 1 is the laser Compound Machining and the correction method in hole but, it is characterized in that: also comprise the steps:
Step (3): after the hole inwall in the coarse hole of the annular in this laser overburden depth scope machines, the femtosecond laser light beam is moved downward to next Working position, adjusts the angle of light beam inclination and adopt long-focus lens to make depth of focus elongated to reduce the laser beam irradiation scope according to the size in described aperture;
Step (4): so move in circles, progressively finish, finally obtain but hole of little deep cooling that size and precision all meet processing request to the but fine finishining and the correction of the flank shape of hole inwall of whole little deep cooling.
CN 200810150387 2008-07-18 2008-07-18 Laser compound processing and modifying method of no-recasting-layer micro deep-hole CN101332559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810150387 CN101332559B (en) 2008-07-18 2008-07-18 Laser compound processing and modifying method of no-recasting-layer micro deep-hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810150387 CN101332559B (en) 2008-07-18 2008-07-18 Laser compound processing and modifying method of no-recasting-layer micro deep-hole

Publications (2)

Publication Number Publication Date
CN101332559A CN101332559A (en) 2008-12-31
CN101332559B true CN101332559B (en) 2011-06-01

Family

ID=40195583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810150387 CN101332559B (en) 2008-07-18 2008-07-18 Laser compound processing and modifying method of no-recasting-layer micro deep-hole

Country Status (1)

Country Link
CN (1) CN101332559B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335789A (en) * 2011-11-11 2012-02-01 沈阳黎明航空发动机(集团)有限责任公司 Device and method for removing re-melting layers on inner walls of air film holes of blades
JP6161188B2 (en) * 2013-02-05 2017-07-12 株式会社ブイ・テクノロジー Laser processing apparatus and laser processing method
WO2016074135A1 (en) * 2014-11-10 2016-05-19 西门子公司 Method and device for processing cooling hole on workpiece with laser
CN104551091B (en) * 2014-12-15 2017-05-17 贵州黎阳航空动力有限公司 Method for machining small deep hole of part by using peck type variable speed drilling
US9962792B2 (en) * 2015-02-20 2018-05-08 General Electric Company Component repair using confined laser drilling
CN104722932B (en) * 2015-03-28 2016-09-14 大族激光科技产业集团股份有限公司 A kind of method for drilling holes of amorphous silicon solar cell substrate of glass
CN105269158B (en) * 2015-11-20 2017-04-19 西安交通大学 High-energy laser step-by-step machining method for cooling hole of turbine blade with thermal barrier coating
CN106425125B (en) * 2016-09-30 2019-01-29 广东工业大学 A kind of ceramic boring method of compound nanosecond-picosecond-femtosecond laser technology
CN106735942B (en) * 2016-11-29 2018-10-23 沈阳黎明航空发动机(集团)有限责任公司 A kind of combustion chamber Fuel Injector Bar micropore cold forming process method
CN106670751A (en) * 2016-12-14 2017-05-17 中国民航大学 Laser and spiral milling composited drilling method
CN108067739A (en) * 2017-12-08 2018-05-25 中国航发动力股份有限公司 A kind of aero-engine air film hole laser high efficiency composition processing method
CN109822237A (en) * 2018-12-26 2019-05-31 惠州市金百泽电路科技有限公司 A kind of high out of roundness through-hole laser processing for ceramic circuit board
CN109732202B (en) * 2019-02-26 2021-01-15 江苏大学 Ultra-fast laser rotary cutting processing method for deep micro-holes
CN110497086A (en) * 2019-07-19 2019-11-26 江苏大学 A kind of laser drilling device and method improving drilling quality based on laser discharge
CN110560906A (en) * 2019-08-02 2019-12-13 北方夜视技术股份有限公司 system and method for reducing roughness of inner surface of microchannel plate channel
CN110587141A (en) * 2019-10-10 2019-12-20 山东理工大学 Method for modulating surface characteristics in hole with high depth-diameter ratio by using laser
CN110814544B (en) * 2019-11-18 2021-03-09 温州大学 High-precision hole making method for double-laser composite cutting
CN111001941A (en) * 2019-12-26 2020-04-14 武汉华工激光工程有限责任公司 Laser drilling method
CN111716022A (en) * 2020-06-19 2020-09-29 西安交通大学 Laser composite machining device and method for turbine blade air film hole with thermal barrier coating

Also Published As

Publication number Publication date
CN101332559A (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP6431718B2 (en) Airfoil for turbine system
EP1688211B1 (en) Plasma arc weld repair of high nickel metal alloys
US3909157A (en) Turbine nozzle-vane construction
CN101652213B (en) Cutting tool with multiple flutes defining different profiles, and method
EP1670612B1 (en) Method for the production of a hole
CN105562930B (en) A kind of method for laser welding of power battery case
EP1270141B1 (en) Method for repairing cracks in a turbine blade root trailing edge
Li et al. Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture
US20180010484A1 (en) Manufacturing methods for multi-lobed cooling holes
EP2588266B1 (en) Solid state resistance welding for airfoil repair and manufacture
US6471474B1 (en) Method and apparatus for reducing rotor assembly circumferential rim stress
JP2011247248A (en) Article including chevron film cooling hole, and related process
US20080197120A1 (en) Method For Producing a Hole and Associated Device
CN100388997C (en) Spraying liquid bunch electrolysis-laser composite processing method and apparatus thereof
KR20050061305A (en) Turbine blade with trailing edge platform undercut
US8973264B2 (en) Method of machining a turbine disk
US10016853B2 (en) Deep trailing edge repair
US20080244905A1 (en) Method For Joining Blades to Blade Roots or Rotor Disks When Manufacturing and/or Repairing Gas Turbine Blades or Integrally Bladed Gas Turbine Rotors
CN102861956B (en) Machining method of gravity-free smelting layer air membrane hole of aviation engine turbine blade
CN103921356B (en) A kind of precision machined method of hard brittle material end face
JP2623296B2 (en) Drilling method and apparatus by laser and electric discharge machining
US8884182B2 (en) Method of modifying the end wall contour in a turbine using laser consolidation and the turbines derived therefrom
CN1826206A (en) Focusing an optical beam to two foci
CN104551091B (en) Method for machining small deep hole of part by using peck type variable speed drilling
CN102248307B (en) Ultraviolet laser fine processing device and method with double optical heads for different limiting apertures

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model