CN101320960A - 基于模糊神经网络的哈默斯坦模型的功放预失真方法 - Google Patents

基于模糊神经网络的哈默斯坦模型的功放预失真方法 Download PDF

Info

Publication number
CN101320960A
CN101320960A CNA2008100226318A CN200810022631A CN101320960A CN 101320960 A CN101320960 A CN 101320960A CN A2008100226318 A CNA2008100226318 A CN A2008100226318A CN 200810022631 A CN200810022631 A CN 200810022631A CN 101320960 A CN101320960 A CN 101320960A
Authority
CN
China
Prior art keywords
power amplifier
neural network
fuzzy neural
fuzzy
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100226318A
Other languages
English (en)
Other versions
CN100594669C (zh
Inventor
周健义
翟建锋
洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN200810022631A priority Critical patent/CN100594669C/zh
Publication of CN101320960A publication Critical patent/CN101320960A/zh
Application granted granted Critical
Publication of CN100594669C publication Critical patent/CN100594669C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

基于模糊神经网络的哈默斯坦模型的功放预失真方法,主要包括无记忆的非线性子系统和有记忆的线性子系统。无记忆的非线性子系统由一阶Sugeno FIS结构的模糊神经网络构成,用于补偿功率放大器静态幅度和相位失真特性,有记忆的线性子系统由有限冲激响应(FIR)滤波器构成,用于补偿功放的记忆效应。结合间接的学习结构,模糊神经网络的参数由最小二乘(Least-squares)和反向传播(Back-propagation)相结合学习算法来识别,线性FIR滤波器系数由最小二乘法确定。这种预失真方案,在不增加实现复杂度的同时,不但可以弥补功率放大器的非线性特性和记忆效应,而且发挥了模糊神经网络在预失真以及功放建模方面的灵活、稳定和高效的优点。

Description

基于模糊神经网络的哈默斯坦模型的功放预失真方法
技术领域
本发明是一种用于功率放大器线性化的预失真方法,特别涉及一种基于模糊神经网络(ANFIS,adaptive neuro-fuzzy inference system)的哈默斯坦(Hammerstein)模型的数字预失真方法。
背景技术
现代通信系统中(WCDMA、CDMA200和WIMAX等),随着不断激增的数据业务量,频谱资源日益稀缺。为了提高频谱利用率,提出的各种线性调制技术(QPSK、QAM和OFDM等),虽然新的调制方式可以有效地缓解频谱和高速数据传输之间的矛盾,但是却对通信系统中的射频系统提出了新的难题。由于这些数字调制方式都属于非恒包络调制,往往效率越高的调制方式,信号的峰均比(PAR,Peak-to-average Ratio)也越大,而高峰均比信号对功率放大器的线性要求很高。
功率放大器是射频系统中的重要组成部分,也是实现难度最大,价格最昂贵的部分。当输入信号功率较大时,功放就会进入饱和区甚至截止区,产生严重的非线性失真。当功率放大器工作到接近饱和区时,会引起严重的带内失真和带外频谱泄露,并且随着现代通信系统带宽的增加,功率放大器会产生的其它各种复杂的非线性特性和记忆效应等等,比如电记忆效应和热记忆效应。
对于射频功率放大器,通常采用功率回退的方法来达到线性的要求,然而,功率回退方法使得大功率器件只能输出很小的有效功率,大大降低功放的效率,造成整机成本的浪费和提高。近年来,各种功率放大器模型和线性化技术的研究越来越广泛。常见的功率放大器的无记忆效应和有记忆效应的非线性模型有:Saleh模型、Voltera级数和神经网络等;常用的线性化技术有前馈法(Feedforward)、笛卡儿负反馈法(Cartesian Feedback)、功率合成法(LINC)和各种预失真方法(Predistortion)等。而在各种线性化技术中,数字预失真技术(Digital Predistortion)是最近研究的热门。因为通过功率放大器模型的研究可以引申出各种数字预失真技术,一旦实现,不容易受温度和环境的影响,有较好的稳定性。而且在数字域里面可以实现各种算法,具有更高的灵活性。
高效的预失真方案和功率放大器模型有着密切的联系。有记忆功率放大器模型一般可以分为Volterra级数模型和神经网络模型。普通的Volterra级数一般适用于弱非线性特性的系统建模,参数会随着系统阶次和记忆长度的增大而急剧增加,所以参数多、计算量大、收敛慢,性能受到阶次大小和记忆长度的影响是这一类模型的缺点。因此,对普通Volterra级数模型的简化研究是当前研究一个重要内容,其中包括改进Volterra级数模型、Wiener模型、Hammerstein模型、并联Wiener模型、并联Hammerstein模型(等价于有记忆多项式模型)、Wiener-Hammerstein模型等。神经网络能逼近任意连续的非线性函数,并且具有灵活的学习方式,是近几年研究的重点。功放的神经网络模型中有延时三层前馈网络模型、径向基函数网络模型、反馈型网络模型等。神经网络虽然是非线性动态系统建模有效方法,但是大多数神经网络模型都是多层感知器的结构,难提取出模型参数,其复杂的多层结构在一定程度上制约了预失真的实现和应用。
发明内容
技术问题:本发明的目的在于提供一种基于模糊神经网络的哈默斯坦模型的功放预失真方法,这种基于模糊神经网络的Hammerstein模型的功率放大器线性化的预失真方案,复杂度低,实现比较方便,模型结构容易提取,能很好的补偿功率放大器的非线性特性和记忆效应。
技术方案:本发明的基于模糊神经网络的哈默斯坦模型的功放预失真方法结合了Voltera级数和神经网络的优点,同时避免了其缺点,解决现有的预失真方案的计算量大,自适应算法不容易收敛,实现起来比较复杂,高带宽和高峰均比信号条件下,难以补偿功率放大器的复杂的记忆效应等问题。包括如下步骤:
a)宽带多载波信号作为功放的基带输入信号,利用高速模数转换器采集功率放大器的输入和输出基带数据,
b)利用采集功放的输入和输出数据,建立用于预失真的功放逆模型:基于模糊神经网络的无记忆的非线性子系统和有记忆的线性子系统相结合的哈默斯坦模型,
c)训练模糊神经网络的哈默斯坦模型参数达到期望误差,以最终确定模型参数,
d)把基于模糊神经网络的哈默斯坦模型的预失真器复制到射频发送链路;基带输入信号通过预失真器,再通过正交调制器、上变频器和功率放大器输出。
无记忆的非线性子系统由模糊神经网络构成,用于补偿功率放大器静态幅度和相位失真特性,有记忆的线性子系统由有限冲击响应滤波器构成,用于补偿功放的记忆效应。
所述模糊神经网络中的无记忆的非线性子系统利用两个结构相同的一阶菅野型模糊推理系统的神经网络,其中一个用来弥补功率放大器的静态幅度失真,另一个用来弥补功率放大器的静态相位失真。
训练模型参数中的训练预失真网络的时候分为两步,首先识别模糊神经网络的参数,结合最小二乘和后向传播相结合学习方法,达到期望的误差;然后再利用最小二乘法识别线性有限冲激响应滤波器的参数。
有益效果:
1)模糊神经网络不存在多项式模型中性能受到阶次的限制的问题。
2)模糊神经网络的简单的if-else规则容易实现,而且可以根据系统的要求灵活的增加和减少,而且可以根据系统要求改变其输入成员函数类型。
3)模糊神经网络学习时间比较快,迭代次数少,而且不存在收敛性的问题,因为使用了最小二乘(Least-squares)和反向传播(Back-propagation)相结合学习算法。
4)把模糊神经网络和线性滤波器相结合,可以在不增加复杂度的同时,弥补功率放大器的记忆效应,这是对模糊神经网络的扩展。
5)模糊神经网络的Hammerstein模型的功率放大器预失真方法,结构简单,实现容易,是高效稳定的预失真方案。
附图说明
图1是本发明的基于模糊神经网络的Hammerstein模型的预失真器方案。
u(n):基带输入信号                        |.|:求复数模计算
I/Q:基带输入信号的I分量和Q分量           g(r(n)):幅度补偿函数
r(n):基带输入信号幅度                    p(r(n)):相位补偿函数
φ(n):基带输入信号相位                   ANFIS:模糊神经网络缩写
x(n):通过无记忆的非线性子系统后的输出函数
y(n):通过有记忆的子系统后的输出函数
图2是本发明的一阶Sugeno FIS结构的模糊神经网络的详细结构,以3条规则为例。
图3是本发明的用于预失真器参数训练的间接学习结构的方案。
图4是本发明以WCDMA三载波信号为输入时,功率放大器的输出频谱的实验结果对比,下边的红线是有预失真时的频谱,上边的蓝线是没有预失真时的频谱。
图5是本发明的基于模糊神经网络的哈默斯坦模型的功放预失真方法的流程图。
具体实施方式
通过模拟数字转换器(ADC),采集功率放大器基带输入信号I通道和Q通道,得到功放输入数据。
通过模拟数字转换器,采集功率放大器输出经过衰减器、耦合器、下变频器和正交解调器后的信号,得到功放输出数据。
利用功放输出和输入数据建立用于预失真方案的功率放大器逆模型,该模型主要由两部分组成,包括无记忆的非线性子系统和有记忆的线性子系统,无记忆的非线性子系统由一阶菅野型(Sugeno)模糊推理系统(FIS)结构的模糊神经网络构成,用于补偿功率放大器静态幅度和相位失真特性,有记忆的线性子系统由有限冲击响应(FIR)滤波器构成,用于补偿功放的记忆效应。
确定模型参数的过程也分为两部分:
a)利用功放输出和输入数据,和最小二乘(Least-squares)和反向传播(Back-propagation)相结合学习算法,训练一阶的模糊神经网络模型,提取参数;
b)在确定模糊神经网络模型参数后,利用模糊神经网络的输出数据和功放输出数据,利用最小二乘法确定FIR滤波器的参数。
最后把确定参数的预失真器复制到发送链路,用于补偿功率放大器的非线性的特性和记忆特性。
以下结合附图说明,对本发明的方案进行更加详细的说明,具体步骤如下:
1.建立基于模糊神经网络的Hammerstein模型的预失真器
1)建立模糊神经网络
如图1,利用两个一阶的模糊神经网络来补偿功率放大器的幅度和相位的失真。功率放大器基带输入信号u(n)幅度r(n),相位为φ(n),以r(n)作为模糊神经网络的输入,以g(r(n))和p(r(n))作为模糊神经网络的输出,g(r(n))用来补偿幅度失真,p(r(n))用来补偿相位失真。补偿后的信号x(n)可以由下面的等式描述:
x(n)=g(r(n))exp{j[φ(n)+p(r(n)]}
以3条规则的模糊神经网为例,其结构如图2,输入成员函数选择普通钟型函数(也可以选高斯函数等),因为模糊神经网络的输出成员函数都是线性函数,所以g(r(n))和p(R(n))结果如下:
g ( . ) = Σ i = 1 3 μ Ai ( r ( n ) ) ( G i r ( n ) + H i ) / Σ i = 1 3 μ Ai ( r ( n ) )
p ( . ) = Σ i = 1 3 μ Bi ( r ( n ) ) ( J i r ( n ) + K i ) / Σ i = 1 3 μ Bi ( r ( n ) )
μ A i ( x ) = 1 / ( 1 + | x - c iA a iA | 2 b iA )
μ B i ( x ) = 1 / ( 1 + | x - c iB a iB | 2 b iB )
其中aiA、aiB、biA、biB、ciA和ciB都输入成员函数的参数,Gi、Hi、Ji和Ki都是输出成员函数的参数。
2)建立记忆长度为Q的FIR线性滤波器。
y ( n ) = Σ i = 0 Q - 1 Σ k = 0 M - 1 a ik x ( n - i ) | x ( n - i ) | k
其中aik为FIR滤波器的系数。为了简化运算,本发明以M=1为例,那么上式简化为:
y ( n ) = Σ i = 0 Q - 1 a i x ( n - i )
其中ai为FIR滤波器的系数。其中Q和M的选择可以根据系统记忆效应的大小调整。
2.采集数据,利用间接学习结构进行参数训练,以取定模型参数。
如图3,利用间接学习结构,首先建立功率放大器的逆模型,通过数据采集和参数训练,把误差降低到期望水平,得到确定参数的逆模型结构,然后把此逆模型的结构直接复制到发送通道中,具体步骤如下:
1)选部分确定的宽带多载波信号(比如WCDMA多载波)用来功率放大器的基带输入信号。
2)利用高速ADC采样功率放大器基带输入信号,得到功放输入数据yf(n),同时利用高速ADC采样功率放大器输出信号(功放实际输出的射频信号通过衰减器、耦合器、下变频和正交解调器的信号),得到功放输出数据z(n),计算归一化的功放输出数据uf(n)=z(n)/G,这里G是发送链路的线性增益。
假设N为输入和输出采样数据的长度。
3)功放输出数据uf(n)和输入数据yf(n)复同步,得到用来建立模型的长度为M的训练数据,M<N。
4)计算uf(n)的幅度,作为两个等价的模糊神经网络输入数据;计算yf(n)的幅度,以及yf(n)和uf(n)的相位差,分别作为第一个和第二个模糊神经网络输出数据,并且结合最小二乘(Least-squares)和后向传播(Back-propagation)相结合学习算法,训练两个模糊神经网络的参数,分别达到期望的误差。
5)在模糊神经网络参数确定后,以uf(n)为输入,得到其输出xf(n),并且在xf(n)和yf(n)之间,利用最小二乘法确定FIR滤波器系数。
6)把基于模糊神经网络的Hammerstein模型的预失真器复制到发送链路。
3.把基带输入信号通过预失真器,再通过正交调制器、上变频器和功率放大器,完成预失真后的整个发送链路。

Claims (4)

1.一种基于模糊神经网络的哈默斯坦模型的功放预失真方法,该方法具体步骤如下:
a)宽带多载波信号作为功放的基带输入信号,利用高速模数转换器采集功率放大器的输入和输出基带数据,
b)利用采集功放的输入和输出数据,建立用于预失真的功放逆模型:基于模糊神经网络的无记忆的非线性子系统和有记忆的线性子系统相结合的哈默斯坦模型,
c)训练模糊神经网络的哈默斯坦模型参数达到期望的误差,以最终确定模型参数,
d)把基于模糊神经网络的哈默斯坦模型的预失真器复制到射频发送链路;基带输入信号通过预失真器,再通过正交调制器、上变频器和功率放大器输出。
2.根据权利要求1所述的基于模糊神经网络的哈默斯坦模型的功放预失真方法,其特征在于无记忆的非线性子系统由模糊神经网络构成,用于补偿功率放大器静态幅度和相位失真特性,有记忆的线性子系统由有限冲击响应滤波器构成,用于补偿功放的记忆效应。
3.根据权利要求2所述的基于模糊神经网络的哈默斯坦模型的功放预失真方法,其特征在于所述模糊神经网络中的无记忆的非线性子系统利用两个结构相同的一阶菅野型模糊推理系统的神经网络,其中一个用来弥补功率放大器的静态幅度失真,另一个用来弥补功率放大器的静态相位失真。
4.根据权利要求1所述的基于模糊神经网络的哈默斯坦模型的功放预失真方法,其特征在于训练模型参数中的训练预失真网络的时候分为两步,首先识别模糊神经网络的参数,结合最小二乘和后向传播相结合学习方法,达到期望的误差;然后再利用最小二乘法识别线性有限冲激响应滤波器的参数。
CN200810022631A 2008-07-18 2008-07-18 基于模糊神经网络的哈默斯坦模型的功放预失真方法 Expired - Fee Related CN100594669C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810022631A CN100594669C (zh) 2008-07-18 2008-07-18 基于模糊神经网络的哈默斯坦模型的功放预失真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810022631A CN100594669C (zh) 2008-07-18 2008-07-18 基于模糊神经网络的哈默斯坦模型的功放预失真方法

Publications (2)

Publication Number Publication Date
CN101320960A true CN101320960A (zh) 2008-12-10
CN100594669C CN100594669C (zh) 2010-03-17

Family

ID=40180844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810022631A Expired - Fee Related CN100594669C (zh) 2008-07-18 2008-07-18 基于模糊神经网络的哈默斯坦模型的功放预失真方法

Country Status (1)

Country Link
CN (1) CN100594669C (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808062A (zh) * 2010-03-26 2010-08-18 深圳市云海通讯股份有限公司 数字预失真处理电路、方法、功率放大装置及直放站
CN102082751A (zh) * 2009-11-27 2011-06-01 电子科技大学 基于改进mlbp的神经网络预失真方法
EP2538553A1 (en) * 2011-06-21 2012-12-26 Alcatel Lucent Apparatus and method for mitigating impairments of a transmit signal
CN103001591A (zh) * 2012-07-16 2013-03-27 北京邮电大学 一种非线性失真消除方法
CN103187932A (zh) * 2011-12-31 2013-07-03 富士通株式会社 功率放大器及其预失真器
CN103268069A (zh) * 2013-05-22 2013-08-28 常州大学 基于Hammerstein模型的自适应预测控制方法
CN103731105A (zh) * 2014-01-03 2014-04-16 东南大学 基于动态模糊神经网络的功放数字预失真装置及方法
CN103731105B (zh) * 2014-01-03 2016-11-30 东南大学 基于动态模糊神经网络的功放数字预失真装置及方法
CN103685111B (zh) * 2013-12-26 2017-01-11 大唐移动通信设备有限公司 一种数字预失真参数的求取方法及预失真系统
CN106487396A (zh) * 2015-09-02 2017-03-08 英特尔Ip公司 基于伏尔特拉级数的混频器减损校正
CN109683115A (zh) * 2019-02-12 2019-04-26 泰山医学院 一种磁共振射频功率放大器装置及磁共振系统
CN110224687A (zh) * 2019-05-14 2019-09-10 电子科技大学 一种基于人工神经网络预失真器的Gm_C滤波器
CN111245375A (zh) * 2020-01-19 2020-06-05 西安空间无线电技术研究所 一种复值全连接递归神经网络模型的功放数字预失真方法
CN111884602A (zh) * 2020-06-29 2020-11-03 北京邮电大学 一种基于单输出节点神经网络的功率放大器预失真方法
CN112262369A (zh) * 2018-07-26 2021-01-22 上海诺基亚贝尔股份有限公司 用于数据处理的方法、装置和计算机可读介质
CN112787600A (zh) * 2020-12-28 2021-05-11 电子科技大学 一种失真抑制频段可调的数字预失真校正方法与装置
WO2022166534A1 (zh) * 2021-02-07 2022-08-11 大唐移动通信设备有限公司 预失真处理方法和装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082751A (zh) * 2009-11-27 2011-06-01 电子科技大学 基于改进mlbp的神经网络预失真方法
CN101808062A (zh) * 2010-03-26 2010-08-18 深圳市云海通讯股份有限公司 数字预失真处理电路、方法、功率放大装置及直放站
CN101808062B (zh) * 2010-03-26 2013-03-06 深圳市云海通讯股份有限公司 数字预失真处理电路、方法、功率放大装置及直放站
EP2538553A1 (en) * 2011-06-21 2012-12-26 Alcatel Lucent Apparatus and method for mitigating impairments of a transmit signal
CN103187932A (zh) * 2011-12-31 2013-07-03 富士通株式会社 功率放大器及其预失真器
CN103187932B (zh) * 2011-12-31 2016-05-04 富士通株式会社 功率放大器及其预失真器
CN103001591A (zh) * 2012-07-16 2013-03-27 北京邮电大学 一种非线性失真消除方法
CN103268069A (zh) * 2013-05-22 2013-08-28 常州大学 基于Hammerstein模型的自适应预测控制方法
CN103268069B (zh) * 2013-05-22 2015-10-28 常州大学 基于Hammerstein模型的自适应预测控制方法
CN103685111B (zh) * 2013-12-26 2017-01-11 大唐移动通信设备有限公司 一种数字预失真参数的求取方法及预失真系统
CN103731105A (zh) * 2014-01-03 2014-04-16 东南大学 基于动态模糊神经网络的功放数字预失真装置及方法
CN103731105B (zh) * 2014-01-03 2016-11-30 东南大学 基于动态模糊神经网络的功放数字预失真装置及方法
CN106487396A (zh) * 2015-09-02 2017-03-08 英特尔Ip公司 基于伏尔特拉级数的混频器减损校正
CN106487396B (zh) * 2015-09-02 2019-10-15 英特尔Ip公司 基于伏尔特拉级数的混频器减损校正
CN112262369A (zh) * 2018-07-26 2021-01-22 上海诺基亚贝尔股份有限公司 用于数据处理的方法、装置和计算机可读介质
CN112262369B (zh) * 2018-07-26 2024-04-02 上海诺基亚贝尔股份有限公司 用于数据处理的方法、装置和计算机可读介质
CN109683115A (zh) * 2019-02-12 2019-04-26 泰山医学院 一种磁共振射频功率放大器装置及磁共振系统
CN109683115B (zh) * 2019-02-12 2024-05-03 泰山医学院 一种磁共振射频功率放大器装置及磁共振系统
CN110224687A (zh) * 2019-05-14 2019-09-10 电子科技大学 一种基于人工神经网络预失真器的Gm_C滤波器
CN111245375A (zh) * 2020-01-19 2020-06-05 西安空间无线电技术研究所 一种复值全连接递归神经网络模型的功放数字预失真方法
CN111245375B (zh) * 2020-01-19 2023-06-06 西安空间无线电技术研究所 一种复值全连接递归神经网络模型的功放数字预失真方法
CN111884602A (zh) * 2020-06-29 2020-11-03 北京邮电大学 一种基于单输出节点神经网络的功率放大器预失真方法
CN112787600A (zh) * 2020-12-28 2021-05-11 电子科技大学 一种失真抑制频段可调的数字预失真校正方法与装置
WO2022166534A1 (zh) * 2021-02-07 2022-08-11 大唐移动通信设备有限公司 预失真处理方法和装置

Also Published As

Publication number Publication date
CN100594669C (zh) 2010-03-17

Similar Documents

Publication Publication Date Title
CN100594669C (zh) 基于模糊神经网络的哈默斯坦模型的功放预失真方法
EP1738511B1 (en) Wideband enhanced digital injection predistortion system and method
CN101997492A (zh) 基于简化模糊神经网络的增强维纳模型的功放预失真方法
EP1749359B1 (en) Digital predistortion system and method for high efficiency trasmitters
CN102893399B (zh) 预失真校正方法、预失真校正装置、发射机及基站
Ghannouchi et al. Distortion and impairments mitigation and compensation of single‐and multi‐band wireless transmitters
CN101072220A (zh) 用于自适应功率放大器的径向基神经网络预失真方法
CN111245375A (zh) 一种复值全连接递归神经网络模型的功放数字预失真方法
CN102969987A (zh) 基于欠采样的宽带功放预失真方法
CN115589209A (zh) 补偿功率放大器失真的方法以及系统
CN101350597A (zh) 一种宽带射频功率放大器建模方法
CN102081751B (zh) 基于实数延时神经网络的同步双频功率放大器建模方法
CN102624338A (zh) 基于Volterra滤波的双循环反馈模型的功放预失真方法
Ibnkahla Neural network predistortion technique for digital satellite communications
Yeşil et al. Experimental analysis and FPGA implementation of the real valued time delay neural network based digital predistortion
Jaraut et al. Review of the neural network based digital predistortion linearization of multi-band/MIMO transmitters
Boumaiza et al. Wideband RF power amplifier predistortion using real-valued time-delay neural networks
CN110276122A (zh) 适用于多比特数字正交发射机的数字预失真前端电路
Bulusu et al. PA linearization of FBMC-OQAM signals with overlapped recursive error correcting predistortion
Ntouné et al. Power amplifier behavioral modeling by neural networks and their implementation on FPGA
CN201878098U (zh) 基于Volterra级数间接学习型预失真线性化系统
Ruotsalainen et al. Behavioral modeling of digital transmitters with time delay neural networks
Nakamura et al. Determining Memory Polynomial Model Parameters from Those of Complex p-th Order Inverse for Designing Predistorter
CN115913140B (zh) 运算精度控制的分段多项式数字预失真装置和方法
Tanovic et al. Discrete-time models resulting from dynamic continuous-time perturbations in phase-amplitude modulation-demodulation schemes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100317

Termination date: 20210718