CN101320028A - 一种流体热物性测量的实验平台 - Google Patents

一种流体热物性测量的实验平台 Download PDF

Info

Publication number
CN101320028A
CN101320028A CNA2008100183473A CN200810018347A CN101320028A CN 101320028 A CN101320028 A CN 101320028A CN A2008100183473 A CNA2008100183473 A CN A2008100183473A CN 200810018347 A CN200810018347 A CN 200810018347A CN 101320028 A CN101320028 A CN 101320028A
Authority
CN
China
Prior art keywords
temperature
fluid
thermostatic medium
constant temperature
thermophysical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100183473A
Other languages
English (en)
Other versions
CN101320028B (zh
Inventor
吴江涛
尹建国
潘江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN 200810018347 priority Critical patent/CN101320028B/zh
Publication of CN101320028A publication Critical patent/CN101320028A/zh
Application granted granted Critical
Publication of CN101320028B publication Critical patent/CN101320028B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明涉及流体热物理研究领域,尤其涉及流体热物理性质的实验测量领域,公开了一种流体热物性测量的实验平台。它包括计算机,由计算机控制的恒温实验环境和压力测控系统,以及热物性实验中用于待测流体的温度测量系统,其温度测量信号输入计算机,其特征在于,所述恒温实验环境含有盛装有恒温介质的槽体、向恒温介质提供热量的加热装置、向恒温介质提供冷量的制冷装置、用于恒温介质的温度检测装置以及热平衡控制装置,所述温度检测装置向计算机提供恒温介质的温度信息,计算机产生决策信息输入热平衡控制装置,热平衡控制装置控制所述加热装置和制冷装置向恒温介质提供热量或冷量。

Description

一种流体热物性测量的实验平台
技术领域
本发明涉及流体热物理研究领域,尤其涉及流体热物理性质的实验测量领域,具体为一种流体热物性测量的实验平台。
背景技术
流体的热物性对于许多的科学研究和工程设计领域,特别是在能源、动力、制冷和化工等领域,都是不可缺少的基础参数,对于提高热能与机械能的转换效率、减少污染物排放等方面都有着重要的作用。因此,获取满足用户使用要求的流体热物性数据始终是热物性研究人员所围绕和关心的问题。特别是目前工程热物理领域的大量原创性研究,如清洁汽车燃料、新型动力、制冷和热泵循环,氢能和太阳能利用、功能流体强化传热、废弃物处理等,均涉及了许多的新工质及混合工质,而这些工质的热物性数据普遍缺乏,不利于整个研究的进一步深入。可以认为,在工程热物理领域,要取得原创性的科研成果,拥有高精度的工质热物性数据就是必须首先解决的关键问题之一。
流体热物性数据的获取途径主要有:实验测量、理论推算和计算机模拟。利用计算机模拟方法来获取流体物性数据是随着计算机技术的发展而产生的,尽管整体研究还处于起步阶段,但已表现出了良好的前景,然而就现阶段的研究水平而言,由于其精度较低,想要利用计算机模拟的方法取代实验测量或理论推算则显然是不可能的。到目前为止,可以认为实验测量仍然是流体热物性数据获取的最主要的途径,而且没有精确的实验数据作基础,就不能得到合理的计算机模拟结果或理论推算结果,因此在今后很长的一段时间内,实验研究仍将是流体热物性研究的最主要的手段。而本发明正是为流体热物性的实验研究提供了一个能够满足其测量精度要求的基础实验平台。
另外,就流体热物性实验研究的现状而言,目前仍处于半自动或手工状态,这样在实验过程就需要消耗大量的人力和物力,而且测量周期很长,这显然不能满足当前工业界和其他领域对新工质的热物性数据的大量需求。本发明作为一个流体热物性研究的基础实验平台,实现了温度和压力基本热工参数测量的自动化,提高了流体热物性测量的自动化程度,缩短了测量周期。
发明内容
本发明的目的在于提供一种流体热物性测量的实验平台,它能够提供温度连续调节并自动稳定的恒温实验环境,满足流体热物性实验要求的温度自动测量和压力自动测量,为提高热物性测量的自动化水平提供了保证,有助于流体热物性实验测量精度的提高。
为了达到上述技术目的,本发明采用以下技术方案予以实现:一种流体热物性测量的实验平台,包括计算机,由计算机控制的恒温实验环境和压力测控系统,以及热物性实验中用于待测流体的温度测量系统,其温度测量信号输入计算机,其特征在于,可以实现热物性测量过程中的恒温实验环境控制、待测流体压力和温度信号自动测量的同步进行,可为流体热物性实验的自动化测量提供一个基础的实验平台,恒温实验环境含有盛装有恒温介质的槽体、向恒温介质提供热量的加热装置、向恒温介质提供冷量的制冷装置、温度检测装置以及热平衡控制装置,所述温度检测装置向计算机提供恒温介质的温度信息,计算机产生决策信息输入热平衡控制装置,热平衡控制装置控制所述加热装置和制冷装置向恒温介质提供热量或冷量以维持恒温介质的恒温状态。
将实验装置置于恒温介质中,所述实验装置内充入待测流体并分别与压力测控系统和温度测量系统相连接,所述实验装置用于待测流体的热物性实验测量。当实验装置内待测流体的温度与恒温介质温度达到稳定的平衡状态后,压力测控系统和温度测量系统可分别独立的对实验装置内待测流体的压力信号和温度信号进行测量,既保证了测量的精度和准确度,又具有较高的自动化程度。
本发明具有以下特点:
(1)、所述槽体含有外槽、内槽、隔热层、换热器、整流栅、观察窗和搅拌器。内槽、外槽之间填充隔热保温材料作为隔热层,有效的减小了恒温介质与环境的热量交换,降低了恒温介质的温度波动度。换热器设置在内槽底部并与所述制冷装置相连通,保证了冷量传递过程中的均匀性,有效的提高了恒温介质的温度控制精度。所述整流栅设置在内槽里,将内槽分为加热区和工作区,所述加热装置设置在内槽加热区,避免了热量对所述实验装置的直接冲击。所述搅拌器布置在加热区的中心位置,搅拌器轴上等距布置三个搅拌叶轮,每个叶轮沿圆周均布三个叶片,相邻两个叶轮的叶片角度相同,方向相反,搅拌器的设置增加了恒温介质的扰动流动,降低了恒温介质的温度不均匀性。
本发明的进一步改进还在于槽体侧面设置有结构为双层玻璃的观察窗,所述观察窗包括内外两个法兰、石英玻璃及套筒、平板玻璃和筒形压板;具体安装方式为:在内槽开设观察孔,观察孔通过内外两个法兰密封连接石英玻璃,套筒插入外法兰内侧,将观察光路引出外槽,然后通过筒形压板将平板玻璃压接在套筒上。所述观察窗为双层玻璃结构,有效的避免了在低温实验条件下观察窗表面的结霜问题。
(2)、所述压力测控系统包括气瓶、气库、真空泵、压力传感器、差压变送器、第二截止阀和第一、第二电磁阀门。气瓶、第一电磁阀、气库、第二截止阀和真空泵通过管道依次串联;压力传感器与气库连通,采集气库压力;气库还通过第二电磁阀与大气连通;差压变送器的两个输入口通过管道分别与气库和内装待测流体的实验装置连通;压力传感器和差压变送器的测量信号分别输入计算机,计算机输出控制信号分别到第一电磁阀和第二电磁阀D2。所述压力测控装置通过计算机控制第一、第二电磁阀实现了热物性测量过程中待测流体压力信号的自动测量,并且气库的设置缓冲了测量过程中气库内气体压力的变化,减弱了高压气体对压力传感器和差压变送器的冲击作用,降低了压力测控系统对管路密封性能的要求。
本发明还具有如下的优点:1、槽体的两侧开有观察窗,能够对槽体内的实验过程进行直接的观察和测量;2、通过对热量和冷量的控制能够使槽体迅速达到所设定温度并稳定在一定的温度波动度和不均匀性之内;3、温度检测装置用于恒温介质的温度自动控制,温度测量系统用于流体热物性实验中待测流体的温度实时测量和自动记录,二者相互独立;4、压力测控系统对热物性实验过程中压力信号的实时测量和记录是相对独立的部分,并能够与温度测量系统同时工作。
附图说明
以下结合附图说明和具体实施方式对本发明作进一步详细说明。
图1是本发明系统原理图;
图2是本发明的槽体结构主视剖视图;
图3是本发明的槽体结构俯视剖视图;
图4是本发明的观察窗结构示意图;
图5是槽内恒温介质的温度控制原理图;
图6是整流栅结构示意图;
图7是搅拌器基本结构示意图;
图8是待测流体的温度测量原理图;
图9是待测流体的压力测控原理图;
其中:1、外槽,2、内槽,3、隔热层,4、换热器,5、整流栅,6、观察窗,7、盖板,8、恒温介质温度传感器,9、搅拌器,10、内法兰,11、外法兰,12、套筒,13、筒形压板,14、平板玻璃,15、石英玻璃,16、外支架,17、主加热器18、辅加热器,19、内装待测流体的实验装置,20、搅拌器轴,21、搅拌叶轮,22,搅拌叶片,23、待测流体温度传感器。
具体实施方式
本发明是一个由恒温实验环境、温度测量系统和压力测控系统三部分组成的有机整体,三个部分相辅相成,共同组成流体热物性测量的实验平台。下面分别加以介绍。
参照图1,流体热物性恒温实验环境,包括用于盛装恒温介质的槽体、向恒温介质提供热量的加热装置、向恒温介质提供冷量的制冷装置、用于恒温介质的温度检测装置以及热平衡控制装置,所述温度检测装置向计算机提供恒温介质的温度信息,计算机产生决策信息输入热平衡控制装置,热平衡控制装置控制所述加热装置和制冷装置产生热量或冷量,保证恒温介质保持在某一恒温状态。
参照图2、图3,槽体包括外槽1、内槽2、隔热层3、换热器4、整流栅5、观察窗6和搅拌器9。内槽2设置在外槽1内,内槽2、外槽1之间填充隔热保温材料作为隔热层3。换热器4设置在内槽2的底部,并与制冷装置相连通,向恒温介质提供冷量。整流栅5设置在内槽2里,将内槽2分为加热区和工作区。搅拌器9设置在加热区的中心位置。
参照图5,加热装置包括主加热器17(功率小)、辅加热器18(功率大)、,均设置在内槽的加热区。
本发明中恒温实验台的各部件如下:
(1)内槽
内槽用来盛装恒温介质,本实施例中内槽的有效工作体积为350×350×450mm(长×宽×高)。
(2)绝热层
内槽与外槽之间填充保温材料作为绝热层,所述保温材料可以选用发泡材料、玻璃棉、玻璃纤维棉毡和普通硅酸铝纤维针刺毯等。所述绝热层的设计与恒温槽的性能密切相关,将同时影响槽体的温度波动度和均匀性。本实施例选用普通硅酸铝纤维针刺毯作为绝热材料,最小厚度为15厘米。
(3)外槽
外槽主要对内槽起支撑和保护的作用,它的结构尺寸取决于内槽的结构以及绝热层的厚度。外槽的四周及底部设置绝热层与内槽相隔,顶部为一不锈钢顶盖,并用环氧板与内槽隔开。
(4)换热器
换热器是制冷装置与恒温介质进行冷量交换的中间桥梁,它的传热效果直接影响恒温介质的冷却速率以及低温下槽体的温度控制精度。参照图5,本实施例将换热器4设置在内槽2的底部,换热器4通过制冷剂的进出口铜管和位于槽体下方的制冷装置相连构成制冷回路。
(5)整流栅
整流栅将内槽分割为加热区和工作区两部分,不仅能使恒温介质在工作区形成均匀稳定的宏观流动,保证了恒温介质温度的均匀性,而且减弱了恒温介质对实验装置的直接冲击。所述整流栅的基本结构为在平板上叉排或顺排布置一系列圆孔或多边形孔,为了增加整流栅的结构强度,还可以将平板折边。参照图6,本实施例中的整流栅的具体结构为:左右两边和顶部折边的平板,平板上叉排布置一系列圆孔。
(6)观察窗
为了对实验现象进行观察和测量,在槽体两侧各安装一个观察窗6。所述观察窗的结构参照图4,由内外两个法兰10、11,石英玻璃15以及套筒12、平板玻璃14、筒形压板13等组成。所述观察窗为双层玻璃结构,具体安装方式为在内槽2开设观察孔,观察孔通过内外两个法兰10、11密封连接圆形平板石英玻璃15,套筒12插入外法兰11内侧,将观察光路引出外槽1,然后通过筒形压板13将平板玻璃14压接在套筒12上。
(7)搅拌器
搅拌器布置在加热区的中心位置,搅拌器的设置增加了恒温介质的扰动流动,降低了恒温介质的温度不均匀性。所述搅拌器的基本结构为在搅拌轴上布置一个或多个搅拌叶轮,每个搅拌叶轮上对称设置多个搅拌叶片。本实施例中提出了一种新的搅拌器结构,参照图7,搅拌器轴20上等距布置三个搅拌叶轮21,每个叶轮沿圆周均布三个叶片22,相邻两个叶轮的叶片角度相同,方向相反。
(8)加热装置
参照图5,加热装置包括主、辅两个加热器17、18。辅助加热器18(功率大)用于槽体内恒温介质的快速升温;主加热器17(功率小)用于槽体内恒温介质的温度控制。主、辅两个加热器均采用电加热方式。主辅加热器17、18均设置在内槽2的加热区。
(9)制冷装置
本实施例的制冷装置采用压缩制冷方式,参照图5,其制冷机组放置在槽体外槽1的下方,换热器4作为该制冷装置的蒸发器与恒温介质进行冷量交换。
(10)温度检测装置及热平衡控制装置
温度检测装置包括恒温介质温度传感器8和温度采集器。温度传感器8选用铂电阻温度传感器,该传感器浸没在内槽工作区的恒温介质中。温度采集器测量得到铂电阻的电阻变化并转化为温度值,然后将该温度值传送到计算机用于恒温介质的温度控制过程。计算机通过热平衡控制装置将其控制信号转化为加热装置和制冷装置的实际动作。
(11)支架
为了便于控制内槽和外槽之间的相对位置,在外槽的底部设置一个内支架,内槽放置在内支架的上部。通过对内支架尺寸的调节即可控制内槽和外槽底部及四周的距离。
另外从方便实验操作和安全方面的角度考虑,还为外槽设置一个外支架16,参照图5,此外支架16用来将整个槽体放置在一定的高度位置上,这样在外槽的底部留有一定的空间,此空间被用来放置制冷装置。
在恒温实验环境中还需要选择合适的恒温介质。恒温介质选择的一般原则为:在实际使用的温度范围内,不影响恒温介质的流动,能够保证其所需的温度波动度和均匀度,其粘度不能超过50厘沱。根据以上原则及流体热物性实验要求,可以选用以下恒温介质:
●选用201系列甲基硅油作为恒温介质,其可供使用的温度范围为-30~+300℃。
●选用无水酒精作为恒温介质,其可供使用的温度范围为-105~+50℃。
●选用水作为恒温介质,其可供使用的温度范围为+5~+95℃。
●使用盐溶液作为恒温介质,其可供使用的温度范围为+250~+550℃。
本实施例中使用201-10甲基硅油作为恒温介质,其基本性质为:1)使用温度范围为-30~150℃;2)25℃时的粘度为10厘沱;3)闪点为155℃。
本发明中恒温实验环境的工作过程为:参照图5,首先由温度检测装置测量得到当前恒温介质的温度值并提供给计算机,计算机通过判断当前温度值和设定温度值的差异产生决策信息输入到热平衡控制装置,热平衡控制装置控制加热装置和制冷装置产生热量和冷量,保证恒温介质稳定在设置的恒温状态:当恒温介质的温度值低于设定温度值时,热平衡控制装置控制辅助加热器工作,向恒温介质提供热量,当恒温介质的温度与设定温度值的差值在一定范围内(小于0.5℃)时,热平衡控制装置关闭辅助加热器,打开主加热器,并控制主加热器的加热功率,使恒温介质稳定在设置的恒温状态;当恒温介质的温度高于设定的温度值时,热平衡控制装置打开制冷装置向恒温介质提供冷量,将恒温介质的温度降低到设定温度值。
本实施例中,恒温介质选用201-10甲基硅油,在它的工作温度范围-30~150℃内恒温介质能够达到温度波动度≤±20mK/15min的性能要求。
参照图8,温度测量系统由铂电阻温度传感器23、测温准确度在5~10mK以上的测温仪和IEEE 488总线接口组成。测温仪通过IEEE 488总线接口与计算机相连,向计算机提供待测流体的温度。
本实施例中,温度测量系统选用25Ω的标准长杆铂电阻温度传感器,传感器用于测量放置于恒温介质中实验装置19内待测流体的真实温度;测温仪选8位半的数字万用表;测温仪通过GPIB接口卡将数据传递到计算机,计算机显示最终的测温结果。
参照图9,压力测控系统包括气瓶、气库、真空泵、压力传感器、差压变送器和阀门。气瓶、第一电磁阀D1、第一截止阀V1、气库、第二截止阀D2和真空泵入口通过管道依次串联;压力传感器与气库连通,采集气库压力;气库还依次通过第三截止阀V3和第二电磁阀D2与大气连通;差压变送器的两个输入口通过管道分别与气库和内装待测流体的实验装置连通。压力传感器和差压变送器的测量信号分别输入计算机,计算机输出控制信号分别到第一电磁阀D1和第二电磁阀D2。
压力测量时,首先关闭第二截止阀V2,打开第一截止阀V1和第三截止阀V3,由差压变送器测量气库和实验装置内待测流体之间的压力差值并将此压力差值送到计算机,当此压力差值超过差压变送器的最大有效量程时,计算机输出控制信号到第一电磁阀D1,第一电磁阀D1打开,将气瓶的高压气体充入气库;当此压力差值低于差压变送器的最小有效量程时,计算机输出控制信号到第二电磁阀D2,第二电磁阀D2打开,将气库的高压气体放入大气中;当实验装置内待测流体的压力值小于当地大气压力值时,打开第二截止阀V2,开启真空泵使气库压力低于大气压力值;最后,差压变送器测量气库和实验装置内待测流体之间的压力差值,压力传感器测量气库内的压力值,同时将此压力差值和压力值送到计算机进行处理得到实验装置内待测流体的压力值。压力测控系统在本发明中是相对独立的一部分,它既可与温度系统同时运行,也可独立进行压力测量。

Claims (5)

1、一种流体热物性测量的实验平台,包括计算机,由计算机控制的恒温实验环境和压力测控系统,以及热物性实验中用于待测流体的温度测量系统,其温度测量信号输入计算机,其特征在于,可以实现热物性测量过程中的恒温实验环境控制、待测流体压力和温度信号自动测量的同步进行,为流体热物性实验的自动化测量提供一个基础的实验平台;所述恒温实验环境含有盛装有恒温介质的槽体、向恒温介质提供热量的加热装置、向恒温介质提供冷量的制冷装置、用于恒温介质的温度检测装置以及热平衡控制装置,所述温度检测装置向计算机提供恒温介质的温度信息,计算机产生决策信息输入热平衡控制装置,热平衡控制装置控制所述加热装置和制冷装置向恒温介质提供热量或冷量。
2、根据权利要求1所述的一种流体热物性测量的实验平台,其特征在于,所述槽体设置有整流栅和搅拌器;所述整流栅将槽体的内槽分为搅拌器和工作区,所述搅拌器设置在加热区的中心位置,搅拌器轴上布置三个搅拌叶轮,每个叶轮沿圆周均布三个叶片,相邻两个叶轮的叶片角度相同,方向相反。
3、根据权利要求1所述的一种流体热物性测量的实验平台,其特征在于,所述槽体两侧设置有双层玻璃结构的观察窗;所述观察窗包括内外两个法兰、石英玻璃、及套筒、平板玻璃和筒形压板;所述观察窗安装结构为:内槽开设观察孔,观察孔通过内外两个法兰密封连接石英玻璃,套筒插入外法兰内侧,将观察光路引出外槽,然后通过筒形压板将平板玻璃压接在套筒上。
4、根据权利要求1所述的一种流体热物性测量的实验平台,其特征在于,所述槽体的内槽和外槽之间填充隔热保温材料作为隔热层;所述槽体的底部设置有换热器,所述换热器与制冷装置相连通。
5、根据权利要求1所述的一种流体热物性测量的实验平台,其特征在于,所述压力测控系统包括气瓶、气库、真空泵、压力传感器、差压变送器、第二截止阀和第一、第二电磁阀门;气瓶、第一电磁阀、气库、第二截止阀和真空泵通过管道依次串联;压力传感器与气库连通,采集气库压力;气库还通过第二电磁阀与大气连通;差压变送器的两个输入口通过管道分别与气库和内装待测流体的实验装置连通;压力传感器和差压变送器的测量信号分别输入计算机,计算机输出控制信号分别到第一电磁阀和第二电磁阀。
CN 200810018347 2008-05-30 2008-05-30 一种流体热物性测量的实验平台 Expired - Fee Related CN101320028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810018347 CN101320028B (zh) 2008-05-30 2008-05-30 一种流体热物性测量的实验平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810018347 CN101320028B (zh) 2008-05-30 2008-05-30 一种流体热物性测量的实验平台

Publications (2)

Publication Number Publication Date
CN101320028A true CN101320028A (zh) 2008-12-10
CN101320028B CN101320028B (zh) 2013-04-17

Family

ID=40180195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810018347 Expired - Fee Related CN101320028B (zh) 2008-05-30 2008-05-30 一种流体热物性测量的实验平台

Country Status (1)

Country Link
CN (1) CN101320028B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109450A (zh) * 2009-12-23 2011-06-29 通用电气公司 用于在腐蚀性环境中测量流体性质的装置
CN102183544A (zh) * 2010-12-10 2011-09-14 陈昭栋 热物性瞬态测量方法及装置
CN102607675A (zh) * 2012-03-27 2012-07-25 山东省计量科学研究院 燃气表温度试验装置
CN103263951A (zh) * 2013-06-06 2013-08-28 苏州市金翔钛设备有限公司 一种可搅拌的恒温槽
CN103495444A (zh) * 2013-10-11 2014-01-08 万鸾飞 低温恒温槽及低温恒温控制方法
CN104132843A (zh) * 2014-07-30 2014-11-05 南京理工大学 强力热耦合环境实验平台
CN104307587A (zh) * 2014-11-05 2015-01-28 太原理工大学 一种大容量高精度液体恒温槽
CN105536907A (zh) * 2016-01-21 2016-05-04 安徽万瑞冷电科技有限公司 低温恒温池实验平台
CN109459347A (zh) * 2018-11-26 2019-03-12 西安航天计量测试研究所 用于标准粘度液的定值及工作用粘度计的检定/校准装置
CN109724896A (zh) * 2018-11-26 2019-05-07 西安航天计量测试研究所 一种用于工作粘度液定值的恒温槽
CN109799163A (zh) * 2017-11-16 2019-05-24 朗阁仪器(北京)股份有限公司 一种用于物理吸附仪的制冷装置及无需使用制冷剂的物理吸附仪
CN110715950A (zh) * 2019-09-27 2020-01-21 中国科学院理化技术研究所 一种可变容积流体热物性测量装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109450B (zh) * 2009-12-23 2014-03-05 通用电气公司 用于在腐蚀性环境中测量流体性质的装置
CN102109450A (zh) * 2009-12-23 2011-06-29 通用电气公司 用于在腐蚀性环境中测量流体性质的装置
CN102183544A (zh) * 2010-12-10 2011-09-14 陈昭栋 热物性瞬态测量方法及装置
CN102183544B (zh) * 2010-12-10 2014-01-29 陈昭栋 热物性瞬态测量方法及装置
CN102607675A (zh) * 2012-03-27 2012-07-25 山东省计量科学研究院 燃气表温度试验装置
CN103263951A (zh) * 2013-06-06 2013-08-28 苏州市金翔钛设备有限公司 一种可搅拌的恒温槽
CN103495444B (zh) * 2013-10-11 2016-01-06 芜湖职业技术学院 低温恒温槽及低温恒温控制方法
CN103495444A (zh) * 2013-10-11 2014-01-08 万鸾飞 低温恒温槽及低温恒温控制方法
CN104132843A (zh) * 2014-07-30 2014-11-05 南京理工大学 强力热耦合环境实验平台
CN104307587A (zh) * 2014-11-05 2015-01-28 太原理工大学 一种大容量高精度液体恒温槽
CN104307587B (zh) * 2014-11-05 2015-09-30 太原理工大学 一种大容量高精度液体恒温槽
CN105536907A (zh) * 2016-01-21 2016-05-04 安徽万瑞冷电科技有限公司 低温恒温池实验平台
CN109799163A (zh) * 2017-11-16 2019-05-24 朗阁仪器(北京)股份有限公司 一种用于物理吸附仪的制冷装置及无需使用制冷剂的物理吸附仪
CN109799163B (zh) * 2017-11-16 2023-05-05 朗阁仪器(北京)有限公司 一种用于物理吸附仪的制冷装置及无需使用制冷剂的物理吸附仪
CN109459347A (zh) * 2018-11-26 2019-03-12 西安航天计量测试研究所 用于标准粘度液的定值及工作用粘度计的检定/校准装置
CN109724896A (zh) * 2018-11-26 2019-05-07 西安航天计量测试研究所 一种用于工作粘度液定值的恒温槽
CN109724896B (zh) * 2018-11-26 2024-04-12 西安航天计量测试研究所 一种用于工作粘度液定值的恒温槽
CN110715950A (zh) * 2019-09-27 2020-01-21 中国科学院理化技术研究所 一种可变容积流体热物性测量装置
CN110715950B (zh) * 2019-09-27 2022-11-22 中国科学院理化技术研究所 一种可变容积流体热物性测量装置

Also Published As

Publication number Publication date
CN101320028B (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN101320028B (zh) 一种流体热物性测量的实验平台
CN104934082B (zh) 一种温压可控的海洋热工环境模拟系统
CN204302211U (zh) 一种模拟空气流动对材料表面传热影响的试验装置
CN105372082B (zh) 一种节能环保多功能智能化换热器性能测试系统
CN102507193B (zh) 动力舱模拟系统
CN103592142A (zh) 适用于大型发电设备换热器传热与阻力特性的测试系统
CN102426149A (zh) 一种用于土壤水热耦合试验的系统
Zheng et al. Numerical study on impact of non-heating surface temperature on the heat output of radiant floor heating system
CN103558046A (zh) 一种换热器能效评价系统
CN104198331B (zh) 一种等热流加热装置及其使用该装置的幂律流体在多孔介质中等热流加热的实验装置
CN110277179A (zh) 一种板型燃料元件轴向和横向非均匀释热模拟试验装置
CN104263634A (zh) 一种基于毛细管的流式聚合酶链式反应循环加热仪及加热方法
CN201607292U (zh) 一种温度仪表的自动标定系统
CN100410139C (zh) 水下运载器试验用的海洋温跃层模拟系统
CN102003623A (zh) 一种管道停输再启动实验装置
CN209513552U (zh) 一种温度可控的岩石水化学浸泡试验装置
CN203479550U (zh) 适用于大型发电设备换热器传热与阻力特性的测试系统
CN103472323B (zh) 一种流体介质缝隙流动快速换热装置
CN107678462A (zh) 定速槽及定速槽用定速降温系统及定速槽定速降温方法
CN104571203B (zh) 一种绝缘油过热性故障模拟试验装置
CN204251711U (zh) 一种新型大面积混合型加热板加热系统
CN112067325A (zh) 一种应用于超重力模型试验的加热制冷系统
CN201688884U (zh) 模拟检测混凝土自生体积变形的装置
CN206531850U (zh) 一种用于评价含蜡原油结蜡特性的冷指实验装置
CN201003995Y (zh) 恒温测试机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130417

Termination date: 20170530

CF01 Termination of patent right due to non-payment of annual fee