CN101315345A - 一种无酶情况下检测葡萄糖浓度的修饰电极及制备方法 - Google Patents

一种无酶情况下检测葡萄糖浓度的修饰电极及制备方法 Download PDF

Info

Publication number
CN101315345A
CN101315345A CNA2008100455586A CN200810045558A CN101315345A CN 101315345 A CN101315345 A CN 101315345A CN A2008100455586 A CNA2008100455586 A CN A2008100455586A CN 200810045558 A CN200810045558 A CN 200810045558A CN 101315345 A CN101315345 A CN 101315345A
Authority
CN
China
Prior art keywords
electrode
carbon nano
modified electrode
modified
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100455586A
Other languages
English (en)
Other versions
CN101315345B (zh
Inventor
张云
王晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN2008100455586A priority Critical patent/CN101315345B/zh
Publication of CN101315345A publication Critical patent/CN101315345A/zh
Application granted granted Critical
Publication of CN101315345B publication Critical patent/CN101315345B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及一种无酶情况下检测葡萄糖浓度的修饰电极及制备方法,首先将碳纳米管修饰在玻碳电极的表面,再通过循环伏安法将铁氰酸镍电化学沉积在碳纳米管修饰的电极表面,得到碳纳米管和铁氰酸镍复合修饰的修饰电极;该修饰电极在无酶情况下对葡萄糖溶液有良好的响应,其对葡萄糖浓度检测下限是1.6×10-6mol/L;当葡萄糖浓度在3.32×10-6M/L~4.95×10-3M mol/L范围内时,所得的响应电流与葡萄糖的浓度有良好的线性关系,并且所制备电极有良好的抗干扰性能。

Description

一种无酶情况下检测葡萄糖浓度的修饰电极及制备方法
一、技术领域
本发明涉及一种电极及制备方法,特别是涉及一种无酶情况下检测葡萄糖浓度的修饰电极及制备方法,属于公共卫生领域。
二、技术背景
糖尿病是世界性的多发病和常见病,随着人们生活水平的提高和老年人口的增多,其发病率呈明显上升趋势。全世界约有两亿多病人,已成为全球性的卫生保健问题,并严重地威胁着人类的健康,成为仅次于心血管病、癌症的第三大危险疾病。我国现今约有5000万病人。因而,糖尿病的诊断和治疗不仅是我国也是全世界医学界面临的重大课题。
为了满足临床医学研究所需要的自动、迅速和精确测量葡萄糖的浓度的要求,迄今为止,有许多方法可用于葡萄糖的鉴定和浓度监测分析。其中研究最多的是葡萄糖电化学生物传感器。目前商业化葡萄糖传感器基本上都是采用酶致变色的方法,其测量精确度不高。传感器发展的一个趋势就是微型化、小型化,而葡萄糖传感器响应值不高困扰着其微型化发展。目前传感器的稳定性差、线性范围窄、体液中其它化学物质的干扰较大等因素限制了电流式葡萄糖生物传感器的产业化。而且,所用的葡萄糖氧化酶价格比较昂贵,且容易受温度、酸碱度等环境因素的影响,因此新型葡萄糖传感器的研发,特别是能在无酶的条件下对葡萄糖进行检测的电极有着重要的现实意义。
三、发明目的
针对现有葡萄糖传感器采用酶致变色的方法,且存在着葡萄糖氧化酶价格比较昂贵,且容易受温度、酸碱度等环境因素的影响,以及测量精确度不高等不足,本发明的目的是通过碳纳米管和铁氰酸镍复合修饰制备一种能在无酶的条件下对葡萄糖浓度进行检测的修饰电极。
四、发明内容
本发明的内容主要为:
该修饰电极的制备通过以下步骤依次进行:
1.将管径30-50纳米,纯度>95%,长度为15微米的多壁碳纳米管在高温炉中于300℃~600℃下保温1~3小时.然后于混酸(浓H2SO4∶浓HNO3=1∶2~4∶1)中超声搅拌均匀后即得到功能化的多壁碳纳米管。
2.将纯化后的碳纳米管溶于N,N-二甲基甲酰胺(DMF)溶液中超声分散,再取1~100微升该分散液滴涂在玻碳电极的表面,自然晾干,得到碳纳米管修饰的电极。
3.采用三电极系统,以碳纳米管修饰的玻碳电极为工作电极,以铂电极为对电极,以银/氯化银电极为参比电极,通过循环伏安法将铁氰酸镍电化学沉积在碳纳米管修饰电极的表面。其中电解质溶液的组成为:0.1~10mmol/L的铁氰化钾(K3[Fe(CN)6]),0.02~0.05mol/L的氯化钾(KCl),0.5~2mmol/L的氯化镍(NiCl2);电化学沉积的电位范围为-0.1V-1.0V,扫描圈数为1~1000圈。
4.扫描完成后,将电极从电解质溶液中取出晾干后即得碳纳米管和铁氰酸镍复合修饰的修饰电极。
修饰电极对葡萄糖浓度的检测:以0.2~2mol/L NaOH或KOH为底液,以所制备的修饰电极为工作电极,采用循环伏安法和电流时间法对葡萄糖溶液浓度进行检测;检测电位为0.5V,葡萄糖浓度在3.32×10-6~4.95×10-6mol/L范围内时,所得的响应信号与葡萄糖的浓度存在良好的线性关系,其相关系数为R=0.99,检测葡萄糖浓度的下限是1.6×10-6mol/L。
修饰电极对葡萄糖检测时的抗干扰性能测试:以所制备的复合修饰电极为工作电极,采用循环伏安法和电流时间法对葡萄糖溶液中的常见干扰物质抗坏血酸,膀胱酸及尿酸与葡萄糖进行对比测试,几种干扰物质对所制备修饰电极的响应信号不到葡萄糖对所制备修饰电极响应信号的1‰,因此,所制备修饰电极具有良好的抗干扰性能。
五、效果
本发明的优点在于:
1.将改性碳纳米管修饰到玻碳电极后,一方面利用碳纳米管比表面积大的特点增大了电极表面的导电面积,另一方面碳纳米管具有高的活性导电性能,这两者均有利于铁氰酸镍在碳纳米管修饰电极表面的电化学沉积;实验证明,修饰碳纳米管后,电极的响应电流提高3倍以上。
2.将碳纳米管修饰后的电极,再通过电化学沉积将铁氰酸镍修饰到电极表面;一方面,通过电化学沉积方法使铁氰酸镍附着在碳纳米管和电极的表面形成薄膜,而且碳纳米管和铁氰酸镍之间形成键合,从而使碳纳米管与玻碳电极之间原有的物理修饰转变为电化学修饰,因此修饰层比单纯的碳纳米管修饰更加牢固;另一方面,由于先修饰了碳纳米管,增大了电极的比表面积,因此与未修饰碳纳米管的玻碳电极相比,在相同的电化学电位下,可制备厚度更薄,附着性更好的铁氰酸镍修饰薄膜。
3.本发明利用铁氰酸镍修饰层中元素镍在无酶的条件下与葡萄糖分子间的电化学反应对葡萄糖浓度进行检测,克服了原有酶电极受温度、湿度等环境因素影响而精确度不高、寿命短等不足。
4.本发明通过碳纳米管和铁氰酸镍的复合修饰,提高了电极的响应电流,从而降低了葡萄糖的检测限,可以对1.6×10-6mol/L的低浓度葡萄糖进行检测。
六、实施例
下面为本发明的一个实施例,需要指出实施例仅是对本发明的进一步说明,而不是对本发明的限制。
实施例:
1.将管径30-50纳米,纯度>95%,长度为15微米的多壁碳纳米管在高温炉中于600℃下保温1小时.然后于混酸(浓H2SO4∶浓HNO3=2∶1)中超声搅拌均匀后得到功能化的多壁碳纳米管。
2.将纯化后的碳纳米管溶于N,N-二甲基甲酰胺(DMF)溶液中超声分散,再取20微升该分散液滴涂在玻碳电极的表面,自然晾干,得到碳纳米管修饰电极。
3.采用三电极系统,以碳纳米管修饰的玻碳电极为工作电极,以铂电极为对电极,以Ag/AgCl电极为参比电极,通过循环伏安法将铁氰酸镍电化学沉积在碳纳米管修饰电极的表面。其中电解质溶液的组成为:2mmol/L的铁氰化钾(K3[Fe(CN)6]),0.02mol/L的氯化钾(KCl),1mmol/L的氯化镍(NiCl2);电化学沉积的电位范围为-0.1V-1.0V;扫描圈数为100圈。
4.扫描完成后,将电极从电解质中取出自然晾干后即得碳纳米管和铁氰酸镍复合修饰的复合修饰电极。
5.复合修饰电极对葡萄糖的检测:以1mol/L NaOH为底液,以所制备的复合修饰电极为工作电极,采用通用的循环伏安法和电流时间法对葡萄糖溶液进行检测;检测电位为0.5V,葡萄糖浓度在3.32×10-6~4.95×10-6mol/L范围内时,所得的响应信号与葡萄糖的浓度存在良好的线性关系,其相关系数为R=0.99,检测葡萄糖的下限是1.6×10-6mol/L。
6.复合修饰电极对葡萄糖的检测时抗干扰性能测试:以所制备的复合修饰电极为工作电极,采用循环伏安法和电流时间法对葡萄糖溶液中的常见干扰物质抗坏血酸与葡萄糖进行对比测试,抗坏血酸对所制备修饰电极的响应信号不到葡萄糖对所制备修饰电极响应信号的1‰,因此,所制备电极具有良好的抗干扰性能。

Claims (6)

1.一种无酶情况下检测葡萄糖浓度的修饰电极及制备方法,其特征在于,通过碳纳米管和铁氰酸镍对玻碳电极的复合修饰得到复合修饰电极,该电极在无酶情况下,在NaOH或KOH底液中可进行葡萄糖浓度的测定。
2.根据权利要求1所述的复合修饰电极的制备方法,其特征在于,先将纯化后的碳纳米管修饰在玻碳电极的表面,得到碳纳米管修饰的电极,再采用循环伏安法将铁氰酸镍电化学沉积在碳纳米管修饰电极的表面,得到复合修饰电极。
3.根据权利要求1和2所述的纯化碳纳米管,其特征在于:将碳纳米管于300℃~600℃下保温1~3小时,然后于混酸(浓H2SO4∶浓HNO3=1∶2~4∶1)中超声搅拌均匀后即得到功能化的多壁碳纳米管。
4.根据权利要求2所述的采用循环伏安法将铁氰酸镍电化学沉积在碳纳米管修饰电极的表面,其特征在于:电解质溶液的组成为:0.1~10mmol/L的铁氰化钾(K3[Fe(CN)6]),0.02~0.05mol/L的氯化钾(KCl),0.5~2mmol/L的氯化镍(NiCl2)。
5.根据权利要求2所述的采用循环伏安法将铁氰酸镍电化学沉积在碳纳米1管修饰电极的表面,其特征在于,电化学沉积的电位范围为-0.1V-1.0V,扫描圈数为1~1000圈。
6.根据权利要求1所述的无酶情况下检测葡萄糖浓度的修饰电极及制备方法,其特征在于,在无酶情况下对葡萄糖溶液浓度进行检测时,底液为NaOH或KOH溶液,其浓度为0.2~2mol/L。
CN2008100455586A 2008-07-15 2008-07-15 一种无酶情况下检测葡萄糖浓度的修饰电极的制备方法及应用 Expired - Fee Related CN101315345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100455586A CN101315345B (zh) 2008-07-15 2008-07-15 一种无酶情况下检测葡萄糖浓度的修饰电极的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100455586A CN101315345B (zh) 2008-07-15 2008-07-15 一种无酶情况下检测葡萄糖浓度的修饰电极的制备方法及应用

Publications (2)

Publication Number Publication Date
CN101315345A true CN101315345A (zh) 2008-12-03
CN101315345B CN101315345B (zh) 2011-09-28

Family

ID=40106424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100455586A Expired - Fee Related CN101315345B (zh) 2008-07-15 2008-07-15 一种无酶情况下检测葡萄糖浓度的修饰电极的制备方法及应用

Country Status (1)

Country Link
CN (1) CN101315345B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520035A (zh) * 2011-11-04 2012-06-27 上海大学 氧化铜-石墨烯纳米复合物修饰电极的制备方法及修饰电极在测定葡萄糖中的应用
CN103663413A (zh) * 2013-12-11 2014-03-26 安徽师范大学 一种碳纳米粒子及其制备方法和在血糖检测中的应用
CN107247082A (zh) * 2017-05-11 2017-10-13 贵州民族大学 一种基于脉冲电沉积碳纳米管修饰电极的制备方法
CN107422014A (zh) * 2017-07-13 2017-12-01 云南大学 用于检测碱性磷酸酶的修饰电极及制备方法与检测方法
CN108088881A (zh) * 2017-12-19 2018-05-29 江南大学 一种基于聚合物-碳纳米管无酶葡萄糖传感器的制备方法
CN109342518A (zh) * 2018-09-10 2019-02-15 天津科技大学 一种基于丝网印刷电极的葡萄糖的非酶传感器的制备方法和应用
CN114034754A (zh) * 2021-10-20 2022-02-11 蚌埠学院 一种基于钴胺素/铁氰化钾复合膜传感器的制备方法及其应用
WO2022062409A1 (zh) * 2020-09-24 2022-03-31 江苏大学 一种无酶葡萄糖传感器及其制备方法和用途
US11733199B2 (en) 2020-09-24 2023-08-22 Jiangsu University Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241862B1 (en) * 1996-02-14 2001-06-05 Inverness Medical Technology, Inc. Disposable test strips with integrated reagent/blood separation layer
CN1373361A (zh) * 2002-04-11 2002-10-09 复旦大学 一次性血糖测定用电极及其制备方法
CN1234873C (zh) * 2003-04-03 2006-01-04 上海新立医疗器械有限公司 血糖测试仪配套试纸及其制作方法
CN1477388A (zh) * 2003-05-22 2004-02-25 上海斯坎生物传感技术有限公司 酶电极试纸
ATE359339T1 (de) * 2004-07-23 2007-05-15 Terumo Corp Saccharid-messender fluoreszierender monomer, saccharid-messende fluoreszierende sensor- substanz und implantierbarer, saccharid-messender sensor
CN2748912Y (zh) * 2004-09-07 2005-12-28 桂林工学院 一次性电极式血糖试条
EP1885870A1 (en) * 2005-05-17 2008-02-13 Radiometer Medical ApS Enzyme sensor including a water-containing spacer layer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520035A (zh) * 2011-11-04 2012-06-27 上海大学 氧化铜-石墨烯纳米复合物修饰电极的制备方法及修饰电极在测定葡萄糖中的应用
CN103663413A (zh) * 2013-12-11 2014-03-26 安徽师范大学 一种碳纳米粒子及其制备方法和在血糖检测中的应用
CN107247082A (zh) * 2017-05-11 2017-10-13 贵州民族大学 一种基于脉冲电沉积碳纳米管修饰电极的制备方法
CN107422014A (zh) * 2017-07-13 2017-12-01 云南大学 用于检测碱性磷酸酶的修饰电极及制备方法与检测方法
CN107422014B (zh) * 2017-07-13 2019-07-12 云南大学 用于检测碱性磷酸酶的修饰电极及制备方法与检测方法
CN108088881A (zh) * 2017-12-19 2018-05-29 江南大学 一种基于聚合物-碳纳米管无酶葡萄糖传感器的制备方法
CN109342518A (zh) * 2018-09-10 2019-02-15 天津科技大学 一种基于丝网印刷电极的葡萄糖的非酶传感器的制备方法和应用
WO2022062409A1 (zh) * 2020-09-24 2022-03-31 江苏大学 一种无酶葡萄糖传感器及其制备方法和用途
US11733199B2 (en) 2020-09-24 2023-08-22 Jiangsu University Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same
CN114034754A (zh) * 2021-10-20 2022-02-11 蚌埠学院 一种基于钴胺素/铁氰化钾复合膜传感器的制备方法及其应用

Also Published As

Publication number Publication date
CN101315345B (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
CN101315345B (zh) 一种无酶情况下检测葡萄糖浓度的修饰电极的制备方法及应用
Eivazzadeh-Keihan et al. Applications of carbon-based conductive nanomaterials in biosensors
Lei et al. A MXene‐based wearable biosensor system for high‐performance in vitro perspiration analysis
Liu et al. Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the nonenzymatic glucose detection
Xiao et al. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites
Naikoo et al. Recent advances in non-enzymatic glucose sensors based on metal and metal oxide nanostructures for diabetes management-a review
Mathew et al. Electrochemical biosensors based on Ti3C2Tx MXene: future perspectives for on-site analysis
Li et al. Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films
Zhang et al. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase
Zhai et al. Soft and stretchable electrochemical biosensors
Asrami et al. A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode
Zuaznabar-Gardona et al. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes
Kim et al. Technological advances in electrochemical biosensors for the detection of disease biomarkers
Parthasarathy et al. A comprehensive review on thin film-based nano-biosensor for uric acid determination: arthritis diagnosis
Yuan et al. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors
Hsu et al. Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio
KR102423250B1 (ko) 효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법
Pandey et al. A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients
Temoçin Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H 2 O 2 via nanofiber interface
Das et al. Electrochemical nanosensors for sensitization of sweat metabolites: from concept mapping to personalized health monitoring
CN107436316A (zh) 基于石墨烯和氧化石墨烯复合材料的葡萄糖传感器的制备
Muthusankar et al. Chitosan based nanocomposite biosensors: a recent review
Zhang et al. Carnation‐like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing
Raza et al. Progress of wearable and flexible electrochemical biosensors with the aid of conductive nanomaterials
Cui Electronic materials, devices, and signals in electrochemical sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110928

Termination date: 20140715

EXPY Termination of patent right or utility model